
A Bucket Graph Based Labelling Algorithm
for Vehicle Routing Pricing

Ruslan Sadykov1,2 Artur Pessoa3 Eduardo Uchoa3

1
Inria Bordeaux,

France

2
Université Bordeaux,

France

3
Universidade Federal

Fluminense, Brazil

POC Autumn School on Advanced BCP Tools
Paris, November 22, 2019

1 / 36

Contents

Introduction

Bucket graph based labeling algorithm

Computational results

Bucket arc elimination using reduced costs

Computational results for our Branch-Cut-and-Price

2 / 36

Resource-constrained (elementary) shortest path
problem, or RC(E)SPP

I A directed graph G = (V ,A), a source and a sink.
I Set R of resources
I For each arc a ∈ A

I cost ca
I resource consumption qa,r , r ∈ R
I accumulated resource consumption bounds [la,r ,ua,r], r ∈ R

Objective
Find an (elementary) path from the source to the sink which
minimizes the total cost.

3 / 36

Literature : “standalone” algorithms for the RC(E)SPP
Test instances with a sparse graph (often acyclic) with few
global resources, aim to find one optimal solution
I Heavy pre-processing and Lagrangian relaxation

[Dumitrescu and Boland, 2003]
I Transformation to the shortest path problem

[Zhu and Wilhelm, 2012]
I Transformation the k -shortest paths problem

[Santos et al., 2007]
[Sedeno-Noda and Alonso-Rodríguez, 2015]

I Pulse Algorithm (depth-first search, pruning by limited
dominance and bounds) [Lozano and Medaglia, 2013]

I Bi-directional A∗ [Thomas et al., 2019]
I Best performance is by [Lozano and Medaglia, 2013]

[Sedeno-Noda and Alonso-Rodríguez, 2015]
[Thomas et al., 2019]

4 / 36

Labeling algorithm

I Every label represents a partial path starting from the
source.

I Label L contains
I vL — last visited vertex
I cL — current total cost
I qL — current accumulated resource consumption
I VL — set of visited vertices

Dominance
Label L dominates L′ if any feasible completion of L′ is feasible
for L and has larger or the same cost.

Sufficient condition: label L dominates L′ if

vL = vL′ , cL ≤ cL′ , qL ≤ qL′ , VL ⊆ VL′ .

5 / 36

Basic labelling algorithm
L =

⋃
v∈V Lv — set of non-extended labels

E =
⋃

v∈V Ev — set of extended labels

L → {(source,0,0,0, {source})}, E ← ∅
while L 6= ∅ do

pick a label L in L, vL 6= sink
L ← L \ {L}, E ← E ∪ {L}
foreach v ∈ V \ vL do

extend L to L′ along arc (vL, v)
if L′ is feasible and not dominated by a label in Lv ∪ Ev
then
L ← L ∪ {L′}
remove from Lv ∪ Ev all labels dominated by L′

return a label in Lsink with the smallest reduced cost

Label-setting if labels are picked in a total order ≤lex such that

L extends to L′ ⇒ L ≤lex L′, L dominates L′ ⇒ L ≤lex L′

Otherwise, it is label-correcting (for example, cycling over Lv)
6 / 36

Basic labelling algorithm: label-setting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

7 / 36

Basic labelling algorithm: label-setting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(6,3)

(4,2)

7 / 36

Basic labelling algorithm: label-setting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(4,2)

(5,3) (5,5)

(6,4)

7 / 36

Basic labelling algorithm: label-setting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(4,2)

(5,3) (5,5)
(3,7)

(6,4)

7 / 36

Basic labelling algorithm: label-setting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(4,2)

(5,3)

(6,4)

(5,5)
(3,7)
(4,6)

(9,7)

7 / 36

Basic labelling algorithm: label-setting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(4,2)

(5,3)

(6,4)

(5,5)
(3,7)
(4,6)

(9,7)
(8,8)

7 / 36

Basic labelling algorithm: label-correcting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(6,3)

(4,2)

8 / 36

Basic labelling algorithm: label-correcting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(4,2)

(6,3) (4,7)(4,7)

8 / 36

Basic labelling algorithm: label-correcting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(4,2)

(5,3) (4,7)
(5,5)

(6,4)

