
Mixed-Integer Nonlinear Optimization

Martin Schmidt

@schmaidt

June 2021

JPOC Spring School on MINLPs and Bilevel Problems “in Paris”

1

https://twitter.com/schmaidt

At the end of this day you . . .

• know what an MINLP is

• can distinguish between convex and nonconvex MINLPs

• can apply standard MINLP modeling techniques

• know about and understand the classic algorithms for MINLP

• know the standard software tools for modeling MINLPs

• know the standard solvers that can be used to solve MINLPs

I will teach principles, not formulas!

You will not remember the last ε,

but I hope you remember the core ideas!

2

At the end of this day you . . .

• know what an MINLP is

• can distinguish between convex and nonconvex MINLPs

• can apply standard MINLP modeling techniques

• know about and understand the classic algorithms for MINLP

• know the standard software tools for modeling MINLPs

• know the standard solvers that can be used to solve MINLPs

I will teach principles, not formulas!

You will not remember the last ε,

but I hope you remember the core ideas!

2

At the end of this day you . . .

• know what an MINLP is

• can distinguish between convex and nonconvex MINLPs

• can apply standard MINLP modeling techniques

• know about and understand the classic algorithms for MINLP

• know the standard software tools for modeling MINLPs

• know the standard solvers that can be used to solve MINLPs

I will teach principles, not formulas!

You will not remember the last ε,

but I hope you remember the core ideas!

2

There should be no crying in this compact course!

3

Overview

1. Introduction

2. Algorithms for Convex MINLP

3. MILP-Based Reformulations

4. Nonconvex MINLP

5. Modeling Languages

6. Solvers

7. What Else?

8. Literature

4

1. Introduction: Overview

1. Introduction

1.1 Problem Classes

1.2 Source Problems

Subset Selection in Linear Regression

Cardinality-Constrained Portfolio Optimization

k-Means Clustering

5

1. Introduction: Overview

1. Introduction

1.1 Problem Classes

1.2 Source Problems

Subset Selection in Linear Regression

Cardinality-Constrained Portfolio Optimization

k-Means Clustering

6

What is Optimization Anyway?

min
x∈Rn

f (x)

s.t. gi (x) ≥ 0, i ∈ I = {1, . . . ,m}

hj(x) = 0, j ∈ J = {1, . . . , p}

• x : vector of variables/decisions

• f : Rn → R: objective function

• gi : Rn → R: inequality constraints

• hj : Rn → R: equality constraints

Feasible Set

Ω = {x ∈ Rn : gi (x) ≥ 0, i ∈ I , hj(x) = 0, j ∈ J}

7

What is Optimization Anyway?

min
x∈Rn

f (x)

s.t. gi (x) ≥ 0, i ∈ I = {1, . . . ,m}

hj(x) = 0, j ∈ J = {1, . . . , p}

• x : vector of variables/decisions

• f : Rn → R: objective function

• gi : Rn → R: inequality constraints

• hj : Rn → R: equality constraints

Feasible Set

Ω = {x ∈ Rn : gi (x) ≥ 0, i ∈ I , hj(x) = 0, j ∈ J}

7

Is it hard?

. . . it depends!

• Are all functions linear?

• Are some of them nonlinear?

• Is the objective function convex?

• Is the feasible set convex?

• Are the variables continuous-valued?

• Do we have integer variables?

• Are the functions differentiable?

8

Is it hard?

. . . it depends!

• Are all functions linear?

• Are some of them nonlinear?

• Is the objective function convex?

• Is the feasible set convex?

• Are the variables continuous-valued?

• Do we have integer variables?

• Are the functions differentiable?

8

Convexity is Crucial

“The great watershed in

optimization isn’t between linearity

and nonlinearity, but convexity and

nonconvexity.”

— R. Tyrrell Rockafellar

9

Mixed-Integer Nonlinear Optimization

We consider MINLPs of the form

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

xi ∈ Z, i ∈ I

• f : Rn → R and c : Rn → Rm are twice continuously differentiable

• X ⊂ Rn is a bounded polyhedral set, i.e.,

X = {x ∈ Rn : l ≤ Ax ≤ u}

for some matrix A and some vectors l , u

• I ⊆ {1, . . . , n} is the index set of integer variables

This also contains maximization problems, equality constraints, simple variable

bounds, and more general discrete sets (later more . . .)

10

Mixed-Integer Nonlinear Optimization

We consider MINLPs of the form

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

xi ∈ Z, i ∈ I

• f : Rn → R and c : Rn → Rm are twice continuously differentiable

• X ⊂ Rn is a bounded polyhedral set, i.e.,

X = {x ∈ Rn : l ≤ Ax ≤ u}

for some matrix A and some vectors l , u

• I ⊆ {1, . . . , n} is the index set of integer variables

This also contains maximization problems, equality constraints, simple variable

bounds, and more general discrete sets (later more . . .)

10

Is this important?

Yes!

MINLPs are everywhere! We will see some examples soon.

The problem class of MINLPs includes . . .

• nonlinear problems (NLPs),

• quadratic problems (QPs),

• linear problems (LPs),

• mixed-integer linear problems (MILPs),

• . . .

11

Is this important?

Yes!

MINLPs are everywhere! We will see some examples soon.

The problem class of MINLPs includes . . .

• nonlinear problems (NLPs),

• quadratic problems (QPs),

• linear problems (LPs),

• mixed-integer linear problems (MILPs),

• . . .

11

Is this important?

Yes!

MINLPs are everywhere! We will see some examples soon.

The problem class of MINLPs includes . . .

• nonlinear problems (NLPs),

• quadratic problems (QPs),

• linear problems (LPs),

• mixed-integer linear problems (MILPs),

• . . .

11

The MINLP Tree iiiii
:

ö

12

Convex and Nonconvex MINLPs

“The great watershed in optimization isn’t between linearity and nonlinearity,

but convexity and nonconvexity.”

— R. Tyrrell Rockafellar

Definition

An optimization problem is convex if

• the feasible set is convex

• and if the objective function is convex on the feasible set.

Well . . .

• But mixed-integer feasible sets are always nonconvex!

• So there are no “convex MINLPs”?

13

Convex and Nonconvex MINLPs

“The great watershed in optimization isn’t between linearity and nonlinearity,

but convexity and nonconvexity.”

— R. Tyrrell Rockafellar

Definition

An optimization problem is convex if

• the feasible set is convex

• and if the objective function is convex on the feasible set.

Well . . .

• But mixed-integer feasible sets are always nonconvex!

• So there are no “convex MINLPs”?

13

Convex and Nonconvex MINLPs

Definition

The MINLP

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

xi ∈ Z, i ∈ I

is called convex if the objective function f and the constraint function c are

convex functions. If the objective function or at least one of the constraints are

nonconvex, the problem is called a nonconvex MINLP.

14

Convex and Nonconvex MINLPs

This means that the MINLP is called convex if the NLP relaxation

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

is a convex optimization problem.

• To obtain a convex feasible set using “c(x) ≤ 0”, c needs to be convex.

• For inequalities “c(x) ≥ 0”, c needs to be concave to lead to a convex

feasible set.

15

Hardness of MINLP

MINLP combines challenges of handling nonlinearities with the combinatorial

explosion due to integer variables!

• It is an NP-hard combinatorial problem

• . . . because it includes MILP (Kannan and Monma 1978)

• Even worse, nonconvex integer optimization problems are in general
undecidable (Jeroslow 1973)

• Jeroslow: example of a quadratically constrained integer program

• Theorem: no computing device exists that can compute the optimum for all

problems in this class

16

Hardness of MINLP

MINLP combines challenges of handling nonlinearities with the combinatorial

explosion due to integer variables!

• It is an NP-hard combinatorial problem

• . . . because it includes MILP (Kannan and Monma 1978)

• Even worse, nonconvex integer optimization problems are in general
undecidable (Jeroslow 1973)

• Jeroslow: example of a quadratically constrained integer program

• Theorem: no computing device exists that can compute the optimum for all

problems in this class

16

Making it “practable”

Assumption

• X is compact, i.e., a polytope

It’s still NP-hard, but . . .

Theorem

Suppose that the set Ω is

non-empty and compact and that

the function f : Ω→ R is

continuous. Then, f has at least

one global minimizer and at least

one global maximizer.

17

Making it “practable”

Assumption

• X is compact, i.e., a polytope

It’s still NP-hard, but . . .

Theorem

Suppose that the set Ω is

non-empty and compact and that

the function f : Ω→ R is

continuous. Then, f has at least

one global minimizer and at least

one global maximizer.

17

Is it harder than MILP?

• MINLP is NP-hard since it includes mixed-integer linear programming

(MILP).

• Question: Is it harder?

Somehow, yes!

Definition

Let S ⊂ Rn be any set. The convex hull of S is the set

conv(S) := {z ∈ Rn : z = λx + (1− λ)y for all λ ∈ [0, 1], x , y ∈ S} .

18

Is it harder than MILP?

• MINLP is NP-hard since it includes mixed-integer linear programming

(MILP).

• Question: Is it harder? Somehow, yes!

Definition

Let S ⊂ Rn be any set. The convex hull of S is the set

conv(S) := {z ∈ Rn : z = λx + (1− λ)y for all λ ∈ [0, 1], x , y ∈ S} .

18

Is it harder than MILP?

• The convex hull is crucial in mixed-integer linear programming.

• Linear Optimization 101: A linear problem obtains a solution at a vertex

of the feasible set.

• Thus: We can solve the MILP by solving the LP over the convex hull of

the MILP’s integer-feasible points.

O O O O O

°

O O O 0/0
o

O O O O O

19

Is it harder than MILP?

• The convex hull is crucial in mixed-integer linear programming.

• Linear Optimization 101: A linear problem obtains a solution at a vertex

of the feasible set.

• Thus: We can solve the MILP by solving the LP over the convex hull of

the MILP’s integer-feasible points.

O O O O O

°

O O O 0/0
o

O O O O O

19

Is it harder than MILP?

• The convex hull is crucial in mixed-integer linear programming.

• Linear Optimization 101: A linear problem obtains a solution at a vertex

of the feasible set.

• Thus: We can solve the MILP by solving the LP over the convex hull of

the MILP’s integer-feasible points.

O O O O O

°

O O O 0/0
o

O O O O O

19

MILP: Separation = Optimization!

20

MILP: Separation = Optimization!

20

MILP: Separation = Optimization!

20

MILP: Separation = Optimization!

20

MINLP: Separation = Optimization? No!

Consider the MINLP

min
x∈Rn

n∑
i=1

(
xi −

1

2

)2

s.t. xi ∈ {0, 1}, i = 1, . . . , n

.

• The solution of the continuous

relaxation is

x =

(
1

2
, . . . ,

1

2

)>
• This is not an extreme point of the

feasible set of the continuous

relaxation

• Even worse: it lies in the strict interior

of the convex hull of the feasible set of

the MINLP

• Thus: It cannot be separated!

21

MINLP: Separation = Optimization? No!

Consider the MINLP

min
x∈Rn

n∑
i=1

(
xi −

1

2

)2

s.t. xi ∈ {0, 1}, i = 1, . . . , n

.

• The solution of the continuous

relaxation is

x =

(
1

2
, . . . ,

1

2

)>
• This is not an extreme point of the

feasible set of the continuous

relaxation

• Even worse: it lies in the strict interior

of the convex hull of the feasible set of

the MINLP

• Thus: It cannot be separated!

21

A Potential Remedy: The Epigraph Formulation

The original MINLP

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

xi ∈ Z, i ∈ I

and its epigraph reformulation

min
x∈Rn,η∈R

η

s.t. f (x) ≤ η

c(x) ≤ 0

x ∈ X

xi ∈ Z, i ∈ I

are equivalent and the optimal solutions of the latter always lie on the

boundary of the convex hull of the feasible set.

22

1. Introduction: Overview

1. Introduction

1.1 Problem Classes

1.2 Source Problems

Subset Selection in Linear Regression

Cardinality-Constrained Portfolio Optimization

k-Means Clustering

23

Subset Selection in Linear Regression: An MINLP?

• Given: m data points xi ∈ Rd and yi ∈ R, i = 1, . . . ,m

• Task: Find β ∈ Rd such that

m∑
i=1

(
yi − x>i β

)2

is minimized while limiting the cardinality of β to K .

Model (Bertsimas, R. Shioda 2009)

min
β∈Rd

m∑
i=1

(
yi −

d∑
j=1

xijβj

)2

s.t. |supp(β)| ≤ K

Is this already an MINLP? No! But . . .

24

Subset Selection in Linear Regression: An MINLP?

• Given: m data points xi ∈ Rd and yi ∈ R, i = 1, . . . ,m

• Task: Find β ∈ Rd such that

m∑
i=1

(
yi − x>i β

)2

is minimized while limiting the cardinality of β to K .

Model (Bertsimas, R. Shioda 2009)

min
β∈Rd

m∑
i=1

(
yi −

d∑
j=1

xijβj

)2

s.t. |supp(β)| ≤ K

Is this already an MINLP?

No! But . . .

24

Subset Selection in Linear Regression: An MINLP?

• Given: m data points xi ∈ Rd and yi ∈ R, i = 1, . . . ,m

• Task: Find β ∈ Rd such that

m∑
i=1

(
yi − x>i β

)2

is minimized while limiting the cardinality of β to K .

Model (Bertsimas, R. Shioda 2009)

min
β∈Rd

m∑
i=1

(
yi −

d∑
j=1

xijβj

)2

s.t. |supp(β)| ≤ K

Is this already an MINLP? No! But . . .

24

Subset Selection in Linear Regression: An MINLP?

• Introduce a binary variable zj ∈ {0, 1} for every entry βj , j = 1, . . . , d , in

the β vector:

zj =

1, βj can be used

0, βj = 0

• Count the used βj ’s by counting the binary variables

min
β∈Rd

m∑
i=1

(
yi −

d∑
j=1

xijβj

)2

s.t.
d∑

j=1

zj ≤ K

M l
j zj ≤ βj ≤ Mu

j zj , j = 1, . . . , d

zj ∈ {0, 1}, j = 1, . . . , d

25

Subset Selection in Linear Regression

min
β∈Rd

m∑
i=1

(
yi −

d∑
j=1

xijβj

)2

s.t.
d∑

j=1

zj ≤ K

M l
j zj ≤ βj ≤ Mu

j zj , j = 1, . . . , d

zj ∈ {0, 1}, j = 1, . . . , d

MINLP 101

Know the convexity properties of your instance!

• This is a convex MINLP

• All constraints are linear, i.e., the feasible set is polyhedral and thus convex

• Objective function is convex in β

26

Subset Selection in Linear Regression

min
β∈Rd

m∑
i=1

(
yi −

d∑
j=1

xijβj

)2

s.t.
d∑

j=1

zj ≤ K

M l
j zj ≤ βj ≤ Mu

j zj , j = 1, . . . , d

zj ∈ {0, 1}, j = 1, . . . , d

MINLP 101

Know the convexity properties of your instance!

• This is a convex MINLP

• All constraints are linear, i.e., the feasible set is polyhedral and thus convex

• Objective function is convex in β

26

Portfolio Optimization

• Markowitz (1952)

• n possibly risky assets

• mean return vector µ ∈ Rn

• covariance return matrix Σ ∈ Rn×n

• minimum portfolio return R > 0

• vector of ones e ∈ Rn

min
x∈Rn

x>Σx

s.t. µ>x ≥ R, e>x = 1, x ≥ 0

27

Portfolio Optimization

• Markowitz (1952)

• n possibly risky assets

• mean return vector µ ∈ Rn

• covariance return matrix Σ ∈ Rn×n

• minimum portfolio return R > 0

• vector of ones e ∈ Rn

min
x∈Rn

x>Σx

s.t. µ>x ≥ R, e>x = 1, x ≥ 0

27

Cardinality-Constrained Portfolio Optimization

Let K be the maximum number of assets that can be included in the portfolio

min
x∈Rn,z∈Rn

x>Σx

s.t. µ>x ≥ R, e>x = 1, x ≥ 0

0 ≤ xi ≤ Mu
i zi , i = 1, . . . , n

n∑
i=1

zi ≤ K

We already used a standard modeling trick twice: big-M constraints

28

Cardinality-Constrained Portfolio Optimization

Let K be the maximum number of assets that can be included in the portfolio

min
x∈Rn,z∈Rn

x>Σx

s.t. µ>x ≥ R, e>x = 1, x ≥ 0

0 ≤ xi ≤ Mu
i zi , i = 1, . . . , n

n∑
i=1

zi ≤ K

We already used a standard modeling trick twice: big-M constraints

28

k-Means Clustering: Setting

• Let X ∈ Rp×n be the matrix containing the data set

• Thus, we have n data points in Rp.

