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Sparse Approximation Problems

Goals: Given a linear system Hx = y , find x̂ such that:

I ||y − Hx̂ || ≤ α
I ||x̂ ||0 := #{j | x̂j 6= 0} ≤ k .

Applications:
I Data compression
I Image recovery
I Signal processing
I Machine learning
I Etc.
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... with a particular interest in the norm `2
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MIP formulations: `1 and `∞
(Bourguignon et al. 2016)

I Binary variable bj states whether xj 6= 0 or not

I Continuous variables w collect the misfit error

MIP0/1 MIP0/∞

min
∑

j∈[m]

bj

−Mbj ≤ xj ≤ Mbj ∀j ∈ [m]

−wi ≤ yi −
∑

j∈[m]

hij xj ≤ wi ∀i ∈ [n]

∑
i∈[n]

wi ≤ α

xj ∈ R, bj ∈ {0, 1} ∀j ∈ [m]

wi ∈ R ∀i ∈ [n]

min
∑

j∈[m]

bj

−Mbj ≤ xj ≤ Mbj ∀j ∈ [m]

−w ≤ yi −
∑

j∈[m]

hij xj ≤ w ∀i ∈ [n]

w ≤ α

xj ∈ R, bj ∈ {0, 1} ∀j ∈ [m]

w ∈ R

Observation:
M is a sufficiently big constant, which is necessary to properly formulate this MIPs



MIP formulations: `2
(Bourguignon et al. 2016)

I Binary variable bj states whether xj 6= 0 or not

I Continuous variables w collect the misfit error

MIP0/2

min
∑

j∈[m]

bj

−Mbj ≤ xj ≤ Mbj ∀j ∈ [m]

−wi ≤ yi −
∑

j∈[m]

hij xj ≤ wi ∀i ∈ [n]

∑
i∈[n]

w2
i ≤ α

2

xj ∈ R, bj ∈ {0, 1} ∀j ∈ [m]

wi ∈ R ∀i ∈ [n]

Observation:
M is a sufficiently big constant, which is necessary to properly formulate this MIPs



MIP formulations: `2
(Bourguignon et al. 2016)

I Binary variable bj states whether xj 6= 0 or not

I Continuous variables w collect the misfit error

MIP0/2

min
∑

j∈[m]

bj

−Mbj ≤ xj ≤ Mbj ∀j ∈ [m]

−wi ≤ yi −
∑

j∈[m]

hij xj ≤ wi ∀i ∈ [n]

∑
i∈[n]

w2
i ≤ α

2
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MIP formulations: Dealing with the big-M approach
(Bourguignon et al. 2016)

1. Set an initial value for M
2. Solve the MIP and get an optimal solution x̂
3. if some x̂j = M, then increase M and repeat from Step 2
4. else, then STOP with “optimal” solution x̂

Problem: This algorithm may stop with a suboptimal solution!
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MIP formulations: Dealing with the big-M approach

Some small examples:

H =

(
1 2
2 1

)

y =

(
15
15

)
α = 10

norm: p = 1
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If M = 5 all feasible solutions have ||x ||0 = 2, so we may get an
“optimal” not tight on M. However, the real optimums lie on the axis.
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MIP formulations: Dealing with the big-M approach

Some small examples:

H =

(
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If M = 3.5 we have the same problem...



MIP formulations: Dealing with the big-M approach

Some small examples:

H =

(
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(
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)
α = 10

norm: p = 2
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With M = 4 we have the same problem...



MIP formulations: Dealing with the big-M approach
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MIP formulations: Dealing with the big-M approach

Some small examples:

H =
(
1 1

)
y = 10

α = 1

norm: p ∈ {1,2,∞}

5 10

5

10

With M = 8 we have the same problem...



MIP formulations: Dealing with the big-M approach

Observation: We may get rid of the big-M constraints by
adding some non-convexities. For example,

−Mbj ≤ xj ≤ Mbj

xj = xjbj , ∀j ∈ [m]

Summing up:
I No big-M =⇒ non-convexities
I Big-M =⇒ Not clear which M to use?
I Known bound for x =⇒ Known Big-M issues...