8 / 36

Basic labelling algorithm: label-correcting example

Every label L = (cL,qL
1)

[0,8]

[3,10]

[5,8]

[5,7]

[4,8]

[0,8]

source sink

6, 2

4, 2

−2, 4

2, 1

4, 2

−2, 2

3, 4

2, 21, 1
1, 1

3, 1

(0,0)

(4,2)

(5,3)

(6,4)

(3,7)
(5,5)

8 / 36

Literature: “embedded” algorithms for the RC(E)SPP
Almost all approaches are variants of the labelling algorithm
I Keep track of vertices which cannot be visited instead of

visited vertices in a label [Feillet et al., 2004]
I Bi-directional search [Righini and Salani, 2006]
I Limited dominance checks by discretisation of the resource

consumption [Fukasawa et al., 2006]

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004).
An exact algorithm for the elementary shortest path problem with resource
constraints: Application to some vehicle routing problems.
Networks, 44(3):216–229.

Righini, G. and Salani, M. (2006).
Symmetry helps: Bounded bi-directional dynamic programming for the
elementary shortest path problem with resource constraints.
Discrete Optimization, 3(3):255 – 273.

Fukasawa, R., Longo, H., Lysgaard, J., Aragão, M. P. d., Reis, M., Uchoa, E., and
Werneck, R. F. (2006).
Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491–511.

9 / 36

Non-elementary relaxations of the pricing problem
Weakens the column generation lower bound,
but keeps the BCP correct

I q-routes [Christofides et al., 1981]
I k -cycle elimination [Irnich and Villeneuve, 2006]

(too expensive for k ≥ 5)
I ng-routes [Baldacci et al., 2011]

For each vertex v ∈ V , define a memoryMv of vertices which
“remember” v .

If vL 6∈ Mv , v is
removed from VL.
Sets VL are smaller⇒
stronger domination

vL

v
Mv

Decremental state-space relaxation [Martinelli et al., 2014] for
even tighter bounds

10 / 36

Non-elementary relaxations of the pricing problem
Weakens the column generation lower bound,
but keeps the BCP correct

I q-routes [Christofides et al., 1981]
I k -cycle elimination [Irnich and Villeneuve, 2006]

(too expensive for k ≥ 5)
I ng-routes [Baldacci et al., 2011]

For each vertex v ∈ V , define a memoryMv of vertices which
“remember” v .

If vL 6∈ Mv , v is
removed from VL.
Sets VL are smaller⇒
stronger domination

vL

v
Mv

Decremental state-space relaxation [Martinelli et al., 2014] for
even tighter bounds

10 / 36

Dynamic ng-route relaxation [Roberti and Mingozzi, 2014]

Elementary bound Dynamic ng boundInstance
Gap Time Gap Time

R202 0.72% 18 0.72% 58
R203 0.45% 72 0.45% 64
R204 0.88% 133 0.88% 76
R206 1.03% 45 1.04% 68
R207 0.42% 128 0.49% 79
R208 1.28% 267 1.34% 148
R209 1.57% 42 1.57% 33
R210 1.23% 34 1.23% 52
R211 1.61% 77 1.62% 54
RC204 0.49% 323 0.54% 131
RC207 1.62% 43 1.62% 38
RC208 1.21% 442 1.22% 66
Average 0.89% 151 0.91% 68

Table: Elementary bound [Lozano et al., 2016] vs. dynamic ng bound
(hardest Solomon VRPTW instances)

11 / 36

Structure of RCSPP instances we want to solve

I A directed graph G = (V ,A).
I Unrestricted in sign reduced costs c̄a on arcs a ∈ A
I Set R of “global” resources (usually one or two).
I Non-integer resource consumption qa,r , r ∈ R, and

accumulated resource consumption bounds [la,r ,ua,r],
r ∈ R, on arcs a ∈ A

I Up to ≈ 1000 of (more or less) local binary or (small)
integer resources

I For simplicity, we suppose bijection between nodes and
packing sets

We want to
Find a walk from the source to the sink minimizing the total
reduced cost respecting the resource constrains, as well as
many other (50–1000) different near-optimal feasible walks