• Data point x i ∈ Rp corresponds to the ith column of X

• Goal: find k mean vectors µj ∈ Rp, j = 1, . . . , k, that satisfy

µ∗ = arg min
µ

h(X , µ), µ = (µj)j=1,...,k

• h is a sum of distances such as the squared Euclidean distance

h(X , µ) =
k∑

j=1

∑
x i∈Sj

‖x i − µj‖2
2,

• Sj ⊂ Rp is the set of data points that are assigned to cluster j = 1, . . . , k

• µj is the corresponding mean vector of the cluster

29

k-means Clustering: MINLP Modeling

• Introduce binary variables bi,j ∈ {0, 1} for i = 1, . . . , n and j = 1, . . . , k

• Binary variables have the meaning

bi,j =

1, if point x i is assigned to cluster Sj

0, otherwise

• Reformulate the function h as

h(X , b, µ) =
k∑

j=1

n∑
i=1

bi,j‖x i − µj‖2
2, b = (bi,j)

j=1,...,k
i=1,...,n

• x i ∈ Rp should belong to exactly one cluster

• Can be modeled using the SOS-1-type constraints

k∑
j=1

bi,j = 1 for all i = 1, . . . , n

30

k-means Clustering: MINLP Modeling

min
µ,b

k∑
j=1

n∑
i=1

bi,j‖x i − µj‖2
2

s.t.
k∑

j=1

bi,j = 1 for all i = 1, . . . , n

bi,j ∈ {0, 1} for all i = 1, . . . , n, j = 1, . . . , k

µ ∈ Rp×k

Convex or Nonconvex MINLP?

• We have products of binary variables bi,j and

continuous variables µj in the objective function.

• Thus, it’s a nonconvex MINLP.

31

k-means Clustering: MINLP Modeling

min
µ,b

k∑
j=1

n∑
i=1

bi,j‖x i − µj‖2
2

s.t.
k∑

j=1

bi,j = 1 for all i = 1, . . . , n

bi,j ∈ {0, 1} for all i = 1, . . . , n, j = 1, . . . , k

µ ∈ Rp×k

Convex or Nonconvex MINLP?

• We have products of binary variables bi,j and

continuous variables µj in the objective function.

• Thus, it’s a nonconvex MINLP.

31

k-means Clustering: MINLP Modeling

min
µ,b

k∑
j=1

n∑
i=1

bi,j‖x i − µj‖2
2

s.t.
k∑

j=1

bi,j = 1 for all i = 1, . . . , n

bi,j ∈ {0, 1} for all i = 1, . . . , n, j = 1, . . . , k

µ ∈ Rp×k

Convex or Nonconvex MINLP?

• We have products of binary variables bi,j and

continuous variables µj in the objective function.

• Thus, it’s a nonconvex MINLP.

31

Bilinearities

Consider the bilinear function

f : R2 → R, f (x , y) = xy .

The gradient is given by

∇f (x) =

(
y

x

)

and the Hessian reads

∇2f (x) =

[
0 1

1 0

]
,

which is an indefinite matrix.

Thus, it’s nonconvex!

32

Bilinearities

Consider the bilinear function

f : R2 → R, f (x , y) = xy .

The gradient is given by

∇f (x) =

(
y

x

)

and the Hessian reads

∇2f (x) =

[
0 1

1 0

]
,

which is an indefinite matrix.

Thus, it’s nonconvex!

32

Bilinearities

Consider the bilinear function

f : R2 → R, f (x , y) = xy .

The gradient is given by

∇f (x) =

(
y

x

)

and the Hessian reads

∇2f (x) =

[
0 1

1 0

]
,

which is an indefinite matrix.

Thus, it’s nonconvex!

32

Bilinearities

Consider the bilinear function

f : R2 → R, f (x , y) = xy .

The gradient is given by

∇f (x) =

(
y

x

)

and the Hessian reads

∇2f (x) =

[
0 1

1 0

]
,

which is an indefinite matrix.

Thus, it’s nonconvex!

32

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.1 Nonlinear Branch-and-Bound

2.2 Kelley’s Cutting-Plane Method

2.3 Outer Approximation

2.4 LP/NLP-Based Branch-and-Bound

33

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.1 Nonlinear Branch-and-Bound

2.2 Kelley’s Cutting-Plane Method

2.3 Outer Approximation

2.4 LP/NLP-Based Branch-and-Bound

34

The Birth of Computational Integer Optimization

35

Branch-and-Bound for MILPs

Branch-and-bound was proposed by Ailsa Land and Alison Doig in 1960

Branch-and-bound for convex MINLP is almost the same as for mixed-integer

linear programming.

36

Branch-and-Bound for (M)ILPs

For the ease of presentation: all integer variables are binary

The original (M)ILP . . .

min
x∈Rn

c>x

s.t. Ax ≥ b

x ∈ {0, 1}n
(1)

. . . and after some fixations

min
x∈Rn

c>x

s.t. Ax ≥ b

x ∈ {0, 1}n

xi = 0 for all i ∈ Z

xi = 1 for all i ∈ O

(2)

with Z ,O ⊆ {1, . . . , n}

37

Branch-and-Bound for (M)ILPs

For the ease of presentation: all integer variables are binary

The original (M)ILP . . .

min
x∈Rn

c>x

s.t. Ax ≥ b

x ∈ {0, 1}n
(1)

. . . and after some fixations

min
x∈Rn

c>x

s.t. Ax ≥ b

x ∈ {0, 1}n

xi = 0 for all i ∈ Z

xi = 1 for all i ∈ O

(2)

with Z ,O ⊆ {1, . . . , n}

37

Relaxations

Definition

Consider the optimization problem minx{f (x) : x ∈ Ω} with objective

function f and feasible set Ω. Another optimization problem

minx{g(x) : x ∈ Ω′} is called relaxation of the original problem if Ω ⊆ Ω′ and if

g(x) ≤ f (x) holds for all x ∈ Ω.

Continuous Relaxations

• Convex NLP relaxation for convex MINLP

• LP relaxation for (M)ILP

Goals

• Relaxations are used to compute lower bounds

on the optimal objective function value

• A “good” relaxation should be tractable and “tight”.

38

Relaxations

Definition

Consider the optimization problem minx{f (x) : x ∈ Ω} with objective

function f and feasible set Ω. Another optimization problem

minx{g(x) : x ∈ Ω′} is called relaxation of the original problem if Ω ⊆ Ω′ and if

g(x) ≤ f (x) holds for all x ∈ Ω.

Continuous Relaxations

• Convex NLP relaxation for convex MINLP

• LP relaxation for (M)ILP

Goals

• Relaxations are used to compute lower bounds

on the optimal objective function value

• A “good” relaxation should be tractable and “tight”.

38

Relaxations

Definition

Consider the optimization problem minx{f (x) : x ∈ Ω} with objective

function f and feasible set Ω. Another optimization problem

minx{g(x) : x ∈ Ω′} is called relaxation of the original problem if Ω ⊆ Ω′ and if

g(x) ≤ f (x) holds for all x ∈ Ω.

Continuous Relaxations

• Convex NLP relaxation for convex MINLP

• LP relaxation for (M)ILP

Goals

• Relaxations are used to compute lower bounds

on the optimal objective function value

• A “good” relaxation should be tractable and “tight”.

38

LP Relaxation

Simply ignore the integrality conditions . . .

min
x∈Rn

c>x

s.t. Ax ≥ b

x ∈ [0, 1]n

xi = 0 for all i ∈ Z

xi = 1 for all i ∈ O

(3)

39

Branch-and-Bound: Bounding

Lemma

Let Z ,O ⊆ {1, . . . , n}. Moreover, let zLP be the objective value of the solution

of the LP relaxation (3) and let zIP be the optimal objective function value of

Problem (2) (if they exist, otherwise we set them to ∞). Then,

zIP ≥ zLP

holds. Furthermore, infeasibility of the LP relaxation (3) implies the infeasibility

of (2).

• Solving the LP relaxation gives us a lower bound on the optimal value

• If the LP relaxation is infeasible, then the original problem is infeasible

40

Branch-and-Bound: Bounding

Lemma

Let Z ,O ⊆ {1, . . . , n}. Moreover, let zLP be the objective value of the solution

of the LP relaxation (3) and let zIP be the optimal objective function value of

Problem (2) (if they exist, otherwise we set them to ∞). Then,

zIP ≥ zLP

holds. Furthermore, infeasibility of the LP relaxation (3) implies the infeasibility

of (2).

• Solving the LP relaxation gives us a lower bound on the optimal value

• If the LP relaxation is infeasible, then the original problem is infeasible

40

Branch-and-Bound: Branching

Lemma

Let Z ,O ⊆ {1, . . . , n}. Moreover, let x ∈ {0, 1}n be feasible for (2) with the

sets Z ,O and i ∈ {1, . . . , n}. Then, x is either feasible for (2) with the sets

(Z ∪ {i},O) or feasible for (2) with the sets (Z ,O ∪ {i}).

41

Branch-and-Bound for (Binary) MILPs

u ← +∞ and Q ← {(∅, ∅)}.
while Q 6= ∅ do

Choose (Z ,O) ∈ Q and set Q ← Q \ {(Z ,O)}.
Solve the Problem (3) with Z and O.

if (3) with Z and O is infeasible then

Continue.

end if

Let x̄ be the optimal solution of Problem (3).

if c>x̄ ≥ u then

Continue.

end if

if x̄ is integer-feasible then

Set x∗ ← x̄ , u ← c>x∗, and continue.

end if

Choose i with x̄i /∈ {0, 1}.
Set Q ← Q ∪ {(Z ∪ {i},O), (Z ,O ∪ {i})}.

end while

if u < +∞ then

return optimal solution x∗.

else

return “The problem is infeasible.”

end if
42

Branch-and-Bound for General MILPs

iii.
i.

43

Branch-and-Bound for General MILPs

Ii , JFI
UO de Solution

÷.

° 1 2 3 4 5
> Hi

,
ÜEI

43

Branch-and-Bound for General MILPs

Äiiii
43

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

44

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = ∞

LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

44

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = ∞ LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

44

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = 10 LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

44

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = 10 LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

44

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = 6 LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

44

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = 6 LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

44

Branch-and-Bound for MILPs

Search trees get huge!

http://www.math.uwaterloo.ca/tsp/d15sol/computation
45

http://www.math.uwaterloo.ca/tsp/d15sol/computation

Branch-and-Bound for MILPs

• Every node of the branch-and-bound tree represents a sub-MILP

• In every node an LP is solved

• LP relaxation + set of additional variables bounds (or fixations)

• If a node has an integer feasible point it becomes a leaf of the search tree

• Integer feasible points yield upper bounds

• Best (smallest) upper bound is called “incumbent” u

• Infeasible nodes also become leafs of the search tree

• Nodes with fractional solution and objective function value f > u also

become leafs

• Relaxation solutions yield lower bounds

• Best lower bound (“best bound”) `

• Optimality gap: g = u − `
• g = 0 is a proof of optimality

46

Branch-and-Bound for MILPs

Theorem (Correctness Theorem)

Suppose that the LP relaxation of the original MILP is bounded. Then, the

algorithm terminates after a finite number of nodes with a global optimal

solution or with the correct indication of infeasibility.

47

From MILP to Convex MINLP

• Replace LP relaxation with convex NLP relaxations in the nodes

• Technical details

• All functions need to be continuously differentiable

• All convex node NLPs need to satisfy Slater’s condition

• All node NLPs need to be solved to global optimality

• . . . which is “easy” since they are convex!

48

What about nonconvex MINLPs?

Branch-and-bound is not correct for nonconvex MINLPs

But why?

• Locally optimal solutions might lead to pruned nodes

that cannot be pruned!

• We might not find the global optimal solution.

49

What about nonconvex MINLPs?

Branch-and-bound is not correct for nonconvex MINLPs

But why?

• Locally optimal solutions might lead to pruned nodes

that cannot be pruned!

• We might not find the global optimal solution.

49

Branch-and-Bound

Further Algorithmic Ingredients

• Node selection

• Branching rules

• Preprocessing of the entire MILP (root node)

• Node preprocessing (sub-MILPs)

• Cutting planes

• Heuristics

• Parallelization

• . . .

Performance

• Worst-case complexity: exponential

• In practice it often performs much better!

50

Branch-and-Bound

Further Algorithmic Ingredients

• Node selection

• Branching rules

• Preprocessing of the entire MILP (root node)

• Node preprocessing (sub-MILPs)

• Cutting planes

• Heuristics

• Parallelization

• . . .

Performance

• Worst-case complexity: exponential

• In practice it often performs much better!

50

Branch-and-Bound Solvers for MILPs

• CPLEX

• http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/

• Commercial (IBM), but free licenses available for academic purposes

• Gurobi

• http://www.gurobi.com/

• Commercial, but free licenses available for academic purposes

• Xpress

• http://www.fico.com/en/products/fico-xpress-optimization-suite/

• Commercial (FICO), but free licenses available for academic purposes

• SCIP

• http://scip.zib.de

• Academic code, free for non-commercial purposes, open source

• CBC

• https://projects.coin-or.org/Cbc

• Open source

51

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.gurobi.com/
http://www.fico.com/en/products/fico-xpress-optimization-suite/
http://scip.zib.de
https://projects.coin-or.org/Cbc

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.1 Nonlinear Branch-and-Bound

2.2 Kelley’s Cutting-Plane Method

2.3 Outer Approximation

2.4 LP/NLP-Based Branch-and-Bound

52

Branch-and-Bound vs. Cutting-Plane Methods

The Main Idea of Branch-and-Bound

• By branching we get rid of the integer variables

• Subproblems that need to be solved are continuous relaxations

• Bounding and finiteness of the set of integer-feasible points leads to

correctness of the method

The Main Idea of Cutting-Plane Methods

• Besides integrality constraints, the hardness of MINLPs

comes from nonlinearities

• Assumption: We can solve mixed-integer linear problems

• Tractability: NP-hardness vs. polytime solvable problems

• Practability: Powerful solvers that solve NP-hard problems

• Idea: Get rid of nonlinearities by linear approximations

• Correctness will follow by convergence instead of finiteness arguments

53

Branch-and-Bound vs. Cutting-Plane Methods

The Main Idea of Branch-and-Bound

• By branching we get rid of the integer variables

• Subproblems that need to be solved are continuous relaxations

• Bounding and finiteness of the set of integer-feasible points leads to

correctness of the method

The Main Idea of Cutting-Plane Methods

• Besides integrality constraints, the hardness of MINLPs

comes from nonlinearities

• Assumption: We can solve mixed-integer linear problems

• Tractability: NP-hardness vs. polytime solvable problems

• Practability: Powerful solvers that solve NP-hard problems

• Idea: Get rid of nonlinearities by linear approximations

• Correctness will follow by convergence instead of finiteness arguments

53

Kelley in a Nutshell

^

Feasible
Set

"

.L
.

54

Kelley in a Nutshell

54

Kelley in a Nutshell

54

Kelley in a Nutshell

54

The Mother of all Cutting-Plane Methods . . .

. . . at least for nonlinear problems!

55

Kelley’s Cutting-Plane Method: Setting

Just for a moment: Forget about integrality constraints.

Convex Optimization

min
x∈Rn

f (x)

s.t. x ∈ Ω

• Without loss of generality: linear objective function f (x) = d>x , d ∈ Rn

• Nonempty convex feasible set

Ω := {x ∈ Rn : c(x) ≤ 0} ,

i.e., c : Rn → Rm is convex

56

Kelley’s Cutting-Plane Method: Setting

Assumptions

1. ‖d‖ <∞

2. c is continuously differentiable

3. ‖∇c(x)‖ ≤ K for a finite constant K and all x ∈ Ω

4. There exists a compact polyhedral set

S = {x ∈ Rn : Ax ≥ b} ⊇ Ω, A ∈ Rm×n, b ∈ Rm

57

Kelley’s Cutting-Plane Method: Setting

Definition

An extreme support to the graph of c is an (n + 1)-dimensional hyperplane

that intersects the boundary of the convex set

P = {(x , y) : x ∈ S , y ≥ c(x)}

and does not cut the interior of P.

For every x ∈ S there exists an extreme support to the graph of c since it is

convex.

Simply use Taylor’s first-order approximation of c.

For a point x0 ∈ S , the extreme support y = p(x ; x0) is given by

p(x ; x0) = c(x0) +∇p(x ; x0)>(x − x0), ∇p(x ; x0) = ∇c(x0).

58

Kelley’s Cutting-Plane Method: Setting

Definition

An extreme support to the graph of c is an (n + 1)-dimensional hyperplane

that intersects the boundary of the convex set

P = {(x , y) : x ∈ S , y ≥ c(x)}

and does not cut the interior of P.

For every x ∈ S there exists an extreme support to the graph of c since it is

convex.

Simply use Taylor’s first-order approximation of c.

For a point x0 ∈ S , the extreme support y = p(x ; x0) is given by

p(x ; x0) = c(x0) +∇p(x ; x0)>(x − x0), ∇p(x ; x0) = ∇c(x0).

58

Kelley’s Cutting-Plane Method: Setting

Definition

An extreme support to the graph of c is an (n + 1)-dimensional hyperplane

that intersects the boundary of the convex set

P = {(x , y) : x ∈ S , y ≥ c(x)}

and does not cut the interior of P.

For every x ∈ S there exists an extreme support to the graph of c since it is

convex.

Simply use Taylor’s first-order approximation of c.

