A novel integer linear programming approach for global *L*₀ minimization

Diego Delle Donne

joint work with Leo Liberti and Matthieu Kowalski

XXII POC Seminar, October 30th 2020.

This research was partially supported by Labex DigiCosme (project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the program "Investissement d'Avenir" Idex Paris-Saclay (ANR-11-IDEX-0003-02).

Goals: Given a linear system Hx = y, find \hat{x} such that:

▶
$$||y - H\hat{x}|| \le \alpha$$

▶ $||\hat{x}||_0 := \#\{j \mid \hat{x}_j \neq 0\} \le k.$

Applications:

- Data compression
- Image recovery
- Signal processing
- Machine learning
- ► Etc.

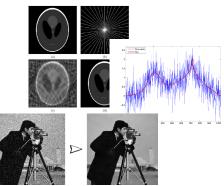
Goals: Given a linear system Hx = y, find \hat{x} such that:

▶
$$||y - H\hat{x}|| \le \alpha$$

▶ $||\hat{x}||_0 := \#\{j \mid \hat{x}_i \neq 0\} \le k$

Applications:

- Data compression
- Image recovery
- Signal processing
- Machine learning
- Etc.



Goals: Given a linear system Hx = y, find \hat{x} such that:

$$||y - H\hat{x}|| \le \alpha$$

►
$$||\hat{x}||_0 := \#\{j \mid \hat{x}_j \neq 0\} \le k.$$

Several problems may be defined:

- 1. $\mathcal{P}_{0/p}$: minimize $||x||_0$ s.t. $||y Hx||_p \le \alpha$,
- 2. $\mathcal{P}_{p/0}$: minimize $||y Hx||_p$ s.t. $||x||_0 \le k$,
- 3. $\mathcal{P}_{0+\rho}$: minimize $\lambda_1 ||y Hx||_{\rho} + \lambda_2 ||x||_0$ for some $\lambda_1, \lambda_2 \in \mathbb{R}$.

We'll focus on Problem 1...

... with a particular interest in the norm ℓ_2

Goals: Given a linear system Hx = y, find \hat{x} such that:

$$||\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}|| \le \alpha$$

►
$$||\hat{x}||_0 := \#\{j \mid \hat{x}_j \neq 0\} \le k.$$

Several problems may be defined:

- 1. $\mathcal{P}_{0/p}$: minimize $||x||_0$ s.t. $||y Hx||_p \le \alpha$,
- 2. $\mathcal{P}_{p/0}$: minimize $||y Hx||_p$ s.t. $||x||_0 \le k$,
- 3. $\mathcal{P}_{0+\rho}$: minimize $\lambda_1 ||y Hx||_{\rho} + \lambda_2 ||x||_0$ for some $\lambda_1, \lambda_2 \in \mathbb{R}$.

We'll focus on Problem 1...

... with a particular interest in the norm ℓ_2

Goals: Given a linear system Hx = y, find \hat{x} such that:

$$||\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}|| \le \alpha$$

$$||\hat{x}||_{0} := \#\{j \mid \hat{x}_{j} \neq 0\} \le k.$$

Several problems may be defined:

- 1. $\mathcal{P}_{0/p}$: minimize $||x||_0$ s.t. $||y Hx||_p \le \alpha$,
- 2. $\mathcal{P}_{p/0}$: minimize $||y Hx||_p$ s.t. $||x||_0 \le k$,
- 3. $\mathcal{P}_{0+\rho}$: minimize $\lambda_1 ||y Hx||_{\rho} + \lambda_2 ||x||_0$ for some $\lambda_1, \lambda_2 \in \mathbb{R}$.

We'll focus on Problem 1...

... with a particular interest in the norm ℓ_2

MIP formulations

Initial polyhedral study

An IP reformulation

Computational results

MIP formulations: ℓ_1 and ℓ_∞

(Bourguignon et al. 2016)

Binary variable b_j states whether $x_j \neq 0$ or not

Continuous variables w collect the misfit error

MIP _{0/1}	$MIP_{0/\infty}$
$\min\sum_{j\in[m]}b_j$	$\min\sum_{j\in [m]} b_j$
$-\textit{Mb}_j \leq x_j \leq \textit{Mb}_j \qquad \forall j \in [m]$	$-Mb_j \le x_j \le Mb_j \qquad \forall j \in [m]$
$-w_i \leq y_i - \sum_{j \in [m]} h_{ij} x_j \leq w_i \qquad \forall i \in [n]$	$-w \leq y_i - \sum_{j \in [m]} h_{ij} x_j \leq w \qquad \forall i \in [n]$
$\sum_{i\in[n]}w_i\leq\alpha$	$\mathbf{W} \leq \alpha$
$x_j \in \mathbb{R}, \ b_j \in \{0,1\} orall j \in [m] \ w_i \in \mathbb{R} \forall i \in [n]$	$egin{aligned} x_j \in \mathbb{R}, \ b_j \in \{0,1\} & orall j \in [m] \ w \in \mathbb{R} \end{aligned}$