12 / 36

Contents

Introduction

Bucket graph based labeling algorithm

Computational results

Bucket arc elimination using reduced costs

Computational results for our Branch-Cut-and-Price

13 / 36

Our approach to improve the labelling algorithm

To our knowledge, no (published) attempts to

reduce the number of dominance checks

while keeping the dominance strength

in a labelling algorithm

14 / 36

Original graph

source

v = 1

v = 2

v = 3

v = 4

sink

15 / 36

The bucket graph (with two main resources)

source sink

l2,1 u2,1main res. 1
l2,2

u2,2

main
res. 2

v = 1

v = 2

v = 3

v = 4

16 / 36

The bucket graph (with two main resources)

source sink

l2,1 u2,1main res. 1
l2,2

u2,2

main
res. 2

d̃1

d̃2

bucket
steps

v = 1

v = 2

v = 3

v = 4

16 / 36

The bucket graph (with two main resources)

source sink

l2,1 u2,1main res. 1
l2,2

u2,2

main
res. 2

d̃1

d̃2

bucket
steps

v = 1

v = 2

v = 3

v = 4

16 / 36

The bucket graph (with two main resources)

source sink

l2,1 u2,1main res. 1
l2,2

u2,2

main
res. 2

d̃1

d̃2

bucket
steps

v = 1

v = 2

v = 3

v = 4

16 / 36

The bucket graph (with two main resources)

source sink

l2,1 u2,1main res. 1
l2,2

u2,2

main
res. 2

d̃1

d̃2

bucket
steps

v = 1

v = 2

v = 3

v = 4

16 / 36

The bucket graph (with two main resources)

source sink

l2,1 u2,1main res. 1
l2,2

u2,2

main
res. 2

d̃1

d̃2

bucket
steps

v = 1

v = 2

v = 3

v = 4

A strongly
connected component

16 / 36

Extension order of labels

Extend labels according to a topological order of strongly
connected components in the bucket graph.

Impact of bucket steps
Large enough bucket steps produce the standard
label-correcting algorithm
I One bucket per vertex
I Bucket graph reduces to the original graph

Small enough bucket steps produce a label-setting algorithm
I Acyclic bucket graph
I Guarantee that only non-dominated labels are extended

17 / 36

Optimization of dominance checks

Practical observation
Higher dominance probability between labels with similar global
resource consumption

After the label’s creation
check dominance with labels in the same bucket only!

Before the label’s extension
check dominance with labels in other buckets using bounds

18 / 36

Using bounds to reduce dominance checks between
buckets

b

c̄best
b — minimum reduced cost of labels in buckets b′ � b (area)

19 / 36

Using bounds to reduce dominance checks between
buckets

b

c̄best
b — minimum reduced cost of labels in buckets b′ � b (area)

Label L may be dominated in buckets b′ � b only if c̄L ≥ c̄best
b

(only buckets in area are tested)

19 / 36

Bi-directional variant of our algorithm
I Pick the first main resource and a threshold q∗1
I In the forward labelling, keep only labels ~L with q~L

1 ≤ q∗1
I In the backward labelling, keep only labels ~L with q ~L

1 > q∗1
I Perform the concatenation step: a forward label ~L and a

backward label ~L can be concatenated along arc (v~L, v ~L)
I Concatenation is accelerated using bounds c̄best

~b
: if

c̄
~L + c̄

(v~L,v ~b)
+ c̄best

~b
≥ UB(c̄∗)

then we can skip backward buckets ~b′ � ~b while searching
for a concatenation pair for label ~L.

I Picture from [Tilk et al., 2017]:

20 / 36

Exploiting symmetry

If
I all resource consumption bounds are the same

[la,r ,ua,r] = [0,Qr], ∀a ∈ A, ∀r ∈ R,
I for each arc a = (i , j) ∈ A there exists arc a′ = (j , i) ∈ A

with the same resource consumption qa′ = q and the same
reduced cost c̄a′ = c̄a′ ,

then
I we can set q∗1 = Q1/2
I and skip the backward labelling.