For a point x0 ∈ S , the extreme support y = p(x ; x0) is given by

p(x ; x0) = c(x0) +∇p(x ; x0)>(x − x0), ∇p(x ; x0) = ∇c(x0).

58

Kelley’s Cutting-Plane Method: Setting

Definition

An extreme support to the graph of c is an (n + 1)-dimensional hyperplane

that intersects the boundary of the convex set

P = {(x , y) : x ∈ S , y ≥ c(x)}

and does not cut the interior of P.

For every x ∈ S there exists an extreme support to the graph of c since it is

convex.

Simply use Taylor’s first-order approximation of c.

For a point x0 ∈ S , the extreme support y = p(x ; x0) is given by

p(x ; x0) = c(x0) +∇p(x ; x0)>(x − x0), ∇p(x ; x0) = ∇c(x0).

58

Kelley’s Cutting-Plane Method: Let’s Start!

1. Solve the relaxation minx{f (x) : x ∈ S}.
• If the problem is infeasible, the original problem is infeasible.

• Otherwise, let x0 be the optimal solution.

2. If x0 ∈ Ω, we are done. So let x0 ∈ S \ Ω.

3. Since c is convex, we have

p(x ; x0) ≤ c(x) for all x ∈ S .

59

Valid Inequalities

Definition

Consider the optimization problem

min
x

f (x) s.t. x ∈ Ω.

An inequality a>x ≤ b is called a valid inequality (for Ω) if it is satisfied for all

feasible points x ∈ Ω.

60

It really cuts

Lemma

Let x0 ∈ S \ Ω. The hyperplane defined by p(x ; x0) = 0 separates the point x0

from the feasible set Ω.

Proof.

• It holds p(x ; x0) ≤ c(x) for all x ∈ S .

• Thus, if x ∈ Ω, we have p(x ; x0) ≤ c(x) ≤ 0.

• Since x0 /∈ Ω, p(x0; x0) = c(x0) > 0.

In this situation, the valid inequality of this hyperplane is called a cut.

61

It really cuts

Lemma

Let x0 ∈ S \ Ω. The hyperplane defined by p(x ; x0) = 0 separates the point x0

from the feasible set Ω.

Proof.

• It holds p(x ; x0) ≤ c(x) for all x ∈ S .

• Thus, if x ∈ Ω, we have p(x ; x0) ≤ c(x) ≤ 0.

• Since x0 /∈ Ω, p(x0; x0) = c(x0) > 0.

In this situation, the valid inequality of this hyperplane is called a cut.

61

It really cuts

Lemma

Let x0 ∈ S \ Ω. The hyperplane defined by p(x ; x0) = 0 separates the point x0

from the feasible set Ω.

Proof.

• It holds p(x ; x0) ≤ c(x) for all x ∈ S .

• Thus, if x ∈ Ω, we have p(x ; x0) ≤ c(x) ≤ 0.

• Since x0 /∈ Ω, p(x0; x0) = c(x0) > 0.

In this situation, the valid inequality of this hyperplane is called a cut.

61

Kelley’s Cutting-Plane Method: The Iteration

• Consider a sequence (Sk)k of convex sets with Sk ⊂ Sk−1 and consider the

sequence of convex optimization problems

min
x

f (x) s.t. x ∈ Sk

with optimal solutions xk . Then f (xk) ≥ f (xk−1) holds.

• Let S0 = S and

S1 = S0 ∩ {x ∈ Rn : p(x ; x0) ≤ 0}.

• More general, we have the tightenings

Sk = Sk−1 ∩ {x ∈ Rn : p(x ; xk−1) ≤ 0}.

We obtain . . .

• points xk that minimize f (x) over Sk

• sequences (xk)k and (fk)k with fk = d>xk

62

Kelley’s Cutting-Plane Method: Goal

If (xk)k has a convergent subsequence that converges to a point x∗ ∈ Ω, then

the monotonically increasing sequence (fk)k converges to f (x∗) and x∗ is the

desired optimal solution.

63

Kelley’s Cutting-Plane Method: Convergence

• xk minimizes f (x) over Sk , i.e.,

c(xk) +∇p(xk ; x i)>(xk − x i) ≤ 0

for all i = 0, . . . , k − 1.

• Moreover, if (xk)k has a subsequence converging to a point in Ω, then

(c(xk))k needs to have a subsequence converging to 0.

• If not, there exists an r > 0 (independent of k) such that

r ≤ c(x i) ≤ ∇p(xk ; x i)>(x i − xk) ≤ K‖x i − xk‖

for all i = 0, . . . , k − 1.

• Thus, for every subsequence (xk`)` we obtain

‖xkq − xk`‖ ≥ r

K
> 0

for all q < `.

• Thus, (xk)k is not a Cauchy sequence, which is a contradiction since S is

compact.

64

Kelley’s Cutting-Plane Method: Main Theorem

Theorem

Let c be a continuous and convex function defined on S so that for every point

t ∈ S , there exists an extreme support, y = p(x ; t) to the graph of c with

‖∇p(x ; t)‖ ≤ K for some finite constant K and for all x ∈ S .

Furthermore, let

‖d‖ ≤ ∞ and let ∅ 6= Ω = {x ∈ Rn : c(x) ≤ 0} ⊂ S . If xk ∈ Sk solves

min
x

f (x) s.t. x ∈ Sk for k = 0, 1, . . .

with S0 = S and

Sk = Sk−1 ∩
{
x ∈ Rn : p(x ; xk−1) ≤ 0

}
,

then the sequence (xk)k contains subsequences that converges to a

point x∗ ∈ Ω with f (x∗) ≤ f (x) for all x ∈ Ω.

65

Kelley’s Cutting-Plane Method: Main Theorem

Theorem

Let c be a continuous and convex function defined on S so that for every point

t ∈ S , there exists an extreme support, y = p(x ; t) to the graph of c with

‖∇p(x ; t)‖ ≤ K for some finite constant K and for all x ∈ S . Furthermore, let

‖d‖ ≤ ∞ and let ∅ 6= Ω = {x ∈ Rn : c(x) ≤ 0} ⊂ S .

If xk ∈ Sk solves

min
x

f (x) s.t. x ∈ Sk for k = 0, 1, . . .

with S0 = S and

Sk = Sk−1 ∩
{
x ∈ Rn : p(x ; xk−1) ≤ 0

}
,

then the sequence (xk)k contains subsequences that converges to a

point x∗ ∈ Ω with f (x∗) ≤ f (x) for all x ∈ Ω.

65

Kelley’s Cutting-Plane Method: Main Theorem

Theorem

Let c be a continuous and convex function defined on S so that for every point

t ∈ S , there exists an extreme support, y = p(x ; t) to the graph of c with

‖∇p(x ; t)‖ ≤ K for some finite constant K and for all x ∈ S . Furthermore, let

‖d‖ ≤ ∞ and let ∅ 6= Ω = {x ∈ Rn : c(x) ≤ 0} ⊂ S . If xk ∈ Sk solves

min
x

f (x) s.t. x ∈ Sk for k = 0, 1, . . .

with S0 = S and

Sk = Sk−1 ∩
{
x ∈ Rn : p(x ; xk−1) ≤ 0

}
,

then the sequence (xk)k contains subsequences that converges to a

point x∗ ∈ Ω with f (x∗) ≤ f (x) for all x ∈ Ω.

65

Kelley’s Cutting-Plane Method: Main Theorem

Theorem

Let c be a continuous and convex function defined on S so that for every point

t ∈ S , there exists an extreme support, y = p(x ; t) to the graph of c with

‖∇p(x ; t)‖ ≤ K for some finite constant K and for all x ∈ S . Furthermore, let

‖d‖ ≤ ∞ and let ∅ 6= Ω = {x ∈ Rn : c(x) ≤ 0} ⊂ S . If xk ∈ Sk solves

min
x

f (x) s.t. x ∈ Sk for k = 0, 1, . . .

with S0 = S and

Sk = Sk−1 ∩
{
x ∈ Rn : p(x ; xk−1) ≤ 0

}
,

then the sequence (xk)k contains subsequences that converges to a

point x∗ ∈ Ω with f (x∗) ≤ f (x) for all x ∈ Ω.

65

From Convex Optimization to Convex MINLPs

• In Kelley’s method we solve LPs in every iteration, which are polyhedral

outer approximations of the original feasible set.

• If we have a convex MINLP, simply solve MILPs instead of LPs.

• Every point xk then is the solution of the MILP with feasible set Sk that

also incorporates the integrality constraints.

• That’s it?

Yes; except for ugly technicalities

• We need that the vector c and all constraints defining S0,S1,S2, . . . only

have rational coefficients and constants.

• There are workarounds; see page 707 of the original Kelley paper.

66

From Convex Optimization to Convex MINLPs

• In Kelley’s method we solve LPs in every iteration, which are polyhedral

outer approximations of the original feasible set.

• If we have a convex MINLP, simply solve MILPs instead of LPs.

• Every point xk then is the solution of the MILP with feasible set Sk that

also incorporates the integrality constraints.

• That’s it?

Yes; except for ugly technicalities

• We need that the vector c and all constraints defining S0,S1,S2, . . . only

have rational coefficients and constants.

• There are workarounds; see page 707 of the original Kelley paper.

66

Single-Tree vs. Multi-Tree Methods

Single-Tree

• Branch-and-bound

• Only a single search-tree is enumerated

• Every node of the search tree corresponds

to a continuous optimization problem

Multi-Tree

• Kelley’s Method for convex MINLPs

• An MILP is solved in every iteration

• Thus, every iteration corresponds to one search-tree

67

Single-Tree vs. Multi-Tree Methods

Single-Tree

• Branch-and-bound

• Only a single search-tree is enumerated

• Every node of the search tree corresponds

to a continuous optimization problem

Multi-Tree

• Kelley’s Method for convex MINLPs

• An MILP is solved in every iteration

• Thus, every iteration corresponds to one search-tree

67

Is it effective?

min
x∈R2

x1 − x2 s.t. 3x2
1 − 2x1x2 + x2

2 − 1 ≤ 0

The original numerical results from the Kelley paper

68

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.1 Nonlinear Branch-and-Bound

2.2 Kelley’s Cutting-Plane Method

2.3 Outer Approximation

2.4 LP/NLP-Based Branch-and-Bound

69

Kelley: A Good Idea That Is Not So Good?

⇐
70

Kelley: A Good Idea That Is Not So Good?

⇐
70

Kelley: A Good Idea That Is Not So Good?

i.
70

Kelley: A Good Idea That Is Not So Good?

t
70

Kelley: A Good Idea That Is Not So Good?

70

Kelley: A Good Idea That Is Not So Good?

i.
70

Kelley: A Good Idea That Is Not So Good?

i.
70

Kelley: A Good Idea That Is Not So Good?

i.
70

Kelley: A Good Idea That Is Not So Good?

i.
70

Kelley: A Good Idea That Is Not So Good?

i.
70

Kelley: A Good Idea That Is Not So Good?

i.
70

Kelley: A Good Idea That Is Not So Good?

Ei
70

Kelley: A Good Idea That Is Not So Good?

i.
70

Kelley: A Good Idea That Is Not So Good?

t.EE
70

Kelley: A Good Idea That Is Not So Good?

Ä¥#
70

Who Would Even Implement This?

Well, we did . . .

71

Who Would Even Implement This?

Well, we did . . .

71

Who Would Even Implement This?

Well, we did . . .

71

Who Would Even Implement This?

Well, we did . . .

71

Who Would Even Implement This?

Well, we did . . .

71

Who Would Even Implement This?

Well, we did . . .

71

Who Would Even Implement This?

Well, we did . . .

71

Who Would Even Implement This?

Well, we did . . .

71

Kelley 2.0: Outer Approximation

Drawbacks of Kelley’s method

• Linear convergence, many iterations (runtime!)

• Almost linear dependent inequalities (numerics!)

Resolved by Outer Approximation

• Duran and Grossmann (1986)

• Fletcher and Leyffer (1994)

72

Kelley 2.0: Outer Approximation

Same instance as before

but with some outer-approximation magic applied . . .

73

Kelley 2.0: Outer Approximation

Same instance as before

but with some outer-approximation magic applied . . .

73

Kelley 2.0: Outer Approximation

Same instance as before

but with some outer-approximation magic applied . . .

73

From Kelley . . .

1. Solve an MILP relaxation to obtain x∗

2. Add linear approximation around x∗ to the MILP relaxation

3. Repeat until ε-tolerance is fulfilled

74

. . . to Outer Approximation

1. Solve an MILP relaxation to obtain x and lower bound φ

2. Solve an NLP with fixed integers xI to obtain x∗ and upper bound

Φ = min{Φ, f (x∗)}
3. Update the MILP relaxation

• Add Kelley cutting plane for x∗

• Exclude integer-feasible solution x∗I

4. Repeat until φ ≥ Φ

MILP

φ

NLP

Φ

fix xI

add cutting plane for x∗

and exclude x∗I

75

. . . to Outer Approximation

1. Solve an MILP relaxation to obtain x and lower bound φ

2. Solve an NLP with fixed integers xI to obtain x∗ and upper bound

Φ = min{Φ, f (x∗)}
3. Update the MILP relaxation

• Add Kelley cutting plane for x∗

• Exclude integer-feasible solution x∗I

4. Repeat until φ ≥ Φ

MILP

φ

NLP

Φ

fix xI

add cutting plane for x∗

and exclude x∗I

75

. . . to Outer Approximation

1. Solve an MILP relaxation to obtain x and lower bound φ

2. Solve an NLP with fixed integers xI to obtain x∗ and upper bound

Φ = min{Φ, f (x∗)}
3. Update the MILP relaxation

• Add Kelley cutting plane for x∗

• Exclude integer-feasible solution x∗I

4. Repeat until φ ≥ Φ

MILP

φ

NLP

Φ

fix xI

add cutting plane for x∗

and exclude x∗I

75

How to Exclude Integer Solutions?

No good!

But: Duran and Grossmann had a simple and good idea

76

How to Exclude Integer Solutions?

Simple idea: No-good-cuts∑
i∈I :xi=0

xi +
∑

i∈I :xi=1

(1− xi) ≥ 1

No good!

But: Duran and Grossmann had a simple and good idea

76

How to Exclude Integer Solutions?

Simple idea: No-good-cuts∑
i∈I :xi=0

xi +
∑

i∈I :xi=1

(1− xi) ≥ 1

No good!

But: Duran and Grossmann had a simple and good idea

76

How to Exclude Integer Solutions?

Simple idea: No-good-cuts∑
i∈I :xi=0

xi +
∑

i∈I :xi=1

(1− xi) ≥ 1

No good!

But: Duran and Grossmann had a simple and good idea

76

How to Exclude Integer Solutions?

Assume you have an integer point x j
I and assume that the subproblem

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

xI = x j
I

(S(x j
I))

has a solution x j

Important technicality: a constraint qualification needs to hold at x j

77

How to Exclude Integer Solutions?