Observation:

M is a sufficiently big constant, which is necessary to properly formulate this MIPs

MIP formulations: ℓ_2

(Bourguignon et al. 2016)

- Binary variable b_j states whether $x_j \neq 0$ or not
- Continuous variables w collect the misfit error

$$\begin{split} \min \sum_{j \in [m]} b_j \\ -Mb_j \leq x_j \leq Mb_j & \forall j \in [m] \\ -w_i \leq y_i - \sum_{j \in [m]} h_{ij}x_j \leq w_i & \forall i \in [n] \\ & \sum_{i \in [n]} w_i^2 \leq \alpha^2 \\ & x_j \in \mathbb{R}, \ b_j \in \{0, 1\} & \forall j \in [m] \\ & w_i \in \mathbb{R} & \forall i \in [n] \end{split}$$

 $MIP_{0/2}$

Observation:

M is a sufficiently big constant, which is necessary to properly formulate this MIPs

MIP formulations: ℓ_2

(Bourguignon et al. 2016)

- ▶ Binary variable b_j states whether $x_j \neq 0$ or not
- Continuous variables w collect the misfit error

$$\begin{split} \min \sum_{j \in [m]} b_j \\ -Mb_j \leq x_j \leq Mb_j & \forall j \in [m] \\ -w_i \leq y_i - \sum_{j \in [m]} h_{ij} x_j \leq w_i & \forall i \in [n] \\ & \sum_{i \in [n]} w_i^2 \leq \alpha^2 \\ & x_j \in \mathbb{R}, \ b_j \in \{0, 1\} & \forall j \in [m] \\ & w_i \in \mathbb{R} & \forall i \in [n] \end{split}$$

 $MIP_{0/2}$

Observation:

M is a sufficiently big constant, which is necessary to properly formulate this MIPs

MIP formulations: Dealing with the big-M approach (Bourguignon et al. 2016)

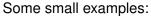
- 1. Set an initial value for M
- 2. Solve the MIP and get an optimal solution \hat{x}
- 3. if some $\hat{x}_j = M$, then increase *M* and repeat from Step 2
- 4. else, then STOP with "optimal" solution \hat{x}

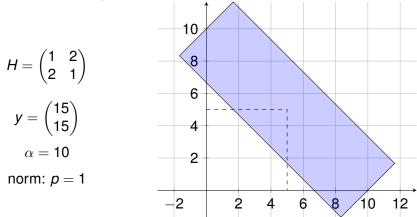
Problem: This algorithm may stop with a suboptimal solution!

MIP formulations: Dealing with the big-M approach (Bourguignon et al. 2016)

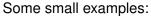
- 1. Set an initial value for M
- 2. Solve the MIP and get an optimal solution \hat{x}
- 3. if some $\hat{x}_j = M$, then increase *M* and repeat from Step 2
- 4. else, then STOP with "optimal" solution \hat{x}

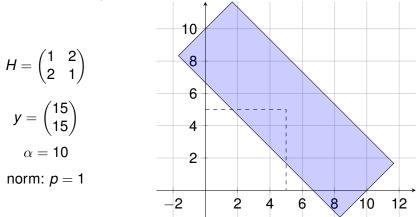
Problem: This algorithm may stop with a suboptimal solution!





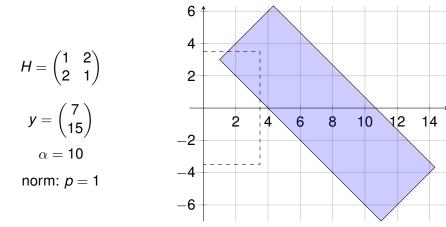
If M = 5 all feasible solutions have $||x||_0 = 2$, so we may get an "optimal" not tight on M. However, the real optimums lie on the axis.



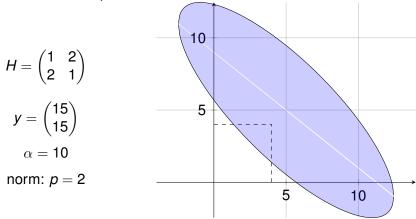


If M = 5 all feasible solutions have $||x||_0 = 2$, so we may get an "optimal" not tight on M. However, the real optimums lie on the axis.