In any case... we don’t have an “elegant” solution...



MIP formulations: Dealing with the big-M approach

Observation: We may get rid of the big-M constraints by
adding some non-convexities. For example,

−Mbj ≤ xj ≤ Mbj

xj = xjbj , ∀j ∈ [m]

Summing up:
I No big-M =⇒ non-convexities
I Big-M =⇒ Not clear which M to use?
I Known bound for x =⇒ Known Big-M issues...

In any case... we don’t have an “elegant” solution...



MIP formulations: Dealing with the big-M approach

Observation: We may get rid of the big-M constraints by
adding some non-convexities. For example,

−Mbj ≤ xj ≤ Mbj

xj = xjbj , ∀j ∈ [m]

Summing up:
I No big-M =⇒ non-convexities
I Big-M =⇒ Not clear which M to use?
I Known bound for x =⇒ Known Big-M issues...

In any case... we don’t have an “elegant” solution...



Polyhedral study

Definition (Forbidden support)
A set of columns J is a forbidden support for P0/p if there exist no
solutions with support J. Equivalently, if minx∈Rm{||y − HJxJ ||p} > α.

Proposition
If J ⊆ [m] is a forbidden support for P0/p, then the forbidden support
inequality is valid for MIP0/p. ∑

j∈[m]\J

bj ≥ 1 (1)

Proposition
For p ∈ {1,2,∞}, we can efficiently test if a set J is a forbidden
support by finding minx∈Rm{||y − HJxJ ||p}.
I For p ∈ {1,∞}, we find this minimum by solving an LP.

I For p = 2, we find it by solving a least squares problem.
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Polyhedral study

An interesting remark about Forbidden Support Inequalities:

min
∑

j∈[m]

bj

P =


−Mb ≤ x ≤ Mb
||y − Hx ||p ≤ α
x ∈ Rm, b ∈ {0, 1}m

Pproj = {b ∈ {0, 1}m | exists a solution (x , b) ∈ P}

Proposition
Given a support b ∈ Pproj , we can efficiently find a solution (x ,b) ∈ P.

Theorem
Pproj = {b ∈ {0,1}m | b satisfies all Forbidden Support ineq. (1)}
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A novel IP reformulation
Therefore, we can obtain an optimum support by solving:

[IPcov
0/p] min

∑
j∈[m]

bj∑
j∈[m]\J

bj ≥ 1, ∀ forbidden support J ⊆ [m]

b ∈ {0,1}m

I Pros:
I Linear formulation (even for `2)
I It does not need the big M!

(neither to obtain x afterwards...)
I Is a Minimum Set Covering problem!
I It is a well-known pure combinatorial problem

I Cons:
I Exponentially-many constraints...

(but we can deal with this... )
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Solving IPcov
0/p

Sketch of the algorithm:

1. Solve a combinatorial relaxation of IPcov
0/p

with just a few constraints and obtain a
“minimum” support b ∈ {0,1}m

2. If b is a forbidden support,

I Add to the formulation the
constraint associated to b and
repeat from Step 1.

3. Else, b is a feasible support, so

I then finish with a proper solution
x ∈ Rm.

min
∑

j∈[m]

bj

∑
j∈[m]\J

bj ≥ 1, ∀ FS J ⊆ [m]

b ∈ {0, 1}m
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Back to some more polyhedral stuff...

An interesting remark

←− MIP0/p

←− IPcov
0/p

I Many valid inequalities for Set Covering polytopes are known

I We can apply these cuts to MIP0/p !



Valid inequalities arising from Set Covering

Proposition
Let J ⊆ 2[m] be a family of forbidden supports for P0/p, and define
Jnone := [m] \

⋃
J∈J J, and Jsome := [m] \ (Jnone ∪

⋂
J∈J J). Then the

forbidden support family inequality∑
j∈Jnone

2bj +
∑

j∈Jsome

bj ≥ 2 (2)

is valid for MIP0/p.