Assume you have an integer point x j
I and assume that the subproblem

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

xI = x j
I

(S(x j
I))

has a solution x j

Important technicality: a constraint qualification needs to hold at x j

77

Recap: Kelley’s Cuts

Taylor’s first-order approximation

p(x ; x0) = c(x0) +∇c(x0)>(x − x0)

1. Since c is convex, p(x ; x0) ≤ 0 is a valid inequality for all x ∈ Ω

2. For x0 ∈ S \ Ω, p(x ; x0) ≤ 0 cuts off x0

78

The Simple and Good Idea

Add first-order approximations for solutions x j of the subproblem (S(x j
I))

p(x ; x j) = c(x j) +∇c(x j)>(x − x j)

1. Since c is convex, p(x ; x j) ≤ 0 is a valid inequality for all x ∈ Ω

2. For x j , p(x ; x j) ≤ 0 does not cut off x j !

79

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

TΩ(x) :=

{
d ∈ Rn : ∃(xk)k ∈ Ω, (tk)k ∈ R≥0 such that

lim
k→∞

xk = x , lim
k→∞

tk = 0, and lim
k→∞

xk − x

tk
= d

}

In other words: TΩ(x) contains all directions d that are tangential to Ω in

x ∈ Ω

In other words: “TΩ(x) contains all feasible directions approaching x”

80

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

TΩ(x) :=

{
d ∈ Rn : ∃(xk)k ∈ Ω, (tk)k ∈ R≥0 such that

lim
k→∞

xk = x , lim
k→∞

tk = 0, and lim
k→∞

xk − x

tk
= d

}

In other words: TΩ(x) contains all directions d that are tangential to Ω in

x ∈ Ω

In other words: “TΩ(x) contains all feasible directions approaching x”

80

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

TΩ(x) :=

{
d ∈ Rn : ∃(xk)k ∈ Ω, (tk)k ∈ R≥0 such that

lim
k→∞

xk = x , lim
k→∞

tk = 0, and lim
k→∞

xk − x

tk
= d

}

In other words: TΩ(x) contains all directions d that are tangential to Ω in

x ∈ Ω

In other words: “TΩ(x) contains all feasible directions approaching x”

80

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

:
81

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

:
81

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

:
81

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

"

gut so

→

81

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

"

gut so

→

81

Cones in Nonlinear Optimization 101

Tangential cone of Ω in x

"

:
81

Cones in Nonlinear Optimization 101

Linearized cone of Ω in x

T lin
Ω := {d ∈ Rn : d>∇ci (x) ≤ 0, i ∈ A(x)}

:

82

Cones in Nonlinear Optimization 101

Linearized cone of Ω in x

T lin
Ω := {d ∈ Rn : d>∇ci (x) ≤ 0, i ∈ A(x)}

:
82

Cones in Nonlinear Optimization 101

Linearized cone of Ω in x

T lin
Ω := {d ∈ Rn : d>∇ci (x) ≤ 0, i ∈ A(x)}

:
82

Cones in Nonlinear Optimization 101

Linearized cone of Ω in x

T lin
Ω := {d ∈ Rn : d>∇ci (x) ≤ 0, i ∈ A(x)}

"

:
82

Cones in Nonlinear Optimization 101

Linearized cone of Ω in x

T lin
Ω := {d ∈ Rn : d>∇ci (x) ≤ 0, i ∈ A(x)}

"

82

Cones in Nonlinear Optimization 101

Linearized cone of Ω in x

T lin
Ω := {d ∈ Rn : d>∇ci (x) ≤ 0, i ∈ A(x)}

"

82

Cones in Nonlinear Optimization 101

Obviously, TΩ(x) = T lin
Ω (x) holds in our example

Abadie Constraint Qualification: A feasible point x ∈ Ω fulfills the ACQ if

TΩ(x) = T lin
Ω holds

Optimality condition: If x∗ is a local solution and f is continuously

differentiable, then

∇f (x∗)>d ≥ 0 for all d ∈ TΩ(x∗)

83

Cones in Nonlinear Optimization 101

Obviously, TΩ(x) = T lin
Ω (x) holds in our example

Abadie Constraint Qualification: A feasible point x ∈ Ω fulfills the ACQ if

TΩ(x) = T lin
Ω holds

Optimality condition: If x∗ is a local solution and f is continuously

differentiable, then

∇f (x∗)>d ≥ 0 for all d ∈ TΩ(x∗)

83

Cones in Nonlinear Optimization 101

Obviously, TΩ(x) = T lin
Ω (x) holds in our example

Abadie Constraint Qualification: A feasible point x ∈ Ω fulfills the ACQ if

TΩ(x) = T lin
Ω holds

Optimality condition: If x∗ is a local solution and f is continuously

differentiable, then

∇f (x∗)>d ≥ 0 for all d ∈ TΩ(x∗)

83

The Simple and Good Idea

Add first-order approximations for solutions x j of the subproblem (S(x j
I))

p(x ; x j) = c(x j) +∇c(x j)>(x − x j)

1. Since c is convex, p(x ; x j) ≤ 0 is a valid inequality for all x ∈ Ω

2. For x j , p(x ; x j) ≤ 0 does not cut off x j

84

Where the Magic Happens

The set of possible integer assignments

X := {x j ∈ X : x j solves (S(x j
I))}

Assume that the Abadie Constraint Qualification holds for all x ∈ X

Let X k ⊆ X and consider the master problem

min
x∈Rn,η∈R

η

s.t. f (x j) +∇f (x j)>(x − x j) ≤ η, ∀x j ∈ X k ,

c(x j) +∇c(x j)>(x − x j) ≤ 0, ∀x j ∈ X k ,

x ∈ X ,

xi ∈ Z, i ∈ I

(M(k))

85

Where the Magic Happens

The set of possible integer assignments

X := {x j ∈ X : x j solves (S(x j
I))}

Assume that the Abadie Constraint Qualification holds for all x ∈ X

Let X k ⊆ X and consider the master problem

min
x∈Rn,η∈R

η

s.t. f (x j) +∇f (x j)>(x − x j) ≤ η, ∀x j ∈ X k ,

c(x j) +∇c(x j)>(x − x j) ≤ 0, ∀x j ∈ X k ,

x ∈ X ,

xi ∈ Z, i ∈ I

(M(k))

85

Where the Magic Happens

The set of possible integer assignments

X := {x j ∈ X : x j solves (S(x j
I))}

Assume that the Abadie Constraint Qualification holds for all x ∈ X

Let X k ⊆ X and consider the master problem

min
x∈Rn,η∈R

η

s.t. f (x j) +∇f (x j)>(x − x j) ≤ η, ∀x j ∈ X k ,

c(x j) +∇c(x j)>(x − x j) ≤ 0, ∀x j ∈ X k ,

x ∈ X ,

xi ∈ Z, i ∈ I

(M(k))

85

Where the Magic Happens

Assume x to be a solution of (M(k)) such that xI = x`I for a x` ∈ X k

• We already solved the subproblem (S(xI))

• x must fulfill

f (x`) +∇f (x`)>(x − x`) ≤ η

c(x`) +∇c(x`)>(x − x`) ≤ 0

86

Where the Magic Happens

Assume x to be a solution of (M(k)) such that xI = x`I for a x` ∈ X k

• We already solved the subproblem (S(xI))

• x must fulfill

f (x`) +∇f (x`)>(x − x`) ≤ η

c(x`) +∇c(x`)>(x − x`) ≤ 0

86

Where the Magic Happens

Assume x to be a solution of (M(k)) such that xI = x`I for a x` ∈ X k

• We already solved the subproblem (S(xI))

• x must fulfill

f (x`) +∇f (x`)>(x − x`) ≤ η

c(x`) +∇c(x`)>(x − x`) ≤ 0

86

Where the Magic Happens

If ci (x
`) < 0 is not active, then any direction is feasible. In particular:

(x − x`) ∈ T lin
Ω (x`).

If ci (x
`) = 0 active, then

∇ci (x`)>(x − x`) ≤ 0 ⇐⇒ (x − x`) ∈ T lin
Ω (x`).

Since the ACQ holds at x`, we have

(x − x`) ∈ TΩ(x`)

87

Where the Magic Happens

If ci (x
`) < 0 is not active, then any direction is feasible. In particular:

(x − x`) ∈ T lin
Ω (x`).

If ci (x
`) = 0 active, then

∇ci (x`)>(x − x`) ≤ 0 ⇐⇒ (x − x`) ∈ T lin
Ω (x`).

Since the ACQ holds at x`, we have

(x − x`) ∈ TΩ(x`)

87

Where the Magic Happens

If ci (x
`) < 0 is not active, then any direction is feasible. In particular:

(x − x`) ∈ T lin
Ω (x`).

If ci (x
`) = 0 active, then

∇ci (x`)>(x − x`) ≤ 0 ⇐⇒ (x − x`) ∈ T lin
Ω (x`).

Since the ACQ holds at x`, we have

(x − x`) ∈ TΩ(x`)

87

Where the Magic Happens

From (x − x`) ∈ TΩ(x`) we know

∇f (x`)>(x − x`) ≥ 0

Because x is feasible for the master problem

f (x`) +∇f (x`)(x − x`) ≤ η ⇐⇒ f (x`) ≤ η

Because x` ∈ Ω =⇒ Φ ≤ f (x`)

Altogether, this gives

Φ ≤ f (x`) ≤ η = φ

88

Where the Magic Happens

From (x − x`) ∈ TΩ(x`) we know

∇f (x`)>(x − x`) ≥ 0

Because x is feasible for the master problem

f (x`) +∇f (x`)(x − x`) ≤ η ⇐⇒ f (x`) ≤ η

Because x` ∈ Ω =⇒ Φ ≤ f (x`)

Altogether, this gives

Φ ≤ f (x`) ≤ η = φ

88

Where the Magic Happens

From (x − x`) ∈ TΩ(x`) we know

∇f (x`)>(x − x`) ≥ 0

Because x is feasible for the master problem

f (x`) +∇f (x`)(x − x`) ≤ η ⇐⇒ f (x`) ≤ η

Because x` ∈ Ω =⇒ Φ ≤ f (x`)

Altogether, this gives

Φ ≤ f (x`) ≤ η = φ

88

Where the Magic Happens

From (x − x`) ∈ TΩ(x`) we know

∇f (x`)>(x − x`) ≥ 0

Because x is feasible for the master problem

f (x`) +∇f (x`)(x − x`) ≤ η ⇐⇒ f (x`) ≤ η

Because x` ∈ Ω =⇒ Φ ≤ f (x`)

Altogether, this gives

Φ ≤ f (x`) ≤ η = φ

88

We Just Proved

Lemma

Whenever an integer solution of the master problem appears for the second

time, then the corresponding objective function value is greater or equal to the

best upper bound.

Again, in other words:

At most, we need to check one integer solution twice.

We indeed “cut” the integer solutions.

89

We Just Proved

Lemma

Whenever an integer solution of the master problem appears for the second

time, then the corresponding objective function value is greater or equal to the

best upper bound.

Again, in other words:

At most, we need to check one integer solution twice.

We indeed “cut” the integer solutions.

89

There Is One Thing Left

What if a subproblem (S(x j
I)) is infeasible?

Duran and Grossmann add no-good-cuts, but this is still no good . . .

Fletcher and Leyffer (1994) have a solution

90

There Is One Thing Left

What if a subproblem (S(x j
I)) is infeasible?

Duran and Grossmann add no-good-cuts, but this is still no good . . .

Fletcher and Leyffer (1994) have a solution

90

There Is One Thing Left

What if a subproblem (S(x j
I)) is infeasible?

Duran and Grossmann add no-good-cuts, but this is still no good . . .

Fletcher and Leyffer (1994) have a solution

90

Infeasible Subproblems

If a subproblem (S(x j
I)) is infeasible, then solve the feasibility problem

min
x∈Rn

∑
i∈J⊥

wic
+
i (x)

s.t. ci (x) ≤ 0, i ∈ J

x ∈ X

xI = x j
I

(F(x j
I))

with

• c+
i (x) = max{ci (x), 0}

• using the weights wi > 0 we can model, e.g., the `1 or `∞ norm

• J a set of constraints that can be fulfilled

• J⊥ the set of infeasible constraints

Interpretation: the feasibility problem minimizes the infeasibility

91

Infeasible Subproblems

Let (S(x j
I)) be infeasible and x j be a solution of the feasibility problem (F(x j

I))

Fletcher and Leyffer proved that all x with xI = x j
I violate the constraints

f (x j) +∇f (x j)>(x − x j) ≤ η

c(x j) +∇c(x j)>(x − x j) ≤ 0

92

Outer Approximation

1: Given x0, set φ← −∞, Φ← +∞, j ← 0, and X−1 ← ∅
2: while φ < Φ do

3: Solve (S(x j
I)) or (F(x j

I)) and let the solution be x j

4: if (S(x j
I)) is feasible and f (x j) < Φ then

5: Update current best point x∗ ← x j and Φ← f (x j)

6: end if

7: Linearize f and c at x j and set X j ← X j−1 ∪ {x j}
8: Solve (M(j)) and let the solution be x j+1. Set φ← f (x j+1) and j ← j + 1

9: end while

93

Outer Approximation

Theorem:

If the Abadie constraint qualification holds at the solution of every

subproblem (S(x j
I)) and if the number of integer points in X is finite, then the

outer-approximation algorithm terminates in a finite number of steps with an

optimal solution or with an indication that the problem is infeasible.

Proof:

Follows directly from the previous slides.

94

Outer Approximation

Theorem:

If the Abadie constraint qualification holds at the solution of every

subproblem (S(x j
I)) and if the number of integer points in X is finite, then the

outer-approximation algorithm terminates in a finite number of steps with an

optimal solution or with an indication that the problem is infeasible.

Proof:

Follows directly from the previous slides.

94

Extensions

• Hotstart the master problems: initial values, cutoff values, etc.

• Stop master problem with first “improving solution”

• Add linearization cuts for all feasible points of the master problem

that we encounter while solving the master problem

95

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

• Invented by Jacques Benders in 1962

• Algorithm for problems with a special structure

• Problem has “easy” and “complicated” variables

• Fixing the complicated variables results in a linear problem

• Generalized by Geoffrion in 1972 to nonlinear subproblems

• Algorithmic idea

• Decompose the variables

• Relaxed master problem over the complicated variables

• Subproblem with fixed complicated variables

• Successively derive cuts from the subproblem by duality theory

This sounds a lot like outer approximation, doesn’t it?!

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

• Invented by Jacques Benders in 1962

• Algorithm for problems with a special structure

• Problem has “easy” and “complicated” variables

• Fixing the complicated variables results in a linear problem

• Generalized by Geoffrion in 1972 to nonlinear subproblems

• Algorithmic idea

• Decompose the variables

• Relaxed master problem over the complicated variables

• Subproblem with fixed complicated variables

• Successively derive cuts from the subproblem by duality theory

This sounds a lot like outer approximation, doesn’t it?!

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

• Invented by Jacques Benders in 1962

• Algorithm for problems with a special structure

• Problem has “easy” and “complicated” variables

• Fixing the complicated variables results in a linear problem

• Generalized by Geoffrion in 1972 to nonlinear subproblems

• Algorithmic idea

• Decompose the variables

• Relaxed master problem over the complicated variables

• Subproblem with fixed complicated variables

• Successively derive cuts from the subproblem by duality theory

This sounds a lot like outer approximation, doesn’t it?!

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

• Invented by Jacques Benders in 1962

• Algorithm for problems with a special structure

• Problem has “easy” and “complicated” variables

• Fixing the complicated variables results in a linear problem

• Generalized by Geoffrion in 1972 to nonlinear subproblems

• Algorithmic idea

• Decompose the variables

• Relaxed master problem over the complicated variables

• Subproblem with fixed complicated variables

• Successively derive cuts from the subproblem by duality theory

This sounds a lot like outer approximation, doesn’t it?!

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

• Invented by Jacques Benders in 1962

• Algorithm for problems with a special structure

• Problem has “easy” and “complicated” variables

• Fixing the complicated variables results in a linear problem

• Generalized by Geoffrion in 1972 to nonlinear subproblems

• Algorithmic idea

• Decompose the variables

• Relaxed master problem over the complicated variables

• Subproblem with fixed complicated variables

• Successively derive cuts from the subproblem by duality theory

This sounds a lot like outer approximation, doesn’t it?!

96

Outer Approximation vs. Generalized Benders Decomposition

(Generalized) Benders Decomposition

• Invented by Jacques Benders in 1962

• Algorithm for problems with a special structure

• Problem has “easy” and “complicated” variables

• Fixing the complicated variables results in a linear problem

• Generalized by Geoffrion in 1972 to nonlinear subproblems

• Algorithmic idea

• Decompose the variables

• Relaxed master problem over the complicated variables

• Subproblem with fixed complicated variables

• Successively derive cuts from the subproblem by duality theory

This sounds a lot like outer approximation, doesn’t it?!

96

Outer Approximation vs. Generalized Benders Decomposition

Outer approximation cuts

f (x j) +∇f (x j)>(x − x j) ≤ η,

c(x j) +∇c(x j)>(x − x j) ≤ 0

Generalized Benders cut

f (x j) +

(
∇I f (x j) +

m∑
i=1

λj∇I c
j
i

)>
(xI − x j

I) ≤ η

Benders cuts are “weighted” outer approximation cuts

Benders cuts are dense and weaker than outer approximation cuts

97

Outer Approximation vs. Generalized Benders Decomposition

Outer approximation cuts

f (x j) +∇f (x j)>(x − x j) ≤ η,

c(x j) +∇c(x j)>(x − x j) ≤ 0

Generalized Benders cut

f (x j) +

(
∇I f (x j) +

m∑
i=1

λj∇I c
j
i

)>
(xI − x j

I) ≤ η

Benders cuts are “weighted” outer approximation cuts

Benders cuts are dense and weaker than outer approximation cuts

97

Outer Approximation vs. Generalized Benders Decomposition

Outer approximation cuts

f (x j) +∇f (x j)>(x − x j) ≤ η,

c(x j) +∇c(x j)>(x − x j) ≤ 0

Generalized Benders cut

f (x j) +

(
∇I f (x j) +

m∑
i=1

λj∇I c
j
i

)>
(xI − x j

I) ≤ η

Benders cuts are “weighted” outer approximation cuts

Benders cuts are dense and weaker than outer approximation cuts

97

Outer Approximation vs. Generalized Benders Decomposition

Outer approximation cuts

f (x j) +∇f (x j)>(x − x j) ≤ η,

c(x j) +∇c(x j)>(x − x j) ≤ 0

Generalized Benders cut

f (x j) +

(
∇I f (x j) +

m∑
i=1

λj∇I c
j
i

)>
(xI − x j

I) ≤ η

Benders cuts are “weighted” outer approximation cuts

Benders cuts are dense and weaker than outer approximation cuts

97

2. Algorithms for Convex MINLP: Overview

2. Algorithms for Convex MINLP

2.1 Nonlinear Branch-and-Bound

2.2 Kelley’s Cutting-Plane Method

2.3 Outer Approximation

2.4 LP/NLP-Based Branch-and-Bound

98

Outer Approximation vs. Branch-and-Bound

Hardness of MINLPs stems from nonlinearities and integrality constraints

Rationale of Branch-and-Bound

• Get rid of the integer variables by branching and solve only NLP relaxations

• Single-tree but many NLPs

Rationale of Kelley

• Approximate nonlinearities by only solving MILPs

• Multi-tree but no NLPs

Rationale of Outer Approximation

• Approximate nonlinearities and get rid of integrality constraints by fixing

• Solve MILPs and NLPs alternatingly

• Multi-tree with few NLPs

99

Outer Approximation vs. Branch-and-Bound

Hardness of MINLPs stems from nonlinearities and integrality constraints

Rationale of Branch-and-Bound

• Get rid of the integer variables by branching and solve only NLP relaxations

• Single-tree but many NLPs

Rationale of Kelley

• Approximate nonlinearities by only solving MILPs

• Multi-tree but no NLPs

Rationale of Outer Approximation

• Approximate nonlinearities and get rid of integrality constraints by fixing

• Solve MILPs and NLPs alternatingly

• Multi-tree with few NLPs

99

Outer Approximation vs. Branch-and-Bound

Hardness of MINLPs stems from nonlinearities and integrality constraints

Rationale of Branch-and-Bound

• Get rid of the integer variables by branching and solve only NLP relaxations

• Single-tree but many NLPs

Rationale of Kelley

• Approximate nonlinearities by only solving MILPs

• Multi-tree but no NLPs

Rationale of Outer Approximation

• Approximate nonlinearities and get rid of integrality constraints by fixing

• Solve MILPs and NLPs alternatingly

• Multi-tree with few NLPs

99

Outer Approximation vs. Branch-and-Bound

Hardness of MINLPs stems from nonlinearities and integrality constraints

Rationale of Branch-and-Bound

• Get rid of the integer variables by branching and solve only NLP relaxations

• Single-tree but many NLPs

Rationale of Kelley

• Approximate nonlinearities by only solving MILPs

• Multi-tree but no NLPs

Rationale of Outer Approximation

• Approximate nonlinearities and get rid of integrality constraints by fixing

• Solve MILPs and NLPs alternatingly

• Multi-tree with few NLPs

99

Outer Approximation vs. Branch-and-Bound

Searching multiple branch-and-bound trees sounds inefficient

100

Outer Approximation vs. Branch-and-Bound

Searching multiple branch-and-bound trees sounds is inefficient

100

Outer Approximation vs. Branch-and-Bound

Outer Approximation

?