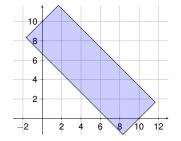
Some small examples:

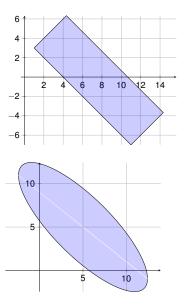


If M = 3.5 we have the same problem...

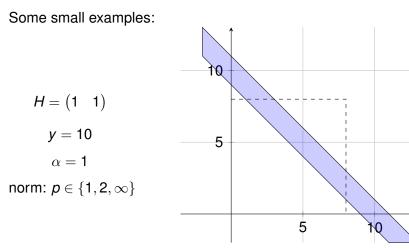


With M = 4 we have the same problem...





Can we find a proper M?



With M = 8 we have the same problem...

Observation: We may get rid of the big-M constraints by adding some non-convexities. For example,

 $-Mb_j \leq x_j \leq Mb_j$

 $x_j = x_j b_j, \quad \forall j \in [m]$

Summing up:

- Big-M \implies Not clear which *M* to use?
- Known bound for $x \Longrightarrow$ Known Big-M issues...

In any case... we don't have an "elegant" solution...

Observation: We may get rid of the big-M constraints by adding some non-convexities. For example,

 $-Mb_j \leq x_j \leq Mb_j$

$$x_j = x_j b_j, \quad \forall j \in [m]$$

Summing up:

- Big-M \implies Not clear which *M* to use?
- Known bound for $x \implies$ Known Big-M issues...

In any case... we don't have an "elegant" solution...

Observation: We may get rid of the big-M constraints by adding some non-convexities. For example,

 $-Mb_j \leq x_j \leq Mb_j$

$$x_j = x_j b_j, \quad \forall j \in [m]$$

Summing up:

- Big-M \implies Not clear which *M* to use?
- Known bound for $x \implies$ Known Big-M issues...

In any case... we don't have an "elegant" solution...

Definition (Forbidden support)

A set of columns *J* is a *forbidden support* for $\mathcal{P}_{0/p}$ if there exist no solutions with support *J*. Equivalently, if $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\} > \alpha$.

Proposition

If $J \subseteq [m]$ is a forbidden support for $\mathcal{P}_{0/p}$, then the forbidden support inequality is valid for $MIP_{0/p}$.

$$\sum_{j \in [m] \setminus J} b_j \ge 1 \tag{1}$$

Proposition

For $p \in \{1, 2, \infty\}$, we can efficiently test if a set *J* is a forbidden support by finding $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\}$.

For $p \in \{1, \infty\}$, we find this minimum by solving an LP.

Definition (Forbidden support)

A set of columns *J* is a *forbidden support* for $\mathcal{P}_{0/p}$ if there exist no solutions with support *J*. Equivalently, if $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\} > \alpha$.

Proposition

If $J \subseteq [m]$ is a forbidden support for $\mathcal{P}_{0/p}$, then the forbidden support inequality is valid for $MIP_{0/p}$.

$$\sum_{j\in[m]\setminus J} b_j \ge 1 \tag{1}$$

Proposition

For $p \in \{1, 2, \infty\}$, we can efficiently test if a set J is a forbidden support by finding $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\}$.

For $p \in \{1, \infty\}$, we find this minimum by solving an LP.

Definition (Forbidden support)

A set of columns *J* is a *forbidden support* for $\mathcal{P}_{0/p}$ if there exist no solutions with support *J*. Equivalently, if $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\} > \alpha$.

Proposition

If $J \subseteq [m]$ is a forbidden support for $\mathcal{P}_{0/p}$, then the forbidden support inequality is valid for $MIP_{0/p}$.

$$\sum_{i \in [m] \setminus J} b_j \ge 1 \tag{1}$$

Proposition

For $p \in \{1, 2, \infty\}$, we can efficiently test if a set J is a forbidden support by finding $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\}$.

For $p \in \{1, \infty\}$, we find this minimum by solving an LP.

Definition (Forbidden support)

A set of columns *J* is a *forbidden support* for $\mathcal{P}_{0/p}$ if there exist no solutions with support *J*. Equivalently, if $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\} > \alpha$.

Proposition

If $J \subseteq [m]$ is a forbidden support for $\mathcal{P}_{0/p}$, then the forbidden support inequality is valid for $MIP_{0/p}$.

$$\sum_{j \in [m] \setminus J} b_j \ge 1 \tag{1}$$

Proposition

For $p \in \{1, 2, \infty\}$, we can efficiently test if a set J is a forbidden support by finding $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\}$.