21 / 36

Contents

Introduction

Bucket graph based labeling algorithm

Computational results

Bucket arc elimination using reduced costs

Computational results for our Branch-Cut-and-Price

22 / 36

Computational impact of buckets steps

I 14 hardest [Solomon, 1987] instances with 100 customers
and 60 [Gehring and Homberger, 2002] instances with 200
customers

I A full-blown state-of-the-art column-and-cut generation at
the root (stop when the target lower bound is reached)

I We test the parameter θ — the maximum number of
buckets per vertex:

d̃1 =
W√
θ
, d̃2 =

udepot − ldepot√
θ

(two global resources)

d̃ =
udepot − ldepot

θ
(one global resource)

I θ = 1 — standard label-correcting algorithm

23 / 36

Computational impact of buckets steps

θ =1 10 100 1000
1

5

10

Instance R203

1 10 100 1000
1
5

10

15

20

Instance RC1_2_5

1 10 100 1000
1

5

10

Instance RC204

θ =1 10 100 1000
1
2
3
4
5

Average

1 10 100 1000
1
5

10

15

20

Maximum

Pricing time ratio to best θ Total time ratio to best θ

24 / 36

Dynamic adjustment of bucket steps
I Start with θ = 25
I Multiply θ by 2 each time this ratio is above a threshold

of dominance checks inside buckets
of non-dominated labels

1 1.5 2 2.5

0

20

40

60

80

Variant is at most X times slower than the best

Y
=

nu
m

be
ro

fi
ns

ta
nc

es
fo

rw
hi

ch

best static θ for each instance
best fixed static θ = 200
dynamic adjustment of θ

25 / 36

Contents

Introduction

Bucket graph based labeling algorithm

Computational results

Bucket arc elimination using reduced costs

Computational results for our Branch-Cut-and-Price

26 / 36

Arc elimination using path-reduced costs [Irnich et al., 2010]
I ZRM — optimum value of the master which gives the lower

bound
I Zinc — value of the incumbent integer solution
I Zpricing(a) — optimum solution value of the pricing problem

solution, arc a being fixed to 1
I Arc a can be removed from the graph (it cannot take part of

any improving solution) if

ZRM + Zpricing(a) ≥ Zinc

A good
heuristic is
very
important!

27 / 36

Arc elimination using path-reduced costs [Irnich et al., 2010]
I ZRM — optimum value of the master which gives the lower

bound
I Zinc — value of the incumbent integer solution
I Zpricing(a) — optimum solution value of the pricing problem

solution, arc a being fixed to 1
I Arc a can be removed from the graph (it cannot take part of

any improving solution) if

ZRM + Zpricing(a) ≥ Zinc

A good
heuristic is
very
important!

27 / 36

Bucket arc elimination using reduced costs
A sufficient condition to remove a bucket arc (~b, (v1, v2), ~b)
No pair of labels (~L, ~L), v~L = v1, v ~L = v2, ~b~L � ~b, ~b ~L � ~b,
producing a path by concatenation along arc (v1, v2) with
reduced cost smaller than the current primal-dual gap.

main res. 1

main res. 2
v1

v2

sink

~b

~b

bucket arc

source

28 / 36

Computational impact of bucket arc elimination (the
root node only)

1 1.2 1.4 1.6 1.8 2
Variant is at most X times slower than the best

Y
=

nu
m

be
ro

fi
ns

ta
nc

es
fo

rw
hi

ch

fixing of bucket arcs
fixing of original arcs

29 / 36

Bucket arc elimination: notes

I Both forward and backward labelling should be performed
completely, and not only until the “middle” point

I Arc elimination is much more expensive than the
bi-directional labelling

I We use exhaustive completion bounds: ~L is extended only
if there exists a label ~L such that its concatenation with the
extension results in a path with the reduced cost smaller
than the current primal-dual gap.

I values c̄best
~b

are used to speed-up the search for such label
~L.

30 / 36

Contents

Introduction

Bucket graph based labeling algorithm

Computational results

Bucket arc elimination using reduced costs

Computational results for our Branch-Cut-and-Price

31 / 36

Computatonal results for classic VRPTW instances
14 hardest [Solomon, 1987] instances with 100 customers
60 [Gehring and Homberger, 2002] instances with 200 customers

65 instances solved by bothAlgorithm Solved
Aver. time (m) Geom. time (m)

[Pecin et al., 2017a] 65/74 217.8 32.6
Our BCP algorithm 70/74 72.5 8.3

1 2 5 10 20 50
0

20

40

60

for which algorithm is at most X times slower than the best

N
um

be
ro

fi
ns

ta
nc

es

[Pecin et al., 2017a]
Our BCP algorithm

Pecin, D., Contardo, C., Desaulniers, G., and Uchoa, E. (2017).
New enhancements for the exact solution of the vehicle routing problem with time
windows.
INFORMS Journal on Computing, 29(3):489–502.