101

Best of Both Worlds: LP/NLP-Based Branch-and-Bound

• Introduced by Quesada and Grossmann (1992)

• Can be seen as a hybrid algorithm between nonlinear branch-and-bound

and outer approximation

Rationale

• Relax nonlinearities and integrality constraints

• Branch on integralities and solve LPs at every branch-and-bound node

• Whenever a node solution is integral, solve the corresponding NLP

• Globally add the outer-approximation cuts for this NLP solution

102

Best of Both Worlds: LP/NLP-Based Branch-and-Bound

• Introduced by Quesada and Grossmann (1992)

• Can be seen as a hybrid algorithm between nonlinear branch-and-bound

and outer approximation

Rationale

• Relax nonlinearities and integrality constraints

• Branch on integralities and solve LPs at every branch-and-bound node

• Whenever a node solution is integral, solve the corresponding NLP

• Globally add the outer-approximation cuts for this NLP solution

102

Best of Both Worlds: LP/NLP-Based Branch-and-Bound

1: Given x0
I , set φ← −∞, Φ← +∞, j ← 0, X j ← ∅,

initialize the set of open node problems O ← {LP(X j ,−∞,∞)}
2: while O 6= ∅ do

3: Pick an LP: O = O \ {LP(X j , l , u)}
4: Solve LP(X j , l , u) and let its solution be x (l,u)

5: if LP(X j , l , u) is infeasible or f (x (l,u)) ≥ Φ then

6: Node can be pruned

7: else if x
(l,u)
I is integral then

8: Set x j
I = x

(l,u)
I and solve (S(x j

I)) or (F(x j
I)) and let its solution be x j

9: Linearize f and c at x j and set X j+1 ← X j ∪ {x j}
10: if (S(x j

I)) is feasible and f (x j) < Φ then

11: Update best point x∗ ← x j and Φ← f (x j)

12: end if

13: Re-add the LP: O = O ∪ {LP(X j+1, l , u)}
14: Set j ← j + 1

15: else

16: Branch on a fractional variable and update O

17: end if

18: end while 103

LP/NLP-Based Branch-and-Bound in Practice

• Should be implemented within modern MILP solvers

• Advanced MILP search (strong branching, adaptive node selection)

• Effective cut management

• Add cuts also for points that are not integer-feasible

• See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends . . .

• Limitations of MILP solvers (callbacks!)

• Problem-specific

104

LP/NLP-Based Branch-and-Bound in Practice

• Should be implemented within modern MILP solvers

• Advanced MILP search (strong branching, adaptive node selection)

• Effective cut management

• Add cuts also for points that are not integer-feasible

• See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends . . .

• Limitations of MILP solvers (callbacks!)

• Problem-specific

104

LP/NLP-Based Branch-and-Bound in Practice

• Should be implemented within modern MILP solvers

• Advanced MILP search (strong branching, adaptive node selection)

• Effective cut management

• Add cuts also for points that are not integer-feasible

• See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends . . .

• Limitations of MILP solvers (callbacks!)

• Problem-specific

104

LP/NLP-Based Branch-and-Bound in Practice

• Should be implemented within modern MILP solvers

• Advanced MILP search (strong branching, adaptive node selection)

• Effective cut management

• Add cuts also for points that are not integer-feasible

• See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends . . .

• Limitations of MILP solvers (callbacks!)

• Problem-specific

104

LP/NLP-Based Branch-and-Bound in Practice

• Should be implemented within modern MILP solvers

• Advanced MILP search (strong branching, adaptive node selection)

• Effective cut management

• Add cuts also for points that are not integer-feasible

• See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends . . .

• Limitations of MILP solvers (callbacks!)

• Problem-specific

104

LP/NLP-Based Branch-and-Bound in Practice

• Should be implemented within modern MILP solvers

• Advanced MILP search (strong branching, adaptive node selection)

• Effective cut management

• Add cuts also for points that are not integer-feasible

• See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends . . .

• Limitations of MILP solvers (callbacks!)

• Problem-specific

104

LP/NLP-Based Branch-and-Bound in Practice

• Should be implemented within modern MILP solvers

• Advanced MILP search (strong branching, adaptive node selection)

• Effective cut management

• Add cuts also for points that are not integer-feasible

• See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends . . .

• Limitations of MILP solvers (callbacks!)

• Problem-specific

104

LP/NLP-Based Branch-and-Bound in Practice

• Should be implemented within modern MILP solvers

• Advanced MILP search (strong branching, adaptive node selection)

• Effective cut management

• Add cuts also for points that are not integer-feasible

• See Abishek et al. (2010) and Bonami et al. (2008) for details

Is it faster then multi-tree outer approximation?

It depends . . .

• Limitations of MILP solvers (callbacks!)

• Problem-specific

104

3. MILP-Based Reformulations: Overview

3. MILP-Based Reformulations

105

The Psychology of Science

Law of the instrument

“If all you have is a hammer,

everything looks like a nail.”

— Abraham Maslow, 1966

106

The Law of the Instrument in the MILP World

• Discrete optimizers like integer variables and linear problems

• Problem: nonlinearities

• Remedy: linearization

Resulting problem is linear and mixed-integer:

Application of branch-and-bound based methods

107

The Law of the Instrument in the MILP World

• Discrete optimizers like integer variables and linear problems

• Problem: nonlinearities

• Remedy: linearization

Resulting problem is linear and mixed-integer:

Application of branch-and-bound based methods

107

The Law of the Instrument in the MILP World

• Discrete optimizers like integer variables and linear problems

• Problem: nonlinearities

• Remedy: linearization

Resulting problem is linear and mixed-integer:

Application of branch-and-bound based methods

107

The Law of the Instrument in the MILP World

• Discrete optimizers like integer variables and linear problems

• Problem: nonlinearities

• Remedy: linearization

Resulting problem is linear and mixed-integer:

Application of branch-and-bound based methods

107

The Law of the Instrument in the MILP World

• Discrete optimizers like integer variables and linear problems

• Problem: nonlinearities

• Remedy: linearization

Resulting problem is linear and mixed-integer:

Application of branch-and-bound based methods

107

The Law of the Instrument in the MILP World

• Discrete optimizers like integer variables and linear problems

• Problem: nonlinearities

• Remedy: linearization

Resulting problem is linear and mixed-integer:

Application of branch-and-bound based methods

107

The Law of the Instrument in the NLP World

• Continuous optimizers like nonlinear problems

• Problem: integrality constraints

• Remedy: continuous reformulation

Continuous Reformulation

Replace integer variable with

• one or more continuous variables and

• one or more (potentially nonlinear) constraints.

Resulting problem is continuous:

Application of nonlinear optimization techniques

108

The Law of the Instrument in the NLP World

• Continuous optimizers like nonlinear problems

• Problem: integrality constraints

• Remedy: continuous reformulation

Continuous Reformulation

Replace integer variable with

• one or more continuous variables and

• one or more (potentially nonlinear) constraints.

Resulting problem is continuous:

Application of nonlinear optimization techniques

108

The Law of the Instrument in the NLP World

• Continuous optimizers like nonlinear problems

• Problem: integrality constraints

• Remedy: continuous reformulation

Continuous Reformulation

Replace integer variable with

• one or more continuous variables and

• one or more (potentially nonlinear) constraints.

Resulting problem is continuous:

Application of nonlinear optimization techniques

108

Drawbacks and Advantages of the NLP Approach

Drawbacks

• Continuous reformulation
→ nonconvex problems

• NLP methods only yield

local minima

• NLP methods are not as stable

as MILP methods

• Badly suited for problems with

many discrete variables

Advantages

• Significantly faster running

times compared to the MILP

approach

• Well suited for problems with

only a few discrete variables

but many nonlinearities

• Physical accuracy is easier to

achieve

109

Drawbacks and Advantages of the NLP Approach

Drawbacks

• Continuous reformulation
→ nonconvex problems

• NLP methods only yield

local minima

• NLP methods are not as stable

as MILP methods

• Badly suited for problems with

many discrete variables

Advantages

• Significantly faster running

times compared to the MILP

approach

• Well suited for problems with

only a few discrete variables

but many nonlinearities

• Physical accuracy is easier to

achieve

109

Linearization of Nonlinear Functions

The easy case . . .

Separable Functions

A function φ : Rd → R is called separable if it can be written as a sum of

univariate functions φi : R→ R, i = 1, . . . , d :

φ(x1, . . . , xd) =
d∑

i=1

φi (xi).

110

1d Functions: Initial Situation

Given

Continuous and univariate function

φ : R→ R.

Goal

Integration of a piecewise linearization f of φ over a given finite

interval [a, b] ⊂ R into an MILP model

The idea dates back to Markowitz and Manne (1957) as well as Dantzig (1960)

111

1d Functions: Initial Situation

f (x)

x
x0 x1 x2 x3 x4

y0

y1

y2

y3

y4

112

1d Functions: Convex Combination Method

Idea: Express the function value at point x as a convex combination of the

function values at the neighboring sampling points.

Set z0 = zn+1 = 0 and

x =
n∑

i=0

λixi , y =
n∑

i=0

λiyi ,

n∑
i=0

λi = 1,
n∑

i=1

zi = 1,

λi ≤ zi + zi+1 for all i = 0, . . . , n,

λi ≥ 0 for all i = 0, . . . , n,

zi ∈ {0, 1} for all i = 1, . . . , n.

113

1d Functions: Convex Combination Method

Idea: Express the function value at point x as a convex combination of the

function values at the neighboring sampling points.

Set z0 = zn+1 = 0 and

x =
n∑

i=0

λixi , y =
n∑

i=0

λiyi ,

n∑
i=0

λi = 1,
n∑

i=1

zi = 1,

λi ≤ zi + zi+1 for all i = 0, . . . , n,

λi ≥ 0 for all i = 0, . . . , n,

zi ∈ {0, 1} for all i = 1, . . . , n.

113

1d Functions: Convex Combination Method (Example)

f (x)

x
x0 x1 x2 x3 x4

λ0 λ1 λ2 λ3 λ4

z1 z2 z3 z4

y0

y1

y2

y3

y4

• zi+1 = 1 denotes the

active interval i + 1

• λi , λi+1 ≥ 0 if x ∈ [xi , xi+1]

• λi + λi+1 = 1

• λj = 0 for all j /∈ {i , i + 1}

• x =
∑n

i=0 λixi : convex

combination of x values

• y =
∑n

i=0 λiyi : convex

combination of y values

By the way: the λi variables form an SOS-2 set

114

1d Functions: Convex Combination Method (Example)

f (x)

x
x0 x1 x2 x3 x4

λ0 λ1 λ2 λ3 λ4

z1 z2 z3 z4

y0

y1

y2

y3

y4

• zi+1 = 1 denotes the

active interval i + 1

• λi , λi+1 ≥ 0 if x ∈ [xi , xi+1]

• λi + λi+1 = 1

• λj = 0 for all j /∈ {i , i + 1}

• x =
∑n

i=0 λixi : convex

combination of x values

• y =
∑n

i=0 λiyi : convex

combination of y values

By the way: the λi variables form an SOS-2 set

114

1d Functions: Convex Combination Method (Example)

f (x)

x
x0 x1 x2 x3 x4

λ0 λ1 λ2 λ3 λ4

z1 z2 z3 z4

y0

y1

y2

y3

y4

• zi+1 = 1 denotes the

active interval i + 1

• λi , λi+1 ≥ 0 if x ∈ [xi , xi+1]

• λi + λi+1 = 1

• λj = 0 for all j /∈ {i , i + 1}

• x =
∑n

i=0 λixi : convex

combination of x values

• y =
∑n

i=0 λiyi : convex

combination of y values

By the way: the λi variables form an SOS-2 set

114

SOS-1 Type Binary Variables and Branching

Why are SOS-1 type binary variables so nice?

• Think of an integer variable zi ∈ Z and a fractional node solution, e.g.,

zi = 42.5

• Branching on this variable leads to two subproblems with the additional
constraints

• zi ≤ 42

• zi ≥ 43

• Branching on fractional binary variables leads to two new subproblems

with the fixations zi = 0 and zi = 1

. . . and that’s it!

For an SOS-1 set of binary variables zi ∈ {0, 1}n with
∑n

i=1 zi = 1,

a branching with zi = 1 fixes all other variables to 0!

115

SOS-1 Type Binary Variables and Branching

Why are SOS-1 type binary variables so nice?

• Think of an integer variable zi ∈ Z and a fractional node solution, e.g.,

zi = 42.5

• Branching on this variable leads to two subproblems with the additional
constraints

• zi ≤ 42

• zi ≥ 43

• Branching on fractional binary variables leads to two new subproblems

with the fixations zi = 0 and zi = 1

. . . and that’s it!

For an SOS-1 set of binary variables zi ∈ {0, 1}n with
∑n

i=1 zi = 1,

a branching with zi = 1 fixes all other variables to 0!

115

SOS-1 Type Binary Variables and Branching

Why are SOS-1 type binary variables so nice?

• Think of an integer variable zi ∈ Z and a fractional node solution, e.g.,

zi = 42.5

• Branching on this variable leads to two subproblems with the additional
constraints

• zi ≤ 42

• zi ≥ 43

• Branching on fractional binary variables leads to two new subproblems

with the fixations zi = 0 and zi = 1

. . . and that’s it!

For an SOS-1 set of binary variables zi ∈ {0, 1}n with
∑n

i=1 zi = 1,

a branching with zi = 1 fixes all other variables to 0!

115

1d Functions: Incremental Method

Idea: A value x ∈ [xi−1, xi] can be written as

x = xi−1 + (xi − xi−1)δi , δi ∈ [0, 1].

Model of the incremental method:

x = x0 +
n∑

i=1

(xi − xi−1)δi , y = y0 +
n∑

i=1

(yi − yi−1)δi ,

zi ≤ δi for all i = 1, . . . , n − 1,

δi+1 ≤ zi for all i = 1, . . . , n − 1,

zi ∈ {0, 1} for all i = 1, . . . , n − 1,

δ1 ≤ 1, δn ≥ 0

Filling condition: δi+1 ≤ zi ≤ δi ⇒ (δi+1 > 0⇒ δi = 1)

116

1d Functions: Incremental Method

Idea: A value x ∈ [xi−1, xi] can be written as

x = xi−1 + (xi − xi−1)δi , δi ∈ [0, 1].

Model of the incremental method:

x = x0 +
n∑

i=1

(xi − xi−1)δi , y = y0 +
n∑

i=1

(yi − yi−1)δi ,

zi ≤ δi for all i = 1, . . . , n − 1,

δi+1 ≤ zi for all i = 1, . . . , n − 1,

zi ∈ {0, 1} for all i = 1, . . . , n − 1,

δ1 ≤ 1, δn ≥ 0

Filling condition: δi+1 ≤ zi ≤ δi ⇒ (δi+1 > 0⇒ δi = 1)

116

1d Functions: Incremental Method

Idea: A value x ∈ [xi−1, xi] can be written as

x = xi−1 + (xi − xi−1)δi , δi ∈ [0, 1].