For $p \in \{1, \infty\}$, we find this minimum by solving an LP.

Definition (Forbidden support)

A set of columns *J* is a *forbidden support* for $\mathcal{P}_{0/p}$ if there exist no solutions with support *J*. Equivalently, if $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\} > \alpha$.

Proposition

If $J \subseteq [m]$ is a forbidden support for $\mathcal{P}_{0/p}$, then the forbidden support inequality is valid for $MIP_{0/p}$.

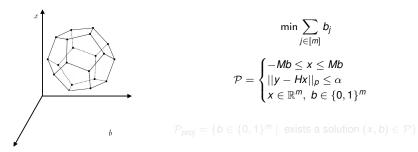
$$\sum_{j \in [m] \setminus J} b_j \ge 1 \tag{1}$$

Proposition

For $p \in \{1, 2, \infty\}$, we can efficiently test if a set J is a forbidden support by finding $\min_{x \in \mathbb{R}^m} \{||y - H^J x^J||_p\}$.

- For $p \in \{1, \infty\}$, we find this minimum by solving an LP.
- ▶ For p = 2, we find it by solving a least squares problem.

An interesting remark about Forbidden Support Inequalities:



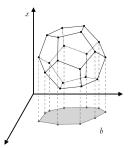
Proposition

Given a support $b \in \mathcal{P}_{proj}$, we can efficiently find a solution $(x, b) \in \mathcal{P}$.

Theorem

 $\mathcal{P}_{proj} = \{b \in \{0,1\}^m \mid b \text{ satisfies all Forbidden Support ineq. (1)} \}$

An interesting remark about Forbidden Support Inequalities:



$$\min \sum_{j \in [m]} b_j$$
$$\mathcal{P} = \begin{cases} -Mb \le x \le Mb\\ ||y - Hx||_p \le \alpha\\ x \in \mathbb{R}^m, \ b \in \{0, 1\}^m \end{cases}$$

$$\mathcal{P}_{proj} = \{b \in \{0,1\}^m \mid \text{ exists a solution } (x,b) \in \mathcal{P}\}$$

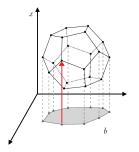
Proposition

Given a support $b \in \mathcal{P}_{proj}$, we can efficiently find a solution $(x, b) \in \mathcal{P}$.

Theorem

 $\mathcal{P}_{proj} = \{b \in \{0,1\}^m \mid b \text{ satisfies all Forbidden Support ineq. (1)} \}$

An interesting remark about Forbidden Support Inequalities:



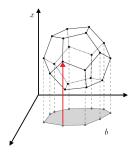
$$\min \sum_{j \in [m]} b_j$$
$$\mathcal{P} = \begin{cases} -Mb \le x \le Mb\\ ||y - Hx||_p \le \alpha\\ x \in \mathbb{R}^m, \ b \in \{0, 1\}^m \end{cases}$$

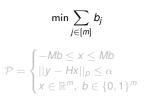
$$\mathcal{P}_{proj} = \{b \in \{0,1\}^m \mid \text{ exists a solution } (x,b) \in \mathcal{P}\}$$

Proposition Given a support $b \in \mathcal{P}_{proj}$, we can efficiently find a solution $(x, b) \in \mathcal{P}$.

Theorem $\mathcal{P}_{proj} = \{b \in \{0, 1\}^m \mid b \text{ satisfies all Forbidden Support ineq. (1)} \}$

An interesting remark about Forbidden Support Inequalities:



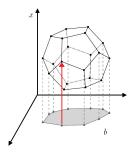


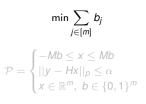
 $\mathcal{P}_{proj} = \{b \in \{0,1\}^m \mid \text{ exists a solution } (x,b) \in \mathcal{P}\}$

Proposition Given a support $b \in \mathcal{P}_{proj}$, we can efficiently find a solution $(x, b) \in \mathcal{P}$.

Theorem $\mathcal{P}_{proj} = \{b \in \{0, 1\}^m \mid b \text{ satisfies all Forbidden Support ineq. (1)} \}$

An interesting remark about Forbidden Support Inequalities:





 $\mathcal{P}_{proj} = \{b \in \{0, 1\}^m \mid \text{ exists a solution } (x, b) \in \mathcal{P}\}$

Proposition

Given a support $b \in \mathcal{P}_{proj}$, we can efficiently find a solution $(x, b) \in \mathcal{P}$.