32 / 36

Computatonal results for the MDVRP instances

Classic distance constrained multi-depot instances by
[Cordeau et al., 1997] with up to 288 customers.

10 inst. solved by bothAlgorithm Solved
Aver. time Geom. time

[Contardo and Martinelli, 2014] 10/13 269.8 8.4
Our algorithm 22/22 2.5 0.5

One improved BKS (instance “pr10”) over [Vidal et al., 2012]

Contardo, C. and Martinelli, R. (2014).
A new exact algorithm for the multi-depot vehicle routing problem under capacity
and route length constraints.
Discrete Optimization, 12:129 – 146.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012).
A hybrid genetic algorithm for multidepot and periodic vehicle routing problems.
Operations Research, 60(3):611–624.

33 / 36

Computatonal results for the MDVRP instances:
performance profile

1 3 10 30 100 300 1000
0

5

10

for which algorithm is at most X times slower than the best

Y
=

nu
m

be
ro

fi
ns

ta
nc

es

[Contardo and Martinelli, 2014]
Our algorithm

34 / 36

Computatonal results for other problems

First exact algorithm for these vehicle routing variants

DCVRP Classic distance-constrained CVRP instances
[Christofides et al., 1979]

SDVRP Standard distance-constrained site-dependent
instances [Cordeau and Laporte, 2001]

HFVRP “Nightmare” heterogeneous fleet VRP instances
(very large capacities) [Duhamel et al., 2011]

Largest Smallest Geomean Improv.Class Solved
solved n unsolved n time BKS

DCVRP 6/7 200 120 16m44s 0/7
SDVRP 7/10 216 240 11m26s 4/10
HFVRP 56/96 186 107 23m07s 43/96

Christofides, N., Mingozzi, A., and Toth, P. (1979).
Combinatorial Optimization, chapter “The vehicle routing problem”, p. 315–338.
Wiley, Chichester.

35 / 36

Conclusions

I No universally best algorithm for the RCSPP, very different
instances are considered in the literature

I Our approach is good for RCSPP instances coming from
state-of-the-art Branch-Cut-and-Price algorithms for
vehicle routing

I Bucket steps size is a critical instance-dependent
parameter for the labelling algorithm

I Bucket arc elimination using reduced costs is possible and
may be used by default (does not hurt)

I Significant computational improvement over the
state-of-the-art for exact solution of important vehicle
routing problems

I A generalization of our approach has been implemented in
VRPSolver [Pessoa et al., 2019]

36 / 36

References I

Baldacci, R., Mingozzi, A., and Roberti, R. (2011).
New route relaxation and pricing strategies for the vehicle routing
problem.
Operations Research, 59(5):1269–1283.

Christofides, N., Mingozzi, A., and Toth, P. (1979).
Combinatorial Optimization, chapter The vehicle routing problem, pages
315–338.
Wiley, Chichester.

Christofides, N., Mingozzi, A., and Toth, P. (1981).
Exact algorithms for the vehicle routing problem, based on spanning tree
and shortest path relaxations.
Mathematical Programming, 20(1):255–282.

Contardo, C. and Martinelli, R. (2014).
A new exact algorithm for the multi-depot vehicle routing problem under
capacity and route length constraints.
Discrete Optimization, 12:129 – 146.

37 / 36

References II

Cordeau, J.-F., Gendreau, M., and Laporte, G. (1997).
A tabu search heuristic for periodic and multi-depot vehicle routing
problems.
Networks, 30(2):105–119.

Cordeau, J.-F. and Laporte, G. (2001).
A tabu search algorithm for the site dependent vehicle routing problem
with time windows.
INFOR: Information Systems and Operational Research, 39(3):292–298.

Duhamel, C., Lacomme, P., and Prodhon, C. (2011).
Efficient frameworks for greedy split and new depth first search split
procedures for routing problems.
Computers and Operations Research, 38(4):723 – 739.

Dumitrescu, I. and Boland, N. (2003).
Improved preprocessing, labeling and scaling algorithms for the
weight-constrained shortest path problem.
Networks, 42(3):135–153.