Model of the incremental method:

x = x0 +
n∑

i=1

(xi − xi−1)δi , y = y0 +
n∑

i=1

(yi − yi−1)δi ,

zi ≤ δi for all i = 1, . . . , n − 1,

δi+1 ≤ zi for all i = 1, . . . , n − 1,

zi ∈ {0, 1} for all i = 1, . . . , n − 1,

δ1 ≤ 1, δn ≥ 0

Filling condition: δi+1 ≤ zi ≤ δi ⇒ (δi+1 > 0⇒ δi = 1)

116

1d Functions: Incremental Method (Example)

f (x)

x
x0 x1 x2 x3 x4

z1 z2 z3 z4

δ1 δ2 δ3 δ4

y0

y1

y2

y3

y4

• x = x0 +
∑n

i=1(xi − xi−1)δi

⇒ δ1 = 1, δ2 ≥ 0,

δ3 = δ4 = 0

• z1 = 1, z2 = z3 = z4 = 0

117

Comparison: Convex Combination Method vs. Incremental Method

Setting

Minimization of a piecewise linear function subject to linear constraints

Properties

• LP relaxation of the incremental method

always gives an integer-feasible point

• This is not the case for the convex combination method

• Polyhedron of the incremental method is strictly contained in the

polyhedron of the convex combination method

118

Comparison: Convex Combination Method vs. Incremental Method

Setting

Minimization of a piecewise linear function subject to linear constraints

Properties

• LP relaxation of the incremental method

always gives an integer-feasible point

• This is not the case for the convex combination method

• Polyhedron of the incremental method is strictly contained in the

polyhedron of the convex combination method

118

Piecewise Linear Modeling: Pros & Cons

Pros

• Enables us to model nonlinear functions approximately in an MILP

Cons

• Linearization error: Let φ ∈ C2([x0, xn]) be the given nonlinear function

and let f be the corresponding piecewise linear approximation over [x0, xn].

Then, we have

‖φ− f ‖∞ ≤ h2 ‖φ′′‖∞
8

, h := max
i=1,...,n

{xi − xi−1}.

• Error can be controlled by h

• Problem: Reduction of h → more binary variables!

• Compromise between accuracy and tractability/practability

119

Piecewise Linear Modeling: Pros & Cons

Pros

• Enables us to model nonlinear functions approximately in an MILP

Cons

• Linearization error: Let φ ∈ C2([x0, xn]) be the given nonlinear function

and let f be the corresponding piecewise linear approximation over [x0, xn].

Then, we have

‖φ− f ‖∞ ≤ h2 ‖φ′′‖∞
8

, h := max
i=1,...,n

{xi − xi−1}.

• Error can be controlled by h

• Problem: Reduction of h → more binary variables!

• Compromise between accuracy and tractability/practability

119

Piecewise Linear Modeling: Pros & Cons

Pros

• Enables us to model nonlinear functions approximately in an MILP

Cons

• Linearization error: Let φ ∈ C2([x0, xn]) be the given nonlinear function

and let f be the corresponding piecewise linear approximation over [x0, xn].

Then, we have

‖φ− f ‖∞ ≤ h2 ‖φ′′‖∞
8

, h := max
i=1,...,n

{xi − xi−1}.

• Error can be controlled by h

• Problem: Reduction of h → more binary variables!

• Compromise between accuracy and tractability/practability

119

Piecewise Linear Modeling: Pros & Cons

Pros

• Enables us to model nonlinear functions approximately in an MILP

Cons

• Linearization error: Let φ ∈ C2([x0, xn]) be the given nonlinear function

and let f be the corresponding piecewise linear approximation over [x0, xn].

Then, we have

‖φ− f ‖∞ ≤ h2 ‖φ′′‖∞
8

, h := max
i=1,...,n

{xi − xi−1}.

• Error can be controlled by h

• Problem: Reduction of h → more binary variables!

• Compromise between accuracy and tractability/practability

119

Piecewise Linear Modeling: Pros & Cons

Pros

• Enables us to model nonlinear functions approximately in an MILP

Cons

• Linearization error: Let φ ∈ C2([x0, xn]) be the given nonlinear function

and let f be the corresponding piecewise linear approximation over [x0, xn].

Then, we have

‖φ− f ‖∞ ≤ h2 ‖φ′′‖∞
8

, h := max
i=1,...,n

{xi − xi−1}.

• Error can be controlled by h

• Problem: Reduction of h → more binary variables!

• Compromise between accuracy and tractability/practability

119

. . . and there’s a lot more!

• Multiple-Choice Method

• Disaggregated Convex Combination Method

• Logarithmic Model

• . . .

120

What if the nonlinearity is not separable?

Consider the reformulation

x1x2 = y 2
1 − y 2

2

with

y1 =
1

2
(x1 + x2), y1 =

1

2
(x1 − x2)

and y1, y2 ∈ R.

121

What if the nonlinearity is not separable?

Other idea: take the logarithm

The constraint

y = x1x2

with x1, x2 > 0 is equivalent to

ln(y) = ln(x1) + ln(x2).

However, . . .

• there is no systematic way to reduce multivariate to univariate functions

• errors introduced by piecewise linearizing the separate univariate functions

may accumulate and amplify

122

What if the nonlinearity is not separable?

Other idea: take the logarithm

The constraint

y = x1x2

with x1, x2 > 0 is equivalent to

ln(y) = ln(x1) + ln(x2).

However, . . .

• there is no systematic way to reduce multivariate to univariate functions

• errors introduced by piecewise linearizing the separate univariate functions

may accumulate and amplify

122

Further Topics

• How to obtain the piecewise linear approximations

• Approximation theory

• Best choice of break points can itself be considered as an optimization

problem that needs to be solved up-front

• Multivariate linearizations

• Convex combination method

• Incremental method

• From piecewise linear approximations to piecewise linear relaxations

123

4. Nonconvex MINLP: Overview

4. Nonconvex MINLP

4.1 Generic Relaxation Strategies

4.2 Spatial Branch-and-Bound

4.3 Bound Tightening

124

Nonconvex MINLP: What’s the challenge?

min f (x)

s.t. c(x) ≤ 0, x ∈ X , xi ∈ Z for all i ∈ I

Problem

• f and/or at least one of the cj are nonconvex

• Feasible set is nonconvex . . . even after relaxing the integrality constraints

• Local solutions do not define valid bounds

• Very hard problem

125

Piecewise Linearization

We already know a solution approach: piecewise linear approximations

• Replace nonlinear and nonconvex functions

with piecewise linear approximations

• Allows to use MILP solvers

• If possible, use separability of multivariate and nonconvex functions

• 2 goals:

• Compute a sufficiently accurate approximation

• Minimize the number of additionally required binary variables

• Methods

• Convex combination method

• Incremental method

• Multiple choice method

• . . .

126

What about using branch-and-bound “directly”?

"

.

127

What about using branch-and-bound “directly”?

"

127

What about using branch-and-bound “directly”?

"

127

What about using branch-and-bound “directly”?

""

127

What about using branch-and-bound “directly”?

""

Ä
127

What about using branch-and-bound “directly”?

""

Ä
127

What about using branch-and-bound “directly”?

"

127

The Nonconvex-MINLP-To-Do-List

We need to know how . . .

1. . . . to automatically construct polyhedral
and/or convex relaxations of nonconvex constraints

→ This leads to lower bounds on the optimal objective function value

2. . . . to set up a branching on continuous variables

→ This leads to a procedure for partitioning the feasible set of a subproblem

Open question: Does this lead to finite termination/convergence?

128

The Nonconvex-MINLP-To-Do-List

We need to know how . . .

1. . . . to automatically construct polyhedral
and/or convex relaxations of nonconvex constraints

→ This leads to lower bounds on the optimal objective function value

2. . . . to set up a branching on continuous variables

→ This leads to a procedure for partitioning the feasible set of a subproblem

Open question: Does this lead to finite termination/convergence?

128

4. Nonconvex MINLP: Overview

4. Nonconvex MINLP

4.1 Generic Relaxation Strategies

4.2 Spatial Branch-and-Bound

4.3 Bound Tightening

129

Factorable Functions

Definition

A function f : Rn → R is called factorable if it can be written as a sum of

products of univariate functions out of a given set O, whose arguments are

variables, constants, or other factorable functions.

• Example

O = {+,×, /, ,̂ sin, cos, exp, log, |·|}
• Examples of non-factorable functions

• Integrals
∫ x
x0

f (x) dx with unknown antiderivative

• Black-box functions (e.g., function evaluation = simulation run)

We need to know the symbolic information about the functions.

130

Factorable Functions

Definition

A function f : Rn → R is called factorable if it can be written as a sum of

products of univariate functions out of a given set O, whose arguments are

variables, constants, or other factorable functions.

• Example

O = {+,×, /, ,̂ sin, cos, exp, log, |·|}
• Examples of non-factorable functions

• Integrals
∫ x
x0

f (x) dx with unknown antiderivative

• Black-box functions (e.g., function evaluation = simulation run)

We need to know the symbolic information about the functions.

130

Factorable Functions

Definition

A function f : Rn → R is called factorable if it can be written as a sum of

products of univariate functions out of a given set O, whose arguments are

variables, constants, or other factorable functions.

• Example

O = {+,×, /, ,̂ sin, cos, exp, log, |·|}
• Examples of non-factorable functions

• Integrals
∫ x
x0

f (x) dx with unknown antiderivative

• Black-box functions (e.g., function evaluation = simulation run)

We need to know the symbolic information about the functions.

130

Factorable Functions & Expression Trees

• Factorable functions ↔ expression trees

• Expression tree: rooted tree with constants or variables as leafs and n-ary

operations as inner nodes

Example

f (x1, x2) = x1 log x2 + x3
2

x1

×

x2

log

+

x2

ˆ

3

131

Factorable Functions & Expression Trees

• Factorable functions ↔ expression trees

• Expression tree: rooted tree with constants or variables as leafs and n-ary

operations as inner nodes

Example

f (x1, x2) = x1 log x2 + x3
2

x1

×

x2

log

+

x2

ˆ

3

131

Factorable MINLPs

• If the entire MINLP only contains factorable functions, then the entire

MINLP can be represented as a generalized expression tree.

• Result: DAG (directed acyclic graph)

min
x1,x2

x1 + x2
2

s.t. x1 + sin x2 ≤ 4, x1x2 + x3
2 ≤ 5,

x1 ∈ [−4, 4] ∩ Z, x2 ∈ [0, 10] ∩ Z

+ + +

ˆ −4 sin × ˆ −5

2 3

x1 x2

132

Factorable MINLPs

• If the entire MINLP only contains factorable functions, then the entire

MINLP can be represented as a generalized expression tree.

• Result: DAG (directed acyclic graph)

min
x1,x2

x1 + x2
2

s.t. x1 + sin x2 ≤ 4, x1x2 + x3
2 ≤ 5,

x1 ∈ [−4, 4] ∩ Z, x2 ∈ [0, 10] ∩ Z

+ + +

ˆ −4 sin × ˆ −5

2 3

x1 x2

132

Reformulation of Factorable MINLPs

min xn+q

s.t. xk = θk(x), θk ∈ O, k = n + 1, n + 2, . . . , n + q,

li ≤ xi ≤ ui , k = 1, 2, . . . , n + q,

x ∈ X , xi ∈ Z for all i ∈ I

• Variable bounds can be explicitly stated (or implicitly as part of x ∈ X)

• q new auxiliary variables

• Restricted by θk ∈ O

• Convention: xn+q replaces the objective function

133

Nonconvex MINLPs

The MINLP

min x1 + x2
2

s.t. x1 + sin x2 ≤ 4, x1x2 + x3
2 ≤ 5,

x1 ∈ [−4, 4] ∩ Z, x2 ∈ [0, 10] ∩ Z

becomes

min x9

s.t. x3 = sin x2, x7 = x5 + x6 − 5, 0 ≤ x2 ≤ 10, 0 ≤ x6 ≤ 1000,

x4 = x1 + x3 − 4, x8 = x2
2 , −1 ≤ x3 ≤ 1, −45 ≤ x7 ≤ 0,

x5 = x1x2, x9 = x1 + x8, −9 ≤ x4 ≤ 0, 0 ≤ x8 ≤ 100,

x6 = x3
2 , −4 ≤ x1 ≤ 4, −40 ≤ x5 ≤ 40, −4 ≤ x9 ≤ 104,

x1, x2, x5, x6, x7, x8, x9 ∈ Z

134

Nonconvex MINLPs

• Nonconvex sets

Θk = {x ∈ Rn+q : xk = θk(x), x ∈ X , l ≤ x ≤ u, xi ∈ Z, i ∈ I}

• Idea: Determine convex sets Θ̄k ⊇ Θk for all k = n + 1, n + 2, . . . , n + q

• Convex relaxation

min xn+q

s.t. xk ∈ Θ̄k , k = n + 1, n + 2, . . . , n + q

li ≤ xi ≤ ui , i = 1, 2, . . . , n + q

x ∈ X

• Open question: How to find Θ̄k?

135

Nonconvex MINLPs

• Open question: How to find Θ̄k?

• Often, the Θ̄k are polyhedral, i.e., described by linear inequalities

Θ̄k = {x ∈ Rn+q : Bkx ≥ dk , x ∈ X , l ≤ x ≤ u}

• Tightening via spatial branching (later more)

136

Nonconvex MINLPs

• Open question: How to find Θ̄k?

• Often, the Θ̄k are polyhedral, i.e., described by linear inequalities

Θ̄k = {x ∈ Rn+q : Bkx ≥ dk , x ∈ X , l ≤ x ≤ u}

• Tightening via spatial branching (later more)

136

Nonconvex MINLPs

• Open question: How to find Θ̄k?

• Often, the Θ̄k are polyhedral, i.e., described by linear inequalities

Θ̄k = {x ∈ Rn+q : Bkx ≥ dk , x ∈ X , l ≤ x ≤ u}

• Tightening via spatial branching (later more)

136

Under- and Overestimators and Envelopes

Definition

Let f : Ω→ R be a function on the convex set Ω ⊂ Rn.

1. A function ξ : Ω→ R is called a convex underestimator of f on Ω, if ξ is a

convex function and if ξ(x) ≤ f (x) holds for all x ∈ Ω. The set of all

convex underestimators is denoted by U(f ,Ω).

2. A function ω : Ω→ R is called a concave overestimator of f on Ω, if ω is

a concave function and if ω(x) ≥ f (x) holds for all x ∈ Ω. The set of all

concave overestimators is denoted by O(f ,Ω).

3. The function vexΩ[f] is defined by

vexΩ[f](x) := sup{ξ(x) : ξ ∈ U(f ,Ω)} for all x ∈ Ω

and is called the convex envelope of f .

4. The function caveΩ[f] is defined by

caveΩ[f](x) := inf{ω(x) : ω ∈ O(f ,Ω)} for all x ∈ Ω

and is called the concave envelope of f .

137

Under- and Overestimators and Envelopes

Definition

Let f : Ω→ R be a function on the convex set Ω ⊂ Rn.

1. A function ξ : Ω→ R is called a convex underestimator of f on Ω, if ξ is a

convex function and if ξ(x) ≤ f (x) holds for all x ∈ Ω. The set of all

convex underestimators is denoted by U(f ,Ω).

2. A function ω : Ω→ R is called a concave overestimator of f on Ω, if ω is

a concave function and if ω(x) ≥ f (x) holds for all x ∈ Ω. The set of all

concave overestimators is denoted by O(f ,Ω).

3. The function vexΩ[f] is defined by

vexΩ[f](x) := sup{ξ(x) : ξ ∈ U(f ,Ω)} for all x ∈ Ω

and is called the convex envelope of f .

4. The function caveΩ[f] is defined by

caveΩ[f](x) := inf{ω(x) : ω ∈ O(f ,Ω)} for all x ∈ Ω

and is called the concave envelope of f .

137

Under- and Overestimators and Envelopes

Definition

Let f : Ω→ R be a function on the convex set Ω ⊂ Rn.

1. A function ξ : Ω→ R is called a convex underestimator of f on Ω, if ξ is a

convex function and if ξ(x) ≤ f (x) holds for all x ∈ Ω. The set of all

convex underestimators is denoted by U(f ,Ω).

2. A function ω : Ω→ R is called a concave overestimator of f on Ω, if ω is

a concave function and if ω(x) ≥ f (x) holds for all x ∈ Ω. The set of all

concave overestimators is denoted by O(f ,Ω).

3. The function vexΩ[f] is defined by

vexΩ[f](x) := sup{ξ(x) : ξ ∈ U(f ,Ω)} for all x ∈ Ω

and is called the convex envelope of f .

4. The function caveΩ[f] is defined by

caveΩ[f](x) := inf{ω(x) : ω ∈ O(f ,Ω)} for all x ∈ Ω

and is called the concave envelope of f .

137

Under- and Overestimators and Envelopes

Definition

Let f : Ω→ R be a function on the convex set Ω ⊂ Rn.