Theorem

 $\mathcal{P}_{proj} = \{b \in \{0,1\}^m \mid b \text{ satisfies all Forbidden Support ineq. (1)} \}$

Therefore, we can obtain an optimum support by solving:

$$\begin{split} [\mathsf{IP}^{cov}_{0/p}] & \min \sum_{j \in [m]} b_j \\ & \sum_{j \in [m] \setminus J} b_j \geq 1, \quad \forall \text{ forbidden support } J \subseteq [m] \\ & b \in \{0,1\}^m \end{split}$$

Pros:

- Linear formulation (even for l₂)
- It does not need the big M! (neither to obtain x afterwards...)
- Is a Minimum Set Covering problem!
- It is a well-known pure combinatorial problem
- Cons:
 - Exponentially-many constraints...
 (but we can deal with this...)

Therefore, we can obtain an optimum support by solving:

$$\begin{split} [\mathsf{IP}^{cov}_{0/\rho}] & \min \sum_{j \in [m]} b_j \\ & \sum_{j \in [m] \setminus J} b_j \geq 1, \quad \forall \text{ forbidden support } J \subseteq [m] \\ & b \in \{0,1\}^m \end{split}$$

Pros:

► Linear formulation (even for ℓ_2)

 It does not need the big M! (neither to obtain x afterwards...)

- Is a Minimum Set Covering problem!
- It is a well-known pure combinatorial problem
- Cons:
 - Exponentially-many constraints...
 (but we can deal with this...)

Therefore, we can obtain an optimum support by solving:

$$\begin{split} [\mathsf{IP}_{0/p}^{cov}] & \min \sum_{j \in [m]} b_j \\ & \sum_{j \in [m] \setminus J} b_j \geq 1, \quad \forall \text{ forbidden support } J \subseteq [m] \\ & b \in \{0,1\}^m \end{split}$$

Pros:

- Linear formulation (even for ℓ_2)
- It does not need the big M! (neither to obtain x afterwards...)

- Is a Minimum Set Covering problem!
- It is a well-known pure combinatorial problem
- Cons:
 - Exponentially-many constraints...
 (but we can deal with this...)

Therefore, we can obtain an optimum support by solving:

$$\begin{split} [\mathsf{IP}^{cov}_{0/\rho}] & \min \sum_{j \in [m]} b_j \\ & \sum_{j \in [m] \setminus J} b_j \geq 1, \quad \forall \text{ forbidden support } J \subseteq [m] \\ & b \in \{0,1\}^m \end{split}$$

Pros:

- ► Linear formulation (even for ℓ_2)
- It does not need the big M! (neither to obtain x afterwards...)

Is a Minimum Set Covering problem!

It is a well-known pure combinatorial problem

Cons:

Exponentially-many constraints...
 (but we can deal with this...)

Therefore, we can obtain an optimum support by solving:

$$\begin{split} [\mathsf{IP}^{cov}_{0/\rho}] & \min \sum_{j \in [m]} b_j \\ & \sum_{j \in [m] \setminus J} b_j \geq 1, \quad \forall \text{ forbidden support } J \subseteq [m] \\ & b \in \{0,1\}^m \end{split}$$

Pros:

- ► Linear formulation (even for ℓ_2)
- It does not need the big M! (neither to obtain x afterwards...)

- Is a Minimum Set Covering problem!
- It is a well-known pure combinatorial problem

Cons:

Exponentially-many constraints...
 (but we can deal with this...)

A novel IP reformulation

Therefore, we can obtain an optimum support by solving:

$$\begin{split} [\mathsf{IP}^{cov}_{0/\rho}] & \min \sum_{j \in [m]} b_j \\ & \sum_{j \in [m] \setminus J} b_j \geq 1, \quad \forall \text{ forbidden support } J \subseteq [m] \\ & b \in \{0,1\}^m \end{split}$$

Pros:

- Linear formulation (even for ℓ_2)
- It does not need the big M! (neither to obtain x afterwards...)

- Is a Minimum Set Covering problem!
- It is a well-known pure combinatorial problem

Cons:

Exponentially-many constraints...

(but we can deal with this...)

A novel IP reformulation

Therefore, we can obtain an optimum support by solving:

$$\begin{split} [\mathsf{IP}^{cov}_{0/\rho}] & \min \sum_{j \in [m]} b_j \\ & \sum_{j \in [m] \setminus J} b_j \geq 1, \quad \forall \text{ forbidden support } J \subseteq [m] \\ & b \in \{0,1\}^m \end{split}$$

Pros:

- Linear formulation (even for ℓ_2)
- It does not need the big M! (neither to obtain x afterwards...)

- Is a Minimum Set Covering problem!
- It is a well-known pure combinatorial problem

Cons:

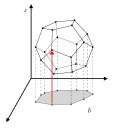
Exponentially-many constraints...
 (but we can deal with this...)