38 / 36

References III

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004).
An exact algorithm for the elementary shortest path problem with
resource constraints: Application to some vehicle routing problems.
Networks, 44(3):216–229.

Fukasawa, R., Longo, H., Lysgaard, J., Aragão, M. P. d., Reis, M.,
Uchoa, E., and Werneck, R. F. (2006).
Robust branch-and-cut-and-price for the capacitated vehicle routing
problem.
Mathematical Programming, 106(3):491–511.

Gehring, H. and Homberger, J. (2002).
Parallelization of a two-phase metaheuristic for routing problems with
time windows.
Journal of Heuristics, 8(3):251–276.

Irnich, S., Desaulniers, G., Desrosiers, J., and Hadjar, A. (2010).
Path-reduced costs for eliminating arcs in routing and scheduling.
INFORMS Journal on Computing, 22(2):297–313.

39 / 36

References IV

Irnich, S. and Villeneuve, D. (2006).
The shortest-path problem with resource constraints and k-cycle
elimination for k ≥ 3.
INFORMS Journal on Computing, 18(3):391–406.

Lozano, L., Duque, D., and Medaglia, A. L. M. L. (2016).
An exact algorithm for the elementary shortest path problem with
resource constraints.
Transportation Science, 50(1):348–357.

Lozano, L. and Medaglia, A. L. (2013).
On an exact method for the constrained shortest path problem.
Computers & Operations Research, 40(1):378 – 384.

Martinelli, R., Pecin, D., and Poggi, M. (2014).
Efficient elementary and restricted non-elementary route pricing.
European Journal of Operational Research, 239(1):102 – 111.

40 / 36

References V
Pecin, D., Contardo, C., Desaulniers, G., and Uchoa, E. (2017a).
New enhancements for the exact solution of the vehicle routing problem
with time windows.
INFORMS Journal on Computing, 29(3):489–502.

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017b).
Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation, 9(1):61–100.

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2017).
Automation and combination of linear-programming based stabilization
techniques in column generation.
INFORMS Journal on Computing, accepted.

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2019).
A generic exact solver for vehicle routing and related problems.
In Lodi, A. and Nagarajan, V., editors, Integer Programming and
Combinatorial Optimization, volume 11480 of Lecture Notes in
Computer Science, pages 354–369, Cham. Springer International
Publishing.

41 / 36

References VI

Righini, G. and Salani, M. (2006).
Symmetry helps: Bounded bi-directional dynamic programming for the
elementary shortest path problem with resource constraints.
Discrete Optimization, 3(3):255 – 273.

Roberti, R. and Mingozzi, A. (2014).
Dynamic ng-path relaxation for the delivery man problem.
Transportation Science, 48(3):413–424.

Santos, L., ao Coutinho-Rodrigues, J., and Current, J. R. (2007).
An improved solution algorithm for the constrained shortest path
problem.
Transportation Research Part B: Methodological, 41(7):756 – 771.

Sedeno-Noda, A. and Alonso-Rodríguez, S. (2015).
An enhanced k-sp algorithm with pruning strategies to solve the
constrained shortest path problem.
Applied Mathematics and Computation, 265:602 – 618.

42 / 36

References VII

Solomon, M. M. (1987).
Algorithms for the vehicle routing and scheduling problems with time
window constraints.
Operations Research, 35(2):254–265.

Thomas, B. W., Calogiuri, T., and Hewitt, M. (2019).
An exact bidirectional a∗ approach for solving resource-constrained
shortest path problems.
Networks, 73(2):187–205.

Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017).
Asymmetry matters: Dynamic half-way points in bidirectional labeling for
solving shortest path problems with resource constraints faster.
European Journal of Operational Research, 261(2):530 – 539.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012).
A hybrid genetic algorithm for multidepot and periodic vehicle routing
problems.
Operations Research, 60(3):611–624.

43 / 36

References VIII

Zhu, X. and Wilhelm, W. E. (2012).
A three-stage approach for the resource-constrained shortest path as a
sub-problem in column generation.
Computers & Operations Research, 39(2):164 – 178.

44 / 36

	Introduction
	Bucket graph based labeling algorithm
	Computational results
	Bucket arc elimination using reduced costs
	Computational results for our Branch-Cut-and-Price