1. A function ξ : Ω→ R is called a convex underestimator of f on Ω, if ξ is a

convex function and if ξ(x) ≤ f (x) holds for all x ∈ Ω. The set of all

convex underestimators is denoted by U(f ,Ω).

2. A function ω : Ω→ R is called a concave overestimator of f on Ω, if ω is

a concave function and if ω(x) ≥ f (x) holds for all x ∈ Ω. The set of all

concave overestimators is denoted by O(f ,Ω).

3. The function vexΩ[f] is defined by

vexΩ[f](x) := sup{ξ(x) : ξ ∈ U(f ,Ω)} for all x ∈ Ω

and is called the convex envelope of f .

4. The function caveΩ[f] is defined by

caveΩ[f](x) := inf{ω(x) : ω ∈ O(f ,Ω)} for all x ∈ Ω

and is called the concave envelope of f .
137

Under- and Overestimators and Envelopes

x

f (x)

138

In other words

The function vexΩ[f] minimizes the error ‖f − ξ‖∞ over all

functions ξ ∈ U(f ,Ω):

vexΩ[f] = min{‖f − ξ‖∞ : ξ ∈ U(f ,Ω)}

Reason

The pointwise supremum of convex functions is again a convex function.

In analogy for concave functions.

139

In other words

The function vexΩ[f] minimizes the error ‖f − ξ‖∞ over all

functions ξ ∈ U(f ,Ω):

vexΩ[f] = min{‖f − ξ‖∞ : ξ ∈ U(f ,Ω)}

Reason

The pointwise supremum of convex functions is again a convex function.

In analogy for concave functions.

139

In other words

The function vexΩ[f] minimizes the error ‖f − ξ‖∞ over all

functions ξ ∈ U(f ,Ω):

vexΩ[f] = min{‖f − ξ‖∞ : ξ ∈ U(f ,Ω)}

Reason

The pointwise supremum of convex functions is again a convex function.

In analogy for concave functions.

139

Under- and Overestimators and Envelopes

Theorem

Let Ω ⊂ Rn be a compact set and let f : Ω→ R be continuous. Then,

min
x∈Ω

f (x) = min
x∈conv Ω

vexΩ[f](x)

holds.

Moreover, let M be the set of all global minima of f over Ω and let N the set

of global minima of vexΩ[f] over conv Ω. Then, N = convM holds.

140

Under- and Overestimators and Envelopes

Theorem

Let Ω ⊂ Rn be a compact set and let f : Ω→ R be continuous. Then,

min
x∈Ω

f (x) = min
x∈conv Ω

vexΩ[f](x)

holds.

Moreover, let M be the set of all global minima of f over Ω and let N the set

of global minima of vexΩ[f] over conv Ω. Then, N = convM holds.

140

The Problem with Relaxations of Nonconvexities

“All happy families are alike; each unhappy family is unhappy in its own way.”

— Leo Tolstoi; first sentence in Anna Karenina

All linear functions are the same . . .

. . . but all nonlinearities are different!

• Every type of nonconvexity needs to be studied separately

• Example: monomials of odd degree (xk = x2p+1
i , k ∈ Z+) are tackled in

Liberti and Pantelides (2003)

141

The Problem with Relaxations of Nonconvexities

“All happy families are alike; each unhappy family is unhappy in its own way.”

— Leo Tolstoi; first sentence in Anna Karenina

All linear functions are the same . . .

. . . but all nonlinearities are different!

• Every type of nonconvexity needs to be studied separately

• Example: monomials of odd degree (xk = x2p+1
i , k ∈ Z+) are tackled in

Liberti and Pantelides (2003)

141

The Problem with Relaxations of Nonconvexities

“All happy families are alike; each unhappy family is unhappy in its own way.”

— Leo Tolstoi; first sentence in Anna Karenina

All linear functions are the same . . .

. . . but all nonlinearities are different!

• Every type of nonconvexity needs to be studied separately

• Example: monomials of odd degree (xk = x2p+1
i , k ∈ Z+) are tackled in

Liberti and Pantelides (2003)

141

α-Underestimator

• Based on Androulakis et al. (1995), Maranas and Floudas (1994)

• f : Ω→ R twice continuously differentiable

• Domain Ω ⊆ Rn is given by

Ω = [x , x̄] =
n∏

i=1

[x i , x̄i]

• Define

φα(x) =
n∑

i=1

αi (x i − xi)(x̄i − xi)

and consider

f̌α(x) := f (x) + φα(x) = f (x) +
n∑

i=1

αi (x i − xi)(x̄i − xi)

142

α-Underestimator

f̌α(x) := f (x) + φα(x) = f (x) +
n∑

i=1

αi (x i − xi)(x̄i − xi)

is an underestimator if α ≥ 0 since φα(x) is non-positive on Ω.

But what about convexity?

Lemma

Let λmin be the smallest eigenvalue of the Hessian matrix Hf (x) of f on Ω.

Then, f̌α is convex on Ω if λmin + 2 mini αi ≥ 0 holds.

143

α-Underestimator

f̌α(x) := f (x) + φα(x) = f (x) +
n∑

i=1

αi (x i − xi)(x̄i − xi)

is an underestimator if α ≥ 0 since φα(x) is non-positive on Ω.

But what about convexity?

Lemma

Let λmin be the smallest eigenvalue of the Hessian matrix Hf (x) of f on Ω.

Then, f̌α is convex on Ω if λmin + 2 mini αi ≥ 0 holds.

143

α-Underestimator

Lemma

Let λmin be the smallest eigenvalue of the Hessian matrix Hf (x) of f on Ω.

Then, f̌α is convex on Ω, if λmin + 2 mini αi ≥ 0 holds.

Proof.

Consider

Hf̌α
(x) = Hf (x) + 2diag(α).

We show that it is positive semi-definite for all x ∈ Ω.

To show that Hf̌α
(x) is positive-semidefinite, it suffices to show that

h>Hf̌α
(x)h ≥ 0 for all h ∈ Rn

holds.

144

α-Underestimator

Lemma

Let λmin be the smallest eigenvalue of the Hessian matrix Hf (x) of f on Ω.

Then, f̌α is convex on Ω, if λmin + 2 mini αi ≥ 0 holds.

Proof.

Consider

Hf̌α
(x) = Hf (x) + 2diag(α).

We show that it is positive semi-definite for all x ∈ Ω.

To show that Hf̌α
(x) is positive-semidefinite, it suffices to show that

h>Hf̌α
(x)h ≥ 0 for all h ∈ Rn

holds.

144

α-Underestimator

Lemma

Let λmin be the smallest eigenvalue of the Hessian matrix Hf (x) of f on Ω.

Then, f̌α is convex on Ω, if λmin + 2 mini αi ≥ 0 holds.

Proof.

Consider

Hf̌α
(x) = Hf (x) + 2diag(α).

We show that it is positive semi-definite for all x ∈ Ω.

To show that Hf̌α
(x) is positive-semidefinite, it suffices to show that

h>Hf̌α
(x)h ≥ 0 for all h ∈ Rn

holds.

144

α-Underestimator

Proof . . . continued.

We know that

Hf̌α
(x) = Hf (x) + 2diag(α)

holds.

Thus, we have

h>Hf̌α
(x)h = h>Hf (x)h + 2h>diag(α)h

≥ λmin‖h‖2
2 + 2(min

i
αi)‖h‖2

2

≥ 0.

145

α-Underestimator

Proof . . . continued.

We know that

Hf̌α
(x) = Hf (x) + 2diag(α)

holds.

Thus, we have

h>Hf̌α
(x)h = h>Hf (x)h + 2h>diag(α)h

≥ λmin‖h‖2
2 + 2(min

i
αi)‖h‖2

2

≥ 0.

145

Back to Bilinearities: McCormick Inequalities

146

Back to Bilinearities: McCormick Inequalities

Lemma (McCormick (1976))

Consider w = xy with x ∈ [x , x̄] and y ∈ [y , ȳ]. Then, the inequalities

w ≥ yx + xy − xy ,

w ≥ ȳ x + x̄y − x̄ ȳ ,

w ≤ yx + x̄y − x̄y ,

w ≤ ȳ x + xy − xȳ

are valid inequalities.

Proof.

Consider, for instance, the first and fourth inequality:

0 ≤ (x − x)(y − y) = xy − xy − yx + xy ,

0 ≤ (x − x)(ȳ − y) = xȳ − xy − xȳ + xy .

147

Back to Bilinearities: McCormick Inequalities

Lemma (McCormick (1976))

Consider w = xy with x ∈ [x , x̄] and y ∈ [y , ȳ]. Then, the inequalities

w ≥ yx + xy − xy ,

w ≥ ȳ x + x̄y − x̄ ȳ ,

w ≤ yx + x̄y − x̄y ,

w ≤ ȳ x + xy − xȳ

are valid inequalities.

Proof.

Consider, for instance, the first and fourth inequality:

0 ≤ (x − x)(y − y) = xy − xy − yx + xy ,

0 ≤ (x − x)(ȳ − y) = xȳ − xy − xȳ + xy .

147

Back to Bilinearities: McCormick Inequalities

148

4. Nonconvex MINLP: Overview

4. Nonconvex MINLP

4.1 Generic Relaxation Strategies

4.2 Spatial Branch-and-Bound

4.3 Bound Tightening

149

Spatial Branch-and-Bound for Nonconvex MINLP

. . . first a remainder on the linear case . . .

150

Branch-and-Bound for (Binary) MILPs

u ← +∞ and Q ← {(∅, ∅)}.
while Q 6= ∅ do

Choose (Z ,O) ∈ Q and set Q ← Q \ {(Z ,O)}.
Solve the Problem (3) with Z and O.

if (3) with Z and O is infeasible then

Continue.

end if

Let x̄ be the optimal solution of Problem (3).

if c>x̄ ≥ u then

Continue.

end if

if x̄ is integer-feasible then

Set x∗ ← x̄ , u ← c>x∗, and continue.

end if

Choose i with x̄i /∈ {0, 1}.
Set Q ← Q ∪ {(Z ∪ {i},O), (Z ,O ∪ {i})}.

end while

if u < +∞ then

return optimal solution x∗.

else

return “The problem is infeasible.”

end if
151

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

152

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = ∞

LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

152

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = ∞ LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

152

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = 10 LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

152

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = 10 LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

152

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = 6 LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

152

Branch-and-Bound for (Binary) MILPs

min f (x) = c>x s.t. Ax = b, x ≥ 0, x = (y , z), y ∈ Rm, z ∈ {0, 1}k

best integer-feasible solution: u = 6 LP 1 LP relaxation, zi fractional

LP 2zj fractional LP 3 integer feasible, u = 10

LP 4zk fractional LP 5 zl fractional, u = 12

LP 6zl fractional LP 7 integer feasible, u = 6

LP 8infeasible LP 9 integer feasible, u = 8

zi = 0 zi = 1

zj = 0 zj = 1

zk = 0 zk = 1

zl = 0 zl = 1

152

Branch-and-Bound for Nonconvex MINLP

The original MINLP

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

xi ∈ Z, i ∈ I

Subproblems (= nodes of the branch-and-bound tree) are specified

by additionally imposed bounds

Required (as before):

1. procedure to compute lower bounds on the optimal objective function

value of the subproblem

2. procedure for partitioning the feasible set of a subproblem

153

The Subproblem

The original MINLP plus additional bounds

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

li ≤ xi ≤ ui , i = 1, . . . , n

xi ∈ Z, i ∈ I

(MINLP(l , u))

Goals

• Obtain a lower bound of the optimal value of f (x)

• Solve a convex relaxation or (even) a polyhedral relaxation

154

The Subproblem

The original MINLP plus additional bounds

min
x∈Rn

f (x)

s.t. c(x) ≤ 0

x ∈ X

li ≤ xi ≤ ui , i = 1, . . . , n

xi ∈ Z, i ∈ I

(MINLP(l , u))

Goals

• Obtain a lower bound of the optimal value of f (x)

• Solve a convex relaxation or (even) a polyhedral relaxation

154

Polyhedral Relaxation of the Subproblem

Consider the polyhedral (and thus convex) relaxation

min
x∈Rn+q

xn+q

s.t. Bkx ≥ dk , k = n + 1, n + 2, . . . , n + q

x ∈ X

li ≤ xi ≤ ui , i = 1, . . . , n + q

(LP(l , u))

of MINLP(l , u) and let x̂ be an optimal solution.

155

After Solving the Polyhedral Relaxation of the Subproblem

Two Situations

1. x̂ is feasible for the MINLP(l , u)

• Thus, x̂ is also feasible for the original MINLP

• The subproblem can be eliminated (i.e., the node can be pruned)

2. x̂ is infeasible for the MINLP(l , u)

(a) There is an index i ∈ I with xi /∈ Z (i.e., the point is not integer feasible)

→ Branching on integer variables (as usual): Create new subproblems

MINLP(l−, u−) and MINLP(l+, u+) by imposing the additional constraints

xi ≤ bx̂ic and dx̂ie ≤ xi , respectively

(b) There is an index k ∈ {n + 1, n + 2, . . . , n + q} with x̂k 6= θk (x̂)

→ Branching on a continuous variable (spatial branching)

156

After Solving the Polyhedral Relaxation of the Subproblem

Two Situations

1. x̂ is feasible for the MINLP(l , u)

• Thus, x̂ is also feasible for the original MINLP

• The subproblem can be eliminated (i.e., the node can be pruned)

2. x̂ is infeasible for the MINLP(l , u)

(a) There is an index i ∈ I with xi /∈ Z (i.e., the point is not integer feasible)

→ Branching on integer variables (as usual): Create new subproblems

MINLP(l−, u−) and MINLP(l+, u+) by imposing the additional constraints

xi ≤ bx̂ic and dx̂ie ≤ xi , respectively

(b) There is an index k ∈ {n + 1, n + 2, . . . , n + q} with x̂k 6= θk (x̂)

→ Branching on a continuous variable (spatial branching)

156

After Solving the Polyhedral Relaxation of the Subproblem

Two Situations

1. x̂ is feasible for the MINLP(l , u)

• Thus, x̂ is also feasible for the original MINLP

• The subproblem can be eliminated (i.e., the node can be pruned)

2. x̂ is infeasible for the MINLP(l , u)
(a) There is an index i ∈ I with xi /∈ Z (i.e., the point is not integer feasible)

→ Branching on integer variables (as usual): Create new subproblems

MINLP(l−, u−) and MINLP(l+, u+) by imposing the additional constraints

xi ≤ bx̂ic and dx̂ie ≤ xi , respectively

(b) There is an index k ∈ {n + 1, n + 2, . . . , n + q} with x̂k 6= θk (x̂)

→ Branching on a continuous variable (spatial branching)

156

After Solving the Polyhedral Relaxation of the Subproblem

Two Situations

1. x̂ is feasible for the MINLP(l , u)

• Thus, x̂ is also feasible for the original MINLP

• The subproblem can be eliminated (i.e., the node can be pruned)

2. x̂ is infeasible for the MINLP(l , u)
(a) There is an index i ∈ I with xi /∈ Z (i.e., the point is not integer feasible)

→ Branching on integer variables (as usual): Create new subproblems

MINLP(l−, u−) and MINLP(l+, u+) by imposing the additional constraints

xi ≤ bx̂ic and dx̂ie ≤ xi , respectively

(b) There is an index k ∈ {n + 1, n + 2, . . . , n + q} with x̂k 6= θk (x̂)

→ Branching on a continuous variable (spatial branching)

156

Spatial Branching

• Suppose xi is one of the arguments of θk

• Branching example:

xi ≤ x̂i ∨ x̂i ≤ xi

• Note: the feasible sets of the two new subproblems have non-empty
intersection

• This is different to branching on integer variables

Further Difference

For

• purely integer nonconvex MINLPs and

• convex MINLPs

only branching on integer variables is required.

In These Cases:

Finite bounds on integers variables ensures finite termination of the algorithm

157

Spatial Branching

• Suppose xi is one of the arguments of θk

• Branching example:

xi ≤ x̂i ∨ x̂i ≤ xi

• Note: the feasible sets of the two new subproblems have non-empty
intersection

• This is different to branching on integer variables

Further Difference

For

• purely integer nonconvex MINLPs and

• convex MINLPs

only branching on integer variables is required.

In These Cases:

Finite bounds on integers variables ensures finite termination of the algorithm

157

Spatial Branching

• Suppose xi is one of the arguments of θk

• Branching example:

xi ≤ x̂i ∨ x̂i ≤ xi

• Note: the feasible sets of the two new subproblems have non-empty
intersection

• This is different to branching on integer variables

Further Difference

For

• purely integer nonconvex MINLPs and

• convex MINLPs

only branching on integer variables is required.

In These Cases:

Finite bounds on integers variables ensures finite termination of the algorithm

157

Bounding Operations

Let

Ω(l , u) = {x ∈ [l , u] : c(x) ≤ 0, x ∈ X , xi ∈ Z for all i ∈ I}

be the feasible set of MINLP(l , u).

← !

158

Bounding Operations

Let

Ω(l , u) = {x ∈ [l , u] : c(x) ≤ 0, x ∈ X , xi ∈ Z for all i ∈ I}

be the feasible set of MINLP(l , u).

← !