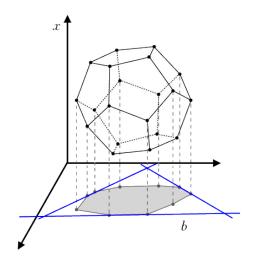
Solving IP^{cov}_{0/p}

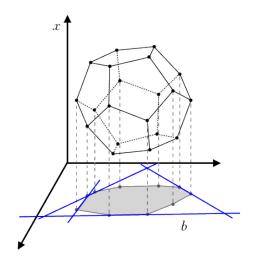
Sketch of the algorithm:

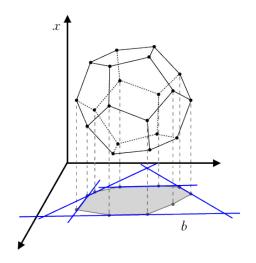
- 1. Solve a combinatorial relaxation of $IP_{0/p}^{cov}$ with just a few constraints and obtain a "minimum" support $b \in \{0, 1\}^m$
- 2. If b is a forbidden support,
 - Add to the formulation the constraint associated to b and repeat from Step 1.
- 3. Else, b is a feasible support, so
 - then finish with a proper solution $x \in \mathbb{R}^m$.

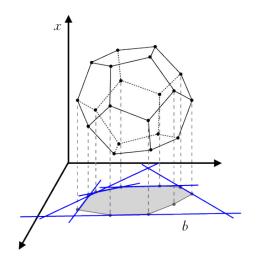
$$\min \sum_{j \in [m]} b_j$$
$$\sum_{i \in [m] \setminus J} b_j \ge 1, \quad \forall \text{ FS } J \subseteq [m]$$
$$b \in \{0, 1\}^m$$

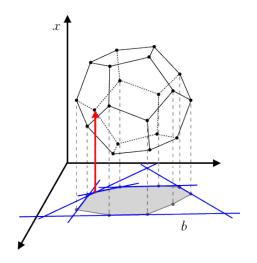






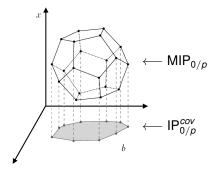






Back to some more polyhedral stuff...

An interesting remark



- Many valid inequalities for Set Covering polytopes are known
- We can apply these cuts to MIP_{0/p} !

Valid inequalities arising from Set Covering

Proposition

Let $\mathcal{J} \subseteq 2^{[m]}$ be a family of forbidden supports for $\mathcal{P}_{0/p}$, and define $J^{none} := [m] \setminus \bigcup_{J \in \mathcal{J}} J$, and $J^{some} := [m] \setminus (J^{none} \cup \bigcap_{J \in \mathcal{J}} J)$. Then the forbidden support family inequality

$$\sum_{j \in J^{\text{none}}} 2b_j + \sum_{j \in J^{\text{some}}} b_j \ge 2 \tag{2}$$

is valid for $MIP_{0/p}$.

These inequalities (as many other known inequalities) may be used as cuts in a cutting plane approach to solve $MIP_{0/p}$ and $IP_{0/p}^{cov}$.

Checkpoint

Another quick checkpoint:

- Existing big-M formulation
- New valid inequalities
- Description of feasible supports
- New IP approach for $\mathcal{P}_{0/p}$ (the first, to our knowledge)
- Set covering polytope

We will evaluate 3 approaches:

- 1. $MIP_{0/p}$: iterative algorithm from the literature to solve the big-M formulation.
- BC_{0/p}: same as above but solving the formulation with a simple branch & cut algorithm based on forbidden support cuts.
- 3. $IP_{0/p}^{cov}$: novel IP formulation (with dynamically added constraints)

- Forbidden support inequalities as cuts
- Rounding primal heuristic procedure

Separation problem: Given a fractional solution $(\hat{x}, \hat{b}, \hat{w})$, find a forbidden support *J* such that

$$\sum_{j\in[m]\setminus J}\hat{b}_j<1$$

It is not clear at all how to efficiently solve this problem (if possible!)

... we resort to a heuristic separation routine.

Forbidden support inequalities as cuts

Rounding primal heuristic procedure

Separation problem: Given a fractional solution $(\hat{x}, \hat{b}, \hat{w})$, find a forbidden support *J* such that

$$\sum_{j\in[m]\setminus J}\hat{b}_j<1$$

It is not clear at all how to efficiently solve this problem (if possible!)

... we resort to a heuristic separation routine.