These inequalities (as many other known inequalities) may be used
as cuts in a cutting plane approach to solve MIP0/p and IPcov

0/p.



Checkpoint

Another quick checkpoint:

I Existing big-M formulation

I New valid inequalities

I Description of feasible supports

I New IP approach for P0/p (the first, to our knowledge)

I Set covering polytope



Solution approaches

We will evaluate 3 approaches:

1. MIP0/p: iterative algorithm from the literature to solve the big-M
formulation.

2. BC0/p: same as above but solving the formulation with a simple
branch & cut algorithm based on forbidden support cuts.

3. IPcov
0/p: novel IP formulation (with dynamically added constraints)



A simple branch & Cut approach

I Forbidden support inequalities as cuts

I Rounding primal heuristic procedure

Separation problem: Given a fractional solution (x̂ , b̂, ŵ), find a
forbidden support J such that∑

j∈[m]\J

b̂j < 1

It is not clear at all how to efficiently solve this problem (if possible!)

... we resort to a heuristic separation routine.
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A simple branch & Cut approach
Heuristic separation routine for Forbidden Support cuts

Sketch of the algorithm:

1. Get as many bj as possible while keeping
∑

j b̂j < 1

2. Take J as the complement of those indexes

3. If J is a forbidden support we already have a valid cut!

I This cut may be weak if |J| is too small
I Try to expand |J| to a wider forbidden support if possible

4. else, we failed to get a forbidden support cut for (x̂ , b̂, ŵ)

Obs: We shall use this cuts (and the rounding heuristic) also for IPcov
0/p
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Computational results

We will evaluate 3 approaches:

1. MIP0/p: iterative algorithm from the literature to solve the big-M
formulation.

2. BC0/p: same as above but solving the formulation with a simple
branch & cut algorithm based on forbidden support cuts.

3. IPcov
0/p: novel IP formulation (with dynamically added constraints

and branch & cut)

Two goals:

I Solution times: One-dimensional deconvolution problems (from
Bourguignon et al., 2016).

I Solution quality: Submatrices of a “pathological” case (from
Mairal and Yu, 2012).

Obs: We use CPLEX 12.6 callback framework from it’s Java API.



Computational results
Deconvolution instances for P0/2

MIP0/2 BC0/2 IPcov
0/2

SNR K # ins solv time uns supp solv time uns supp solv time uns supp

10 5 50 49 352 1 5.0 46 274 4 5.8 50 26 0 -
7 48 8 949 40 7.9 4 612 44 7.9 37 576 11 7.6
9 16 0 - 16 10.2 0 - 16 10.3 2 898 14 11.1

20 5 50 50 105 0 - 50 24 0 - 50 4 0 -
7 49 29 700 20 7.9 48 190 1 9.0 49 19 0 -
9 41 4 673 37 10.6 22 729 19 11.2 41 99 0 -

30 5 50 50 62 0 - 50 9 0 - 50 2 0 -
7 50 48 529 2 15.0 49 31 1 23.0 50 5 0 -
9 50 12 1119 38 10.3 50 235 0 - 50 22 0 -

Instances solved...
... by all: 242 360 sec. 104 sec. 12 sec.
... by none: 25 9.04 9.36 9.56
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Computational results
Deconvolution instances for P0/∞

MIP0/∞ BC0/∞ IPcov
0/∞

SNR K # ins solv time uns supp solv time uns supp solv time uns supp

10 5 50 33 340 17 7.4 40 375 10 7.7 32 1012 18 8.4
7 48 5 1033 43 8.3 10 941 38 8.7 2 1465 46 11.2
9 16 0 - 16 10.0 0 - 16 10.2 0 - 16 15.1

20 5 50 38 331 12 7.3 45 356 5 7.4 41 964 9 9.7
7 49 11 717 38 7.9 30 878 19 8.7 11 1340 38 11.6
9 41 1 1144 40 9.6 2 1095 39 9.9 0 - 41 15.2