Heuristic separation routine for Forbidden Support cuts

Sketch of the algorithm:

- 1. Get as many b_j as possible while keeping $\sum_i \hat{b}_j < 1$
- 2. Take J as the complement of those indexes
- 3. If J is a forbidden support we already have a valid cut!
 - This cut may be weak if |J| is too small
 - Try to expand |J| to a wider forbidden support if possible
- 4. **else**, we failed to get a forbidden support cut for $(\hat{x}, \hat{b}, \hat{w})$

Obs: We shall use this cuts (and the rounding heuristic) also for $IP_{0/p}^{cov}$

Heuristic separation routine for Forbidden Support cuts

Sketch of the algorithm:

- 1. Get as many b_j as possible while keeping $\sum_i \hat{b}_j < 1$
- 2. Take J as the complement of those indexes
- 3. If J is a forbidden support we already have a valid cut!
 - This cut may be weak if |J| is too small
 - Try to expand |J| to a wider forbidden support if possible
- 4. **else**, we failed to get a forbidden support cut for $(\hat{x}, \hat{b}, \hat{w})$

Obs: We shall use this cuts (and the rounding heuristic) also for $IP_{0/p}^{cov}$

We will evaluate 3 approaches:

- 1. $MIP_{0/p}$: iterative algorithm from the literature to solve the big-M formulation.
- 2. BC_{0/p}: same as above but solving the formulation with a simple branch & cut algorithm based on forbidden support cuts.
- IP^{cov}_{0/p}: novel IP formulation (with dynamically added constraints and branch & cut)

Two goals:

- Solution times: One-dimensional deconvolution problems (from Bourguignon et al., 2016).
- Solution quality: Submatrices of a "pathological" case (from Mairal and Yu, 2012).

Obs: We use CPLEX 12.6 callback framework from it's Java API.

Deconvolution instances for $\mathcal{P}_{0/2}$

				MIF	0/2			BC	0/2		IP _{0/2}				
SNR	К	# ins	solv	time	uns	supp	solv	time	uns	supp	solv	time	uns	supp	
10	5	50	49	352	1	5.0	46	274	4	5.8	50	26	0	-	
	7	48	8	949	40	7.9	4	612	44	7.9	37	576	11	7.6	
	9	16	0	-	16	10.2	0	-	16	10.3	2	898	14	11.1	
20	5	50	50	105	0	-	50	24	0	-	50	4	0	-	
	7	49	29	700	20	7.9	48	190	1	9.0	49	19	0	-	
	9	41	4	673	37	10.6	22	729	19	11.2	41	99	0	-	
30	5	50	50	62	0	-	50	9	0	-	50	2	0	-	
	7	50	48	529	2	15.0	49	31	1	23.0	50	5	0	-	
	9	50	12	1119	38	10.3	50	235	0	-	50	22	0	-	
Instan	ces s	olved													
by a	all:	242		360	sec.			104	sec.			12	sec.		
by r	none:	25		9.0	04			9.	36			9.	56		

Deconvolution instances for $\mathcal{P}_{0/2}$

				MIF	0/2	BC _{0/2}					IP _{0/2}				
SNR	К	# ins	solv	time	uns	supp	solv	time	uns	supp	solv	time	uns	supp	
10	5	50	49	352	1	5.0	46	274	4	5.8	50	26	0	_	
	7	48	8	949	40	7.9	4	612	44	7.9	37	576	- 11	7.6	
	9	16	0	-	16	10.2	0	-	16	10.3	2	898	14	11.1	
20	5	50	50	105	0	-	50	24	0	-	50	4	0	-	
	7	49	29	700	20	7.9	48	190	1	9.0	49	19	0	-	
	9	41	4	673	37	10.6	22	729	19	11.2	41	99	0	-	
30	5	50	50	62	0	-	50	9	0	-	50	2	0	-	
	7	50	48	529	2	15.0	49	31	1	23.0	50	5	0	-	
	9	50	12	1119	38	10.3	50	235	0	-	50	22	0	-	
Instan	ces s	olved													
by a	all:	242		360	sec.			104	sec.			12	sec.		
by r	none:	25		9.0	04			9.	36			9.	56		