30 5 50 44 330 6 7.3 48 290 2 9.0 45 810 5 9.2
7 50 17 591 33 8.0 37 758 13 8.7 26 1343 24 13.4
9 50 1 1142 49 9.7 9 1110 41 10.0 3 1443 47 16.2

Instances solved...
... by all: 129 366 sec. 290 sec. 954 sec.
... by none: 179 9.04 9.32 13.57



Computational results
Pathological instances

MIP0/2 BC0/2 IPcov
0/2

Size K tl supp top best tl supp top best tl supp top best

20× 40 4 0 16.2 2 0 0 15.5 2 0 0 4.0 10 8
6 0 14.7 2 0 1 16.2 2 0 0 5.8 10 8
8 0 20.5 1 0 1 19.5 1 0 9 8.7 9 9

30× 60 4 0 9.8 4 0 2 9.2 5 0 0 4.0 10 5
6 2 15.8 3 0 4 16.6 3 0 0 5.7 10 7
8 2 11.9 6 1 5 12.1 5 0 10 9.8 7 4

40× 80 4 5 11.0 4 0 5 11.1 4 0 0 4.0 10 6
6 2 14.6 6 0 5 16.4 6 0 7 7.6 8 4
8 4 17.2 6 0 6 19.1 5 0 9 10.1 8 4



Computational results
Pathological instances - The 40 cases solved by the three methods

IPcov
0/2 MIP0/2 BC0/2

Instance supp supp err supp err

20.40.4.1 4 13 225% 12 200%
20.40.4.2 4 4 0% 4 0%
20.40.4.3 4 26 550% 26 550%
20.40.4.4 4 29 625% 29 625%
20.40.4.5 4 7 75% 6 50%
20.40.4.6 4 13 225% 12 200%
20.40.4.7 4 18 350% 16 300%
20.40.4.8 4 30 650% 30 650%
20.40.4.9 4 18 350% 16 300%
20.40.4.10 4 4 0% 4 0%
20.40.6.1 6 6 0% 6 0%
20.40.6.2 6 11 83% 11 83%
20.40.6.3 6 31 417% 31 417%
20.40.6.4 6 17 183% 31 417%
20.40.6.5 6 21 250% 24 300%
20.40.6.6 6 17 183% 17 183%
20.40.6.8 5 10 100% 10 100%
20.40.6.9 5 14 180% 12 140%
20.40.6.10 6 6 0% 6 0%
20.40.8.8 7 34 386% 34 386%

IPcov
0/2 MIP0/2 BC0/2

Instance supp supp err supp err

30.60.4.1 4 5 25% 4 0%
30.60.4.2 4 5 25% 5 25%
30.60.4.4 4 4 0% 4 0%
30.60.4.5 4 8 100% 8 100%
30.60.4.6 4 4 0% 4 0%
30.60.4.7 4 4 0% 4 0%
30.60.4.8 4 4 0% 4 0%
30.60.4.9 4 40 900% 31 675%
30.60.6.1 6 6 0% 6 0%
30.60.6.2 5 33 560% 42 740%
30.60.6.7 6 32 433% 28 367%
30.60.6.8 6 6 0% 6 0%
30.60.6.9 5 5 0% 5 0%
30.60.6.10 5 10 100% 10 100%
40.80.4.1 4 4 0% 4 0%
40.80.4.2 4 4 0% 4 0%
40.80.4.5 4 4 0% 4 0%
40.80.4.6 4 6 50% 6 50%
40.80.4.10 4 4 0% 4 0%
40.80.6.3 6 6 0% 6 0%



Summing up...

I Previous MILP approaches are not exact.

I We presented a new (the first, to our knowledge) exact ILP
approach with interesting results.

I We showed how a B&C approach may help to speed-up
computation (although big-M related issues would hold).

What’s next? Exploit the Set Covering structure!

I Implement known cut families for IPcov
0/p

I Profit from known algorithms, heuristics, etc.



Thanks for your atention!
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