Deconvolution instances for $\mathcal{P}_{0/\infty}$

				$MIP_{0/\infty}$			$BC_{0/\infty}$				$IP^{cov}_{0/\infty}$			
SNR	Κ	# ins	solv	time	uns	supp	solv	time	uns	supp	solv	time	uns	supp
10	5	50	33	340	17	7.4	40	375	10	7.7	32	1012	18	8.4
	7	48	5	1033	43	8.3	10	941	38	8.7	2	1465	46	11.2
	9	16	0	-	16	10.0	0	-	16	10.2	0	-	16	15.1
20	5	50	38	331	12	7.3	45	356	5	7.4	41	964	9	9.7
	7	49	11	717	38	7.9	30	878	19	8.7	11	1340	38	11.6
	9	41	1	1144	40	9.6	2	1095	39	9.9	0	-	41	15.2
30	5	50	44	330	6	7.3	48	290	2	9.0	45	810	5	9.2
	7	50	17	591	33	8.0	37	758	13	8.7	26	1343	24	13.4
	9	50	1	1142	49	9.7	9	1110	41	10.0	3	1443	47	16.2
Instan	ces so	olved												
by a	all:	129		366	sec.			290	sec.			954	sec.	
by r	none:	179		9.0	04			9.3	32			13.	.57	

Pathological instances

		MIP _{0/2}					BC	C _{0/2}		IP _{0/2}				
Size	Κ	tl	supp	top	best	tl	supp	top	best	tl	supp	top	best 8 8 9	
20 × 40	4	0	16.2	2	0	0	15.5	2	0	0	4.0	10	8	
	6	0	14.7	2	0	1	16.2	2	0	0	5.8	10	8	
	8	0	20.5	1	0	1	19.5	1	0	9	8.7	9	9	
30 × 60	4	0	9.8	4	0	2	9.2	5	0	0	4.0	10	5	
	6	2	15.8	3	0	4	16.6	3	0	0	5.7	10	7	
	8	2	11.9	6	1	5	12.1	5	0	10	9.8	7	4	
40 × 80	4	5	11.0	4	0	5	11.1	4	0	0	4.0	10	6	
	6	2	14.6	6	0	5	16.4	6	0	7	7.6	8	4	
	8	4	17.2	6	0	6	19.1	5	0	9	10.1	8	4	

Pathological instances - The 40 cases solved by the three methods

	${\rm IP}_{0/2}^{\rm cov}$	IP_0/2 MIP_0/2		BC _{0/2}			${\sf IP}_{0/2}^{\it cov}$	$MIP_{0/2}$		BC _{0/2}	
Instance	supp	supp	err	supp	err	Instance	supp	supp	err	supp	err
20.40.4.1	4	13	225%	12	200%	30.60.4.1	4	5	25%	4	0%
20.40.4.2	4	4	0%	4	0%	30.60.4.2	4	5	25%	5	25%
20.40.4.3	4	26	550%	26	550%	30.60.4.4	4	4	0%	4	0%
20.40.4.4	4	29	625%	29	625%	30.60.4.5	4	8	100%	8	100%
20.40.4.5	4	7	75%	6	50%	30.60.4.6	4	4	0%	4	0%
20.40.4.6	4	13	225%	12	200%	30.60.4.7	4	4	0%	4	0%
20.40.4.7	4	18	350%	16	300%	30.60.4.8	4	4	0%	4	0%
20.40.4.8	4	30	650%	30	650%	30.60.4.9	4	40	900%	31	675%
20.40.4.9	4	18	350%	16	300%	30.60.6.1	6	6	0%	6	0%
20.40.4.10	4	4	0%	4	0%	30.60.6.2	5	33	560%	42	740%
20.40.6.1	6	6	0%	6	0%	30.60.6.7	6	32	433%	28	367%
20.40.6.2	6	11	83%	11	83%	30.60.6.8	6	6	0%	6	0%
20.40.6.3	6	31	417%	31	417%	30.60.6.9	5	5	0%	5	0%
20.40.6.4	6	17	183%	31	417%	30.60.6.10	5	10	100%	10	100%
20.40.6.5	6	21	250%	24	300%	40.80.4.1	4	4	0%	4	0%
20.40.6.6	6	17	183%	17	183%	40.80.4.2	4	4	0%	4	0%
20.40.6.8	5	10	100%	10	100%	40.80.4.5	4	4	0%	4	0%
20.40.6.9	5	14	180%	12	140%	40.80.4.6	4	6	50%	6	50%
20.40.6.10	6	6	0%	6	0%	40.80.4.10	4	4	0%	4	0%
20.40.8.8	7	34	386%	34	386%	40.80.6.3	6	6	0%	6	0%

Summing up...

Previous MILP approaches are not exact.

- We presented a new (the first, to our knowledge) exact ILP approach with interesting results.
- We showed how a B&C approach may help to speed-up computation (although big-M related issues would hold).

What's next? Exploit the Set Covering structure!

- Implement known cut families for IP^{cov}_{0/p}
- Profit from known algorithms, heuristics, etc.

Thanks for your atention!