158

Bounding Operations

Definition

A bounding operation yields

1. two subproblems

MINLP(l−, u−), MINLP(l+, u+)

by applying a branching rule and

2. lower bounds

λΩ(l−,u−), λΩ(l+,u+)

as well as upper bounds

µΩ(l−,u−), µΩ(l+,u+)

for the new subproblems

159

Consistent Bounding Operations

Definition

A bounding operation is called consistent if, at every step, the subsets

Ω(l−, u−), Ω(l+, u+)

are either pruned or can be further refined in such a way that, for any finite

sequence (Ωh)h resulting from applying bounding operations, one can

guarantee that

lim
h→∞

µΩh − λΩh = 0

holds.

160

Finite Consistence and Finite Termination

Definition

In addition, a bounding operation is called finitely consistent if any

sequence (Ωh)h of successively refined partitions of Ω is finite.

Theorem (McCormick 1976, Horst & Tuy 1993)

If the bounding operation in the branch-and-bound algorithm is finitely

consistent, then the algorithm terminates after a finite number of steps.

161

Finite Consistence and Finite Termination

Definition

In addition, a bounding operation is called finitely consistent if any

sequence (Ωh)h of successively refined partitions of Ω is finite.

Theorem (McCormick 1976, Horst & Tuy 1993)

If the bounding operation in the branch-and-bound algorithm is finitely

consistent, then the algorithm terminates after a finite number of steps.

161

How to do spatial branching?

• Branching means partitioning the feasible set of subproblem MINLP(l , u)

into h ≥ 2 feasible sets of the subproblems MINLP(l (1), u(1)), . . . ,

MINLP(l (h), u(h))

• The lower bounds λΩ(l(1),u(1)), λΩ(l(2),u(2)), . . . , λΩ(l(h),u(h)) should be no

smaller than the lower bound for MINLP(l , u).

• For the ease of presentation: two new subproblems MINLP(l−, u−) and

MINLP(l+, u+) are created

• Most implementations use variable branching:

xi ≤ b ∨ xi ≥ b

• But how?

• The performance of the overall method strongly depends

on the choice of i and b

162

How to do spatial branching?

• Branching means partitioning the feasible set of subproblem MINLP(l , u)

into h ≥ 2 feasible sets of the subproblems MINLP(l (1), u(1)), . . . ,

MINLP(l (h), u(h))

• The lower bounds λΩ(l(1),u(1)), λΩ(l(2),u(2)), . . . , λΩ(l(h),u(h)) should be no

smaller than the lower bound for MINLP(l , u).

• For the ease of presentation: two new subproblems MINLP(l−, u−) and

MINLP(l+, u+) are created

• Most implementations use variable branching:

xi ≤ b ∨ xi ≥ b

• But how?

• The performance of the overall method strongly depends

on the choice of i and b

162

How to do spatial branching?

• Branching means partitioning the feasible set of subproblem MINLP(l , u)

into h ≥ 2 feasible sets of the subproblems MINLP(l (1), u(1)), . . . ,

MINLP(l (h), u(h))

• The lower bounds λΩ(l(1),u(1)), λΩ(l(2),u(2)), . . . , λΩ(l(h),u(h)) should be no

smaller than the lower bound for MINLP(l , u).

• For the ease of presentation: two new subproblems MINLP(l−, u−) and

MINLP(l+, u+) are created

• Most implementations use variable branching:

xi ≤ b ∨ xi ≥ b

• But how?

• The performance of the overall method strongly depends

on the choice of i and b

162

How to do spatial branching?

• A fractional integer variable is an obvious candidate for branching

• Suppose that all integer variables are already integer-valued so that we

“only” need to branch on continuous variables in the following

• Thus, branching is done because of a variable xk with x̂k 6= θk(x̂)

Nice-to-haves

An ideal choice of i should

• increase the lower bounds λΩ(l−,u−) and λΩ(l+,u+),

• reduce the feasible sets Ω(l−, u−) and Ω(l+, u+),

• . . .

163

How to do spatial branching?

Let x̂ be a solution of a relaxation of MINLP(l , u).

A continuous variable xi is a branching candidate if

• it is not fixed (i.e., its lower and upper bound do not coincide)

• it is an argument of a function θk with x̂k 6= θk(x̂)

Example

If xk = θk(x) = xixj , x̂k 6= x̂i x̂j , and li < ui , then xi is a branching candidate.

After branching, the two generated subproblems both will have a lower bound

no smaller than the one of their ancestor node since branching leads to tighter

relaxations.

164

How to do spatial branching?

Let x̂ be a solution of a relaxation of MINLP(l , u).

A continuous variable xi is a branching candidate if

• it is not fixed (i.e., its lower and upper bound do not coincide)

• it is an argument of a function θk with x̂k 6= θk(x̂)

Example

If xk = θk(x) = xixj , x̂k 6= x̂i x̂j , and li < ui , then xi is a branching candidate.

After branching, the two generated subproblems both will have a lower bound

no smaller than the one of their ancestor node since branching leads to tighter

relaxations.

164

How to do spatial branching?

Let x̂ be a solution of a relaxation of MINLP(l , u).

A continuous variable xi is a branching candidate if

• it is not fixed (i.e., its lower and upper bound do not coincide)

• it is an argument of a function θk with x̂k 6= θk(x̂)

Example

If xk = θk(x) = xixj , x̂k 6= x̂i x̂j , and li < ui , then xi is a branching candidate.

After branching, the two generated subproblems both will have a lower bound

no smaller than the one of their ancestor node since branching leads to tighter

relaxations.

164

Tightened Polyhedral Relaxations after Branching

pictures taken from Belotti et al. (2013)

165

Choosing the Branching Point

• The choice of the branching point is crucial

• The degree of freedom differs from branch-and-bound
for mixed-integer linear optimization

• This means, the branching point may differ from x̂i

• The branching rule should ensure that x̂ is infeasible for both
MINLP(l−, u−) and MINLP(l+, u+)

• Thus, xi ≤ x̂i ∨ xi ≥ x̂i will not suffice in general

166

4. Nonconvex MINLP: Overview

4. Nonconvex MINLP

4.1 Generic Relaxation Strategies

4.2 Spatial Branch-and-Bound

4.3 Bound Tightening

167

Bound Tightening

• The performance of nonconvex MINLP solvers crucially depends

on the tightness of the convex relaxations

• The tightness of the convex relaxations strongly depends

on the variable bounds

• MINLP solvers spend a lot of effort in bound tightening

168

Bound Tightening

Let

Ω = {x ∈ [l , u] : c(x) ≤ 0, x ∈ X , xi ∈ Z for i ∈ I}

be the feasible set and let x̂ be a feasible point with objective function value ẑ .

We could solve the 2n problems

l ′i = min {xi : x ∈ Ω, f (x) ≤ ẑ}

and

u′i = max {xi : x ∈ Ω, f (x) ≤ ẑ}

Problem

These 2n problems can be as hard as the original problem!

169

Bound Tightening

Let

Ω = {x ∈ [l , u] : c(x) ≤ 0, x ∈ X , xi ∈ Z for i ∈ I}

be the feasible set and let x̂ be a feasible point with objective function value ẑ .

We could solve the 2n problems

l ′i = min {xi : x ∈ Ω, f (x) ≤ ẑ}

and

u′i = max {xi : x ∈ Ω, f (x) ≤ ẑ}

Problem

These 2n problems can be as hard as the original problem!

169

Bound Tightening

Let

Ω = {x ∈ [l , u] : c(x) ≤ 0, x ∈ X , xi ∈ Z for i ∈ I}

be the feasible set and let x̂ be a feasible point with objective function value ẑ .

We could solve the 2n problems

l ′i = min {xi : x ∈ Ω, f (x) ≤ ẑ}

and

u′i = max {xi : x ∈ Ω, f (x) ≤ ẑ}

Problem

These 2n problems can be as hard as the original problem!

169

Feasibility-Based Bound Tightening (FBBT)

Idea

Infer a tighter bound on a variable xi because a bound on another variable xj

has changed

Example

Consider xj = x3
i and xi ∈ [li , ui].

Then, bounds on xj can be tightened to [lj , uj] ∩ [l3
i , u

3
i].

170

Feasibility-Based Bound Tightening (FBBT)

Idea

Infer a tighter bound on a variable xi because a bound on another variable xj

has changed

Example

Consider xj = x3
i and xi ∈ [li , ui].

Then, bounds on xj can be tightened to [lj , uj] ∩ [l3
i , u

3
i].

170

Feasibility-Based Bound Tightening (FBBT)

Affine-Linear Functions

Consider the constraint

xk = ao +
n∑

j=1

ajxj with k > n.

Define

J+ = {j ∈ {1, . . . , n} : aj > 0} , J− = {j ∈ {1, . . . , n} : aj < 0} .

Then, valid bounds for xk are given by

a0 +
∑
j∈J−

ajuj +
∑
j∈J+

aj lj ≤ xk ≤ a0 +
∑
j∈J−

aj lj +
∑
j∈J+

ajuj

These bounds can then be used to derive tighter bounds for xj , j = 1, . . . , n.

171

Feasibility-Based Bound Tightening (FBBT)

Affine-Linear Functions

Consider the constraint

xk = ao +
n∑

j=1

ajxj with k > n.

Define

J+ = {j ∈ {1, . . . , n} : aj > 0} , J− = {j ∈ {1, . . . , n} : aj < 0} .

Then, valid bounds for xk are given by

a0 +
∑
j∈J−

ajuj +
∑
j∈J+

aj lj ≤ xk ≤ a0 +
∑
j∈J−

aj lj +
∑
j∈J+

ajuj

These bounds can then be used to derive tighter bounds for xj , j = 1, . . . , n.

171

Feasibility-Based Bound Tightening (FBBT)

Affine-Linear Functions

Consider the constraint

xk = ao +
n∑

j=1

ajxj with k > n.

Define

J+ = {j ∈ {1, . . . , n} : aj > 0} , J− = {j ∈ {1, . . . , n} : aj < 0} .

Then, valid bounds for xk are given by

a0 +
∑
j∈J−

ajuj +
∑
j∈J+

aj lj ≤ xk ≤ a0 +
∑
j∈J−

aj lj +
∑
j∈J+

ajuj

These bounds can then be used to derive tighter bounds for xj , j = 1, . . . , n.

171

Feasibility-Based Bound Tightening (FBBT)

• For nonlinear problems we can apply bound propagation

by using the corresponding DAG

• Leads to an iterative procedure that is/can be continued

as long as variable bounds change

• Does not need to converge

172

Optimality-Based Bound Tightening (OBBT)

The problems

l ′i = min {xi : x ∈ Ω, f (x) ≤ ẑ}

and

u′i = max {xi : x ∈ Ω, f (x) ≤ ẑ}

are usually to hard to be solved for bound tightening.

• In practice, one often uses polyhedral relaxations

for the feasible sets instead.

• This leads to valid bounds as well . . .

• . . . but still is expensive.

173

Optimality-Based Bound Tightening (OBBT)

The problems

l ′i = min {xi : x ∈ Ω, f (x) ≤ ẑ}

and

u′i = max {xi : x ∈ Ω, f (x) ≤ ẑ}

are usually to hard to be solved for bound tightening.

• In practice, one often uses polyhedral relaxations

for the feasible sets instead.

• This leads to valid bounds as well . . .

• . . . but still is expensive.

173

5. Modeling Languages: Overview

5. Modeling Languages

5.1 Using Solver Interfaces Directly

5.2 Pyomo

174

Modeling Languages

• Modeling languages allow to state optimization problems

• They provide interfaces to solvers that solve the stated problem

The Two Classics

• AMPL: A Mathematical Programming Language

(http://www.ampl.com)

• GAMS: General Algebraic Modeling System

(https://www.gams.com)

175

http://www.ampl.com
https://www.gams.com

Modeling Languages

• Modeling languages allow to state optimization problems

• They provide interfaces to solvers that solve the stated problem

The Two Classics

• AMPL: A Mathematical Programming Language

(http://www.ampl.com)

• GAMS: General Algebraic Modeling System

(https://www.gams.com)

175

http://www.ampl.com
https://www.gams.com

5. Modeling Languages: Overview

5. Modeling Languages

5.1 Using Solver Interfaces Directly

5.2 Pyomo

176

Example: Gurobi via Python

Code Example

The Knapsack problem coded in Python and solved with Gurobi

177

5. Modeling Languages: Overview

5. Modeling Languages

5.1 Using Solver Interfaces Directly

5.2 Pyomo

178

Introduction

“Pyomo is a Python package that supports the formulation and analysis of

mathematical models for complex optimization applications. This capability is

commonly associated with commercially available algebraic modeling languages

(AMLs) such as AMPL, AIMMS, and GAMS.”

179

Installation and Usage

If you are using Anaconda:

• conda install -c conda-forge pyomo

• conda install -c conda-forge ipopt coincbc glpk

If you are not using Anaconda:

• pip3 install pyomo

Usage:

• import pyomo.environ as *

• from pyomo.opt import SolverFactory

180

Modeling Components

min
x

f0(x)

s.t. fi (x) ≤ bi , i ∈ I .

What do we need?

1. Model

2. Sets

3. Parameters

4. Variables

5. Objective

6. Constraints

7. Interaction with solvers

181

Concrete Model vs. Abstract Model

Abstract Model

min
x

n∑
j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi , i ∈ I

xj ≥ 0, j ∈ J

Concrete Model

min
x

2x1 + 3x2

s.t. 3x1 + 4x2 ≥ 1

x1, x2 ≥ 0

m = AbstractModel() m = ConcreteModel()

182

Sets

Initialization:

m.I = Set()

Useful arguments:

• dimen: Dimension of the members of the set.

• initialize: An iterable containing the initial members of the set, or function

that returns an iterable of the initial members the set.

Example:

m.I = Set(dimen=2,initialize=[(1,1),(1,2)])

Operations:

• m.I = m.A | m.D # union

• m.J = m.A & m.D # intersection

• m.K = m.A - m.D # difference

• m.L = m.A ^ m.D # exclusive-or

183

Parameters

Initialization:

m.A = Set()

m.B = Set()

m.P = Param(m.A, m.B)

Useful arguments:

• default: The default value if no other specification is available.

Example:

m.S = Param(m.A, m.A, default=0)

184

Variables

Initialization:

m.A = Set()

m.B = Set()

m.x = Var(m.A, m.B)

Useful arguments:

• bounds: A function (or Python object) that gives a (lower, upper) bound

pair for the variable

• domain: A set that is a super-set of the values the variable can take on.

Example:

m.x = Var(m.A, domain=PositiveIntegers, bounds=(0,6))

185

Objective and Constraints

Initialization of the Objective:

def ObjRule(m):

return sum(m.x[a] for a in m.A) + m.y

m.Obj = Objective(rule=ObjRule, sense=maximize)

Initialization of a typical constraint:

def Cons1 rule(m, a):

return m.P[a,a]*m.x[a] <= a

m.Cons1 = Constraint(m.A, rule=Cons1 rule)

186

Instantiate models using dictionaries

Example:

m.I = Set()

m.p = Param()

m.q = Param(m.I)

m.r = Param(m.I, m.I, default=0)

data = {None: {
’I’: {None: [1, 2, 3]},
’p’: {None: 100},
’q’: {1:10, 2:20, 3:30},
’r’: {(1,1):110, (1,2):120, (2,3):230}}}
i = m.create instance(data)

187

Solving and interaction with solvers

Example:

i = m.create instance(data)

opt = SolverFactory(’ipopt’)

opt.solve(i)

Useful arguments of the solve method:

• tee: Boolean argument, which controls if the solver output is printed.

• warmstart: Boolean argument, which controls if the solver is warm started

using the values given in the variables.

• timelimit: Time in seconds after which the solver is told to stop

computing and to return the best solution found.

188

Using Pyomo with GAMS

Pyomo instance → GAMS → Solver → GAMS → Pyomo Instance

Example:

i = m.create instance(data)

opt = SolverFactory(’gams’)

opt.solve(i)

Useful arguments of the solve method:

• tee: Boolean argument, which controls if the solver output is printed.

• solver: Solver used for the computation.

• warmstart: Boolean argument, which controls if the solver is warm started

using the values given in the variables.

• add options: List of additional lines to write directly into model file before

the solve statement.

• mtype: Model type.

189

Warmstarting and Retrieving Variable Values

Example:

m.a = Var()

i = m.create instance(data)

i.a.value = 2

opt = SolverFactory(’gams’)

opt.solve(i, warmstart=True)

value a after computation = i.a.value

190

6. Solvers: Overview

6. Solvers

191

The MINLP Tree iiiii
:

ö

192

Solvers for Nonconvex MINLP

• ANTIGONE

• BARON

• Couenne (open-source)

• LINDOGlobal

• SCIP (open-source)

193

Solvers for Convex MINLP

• α-ECP

• Bonmin (open-source)

• DICOPT

• FilMINT

• KNITRO

• MINLP-BB

• MINOTAUR (open-source)

• SBB

194

Solvers for MIQP

min
x∈Rn

x>Qx + c>x s.t. Ax = b, x ≥ 0

Convex MIQP

• CPLEX

• GUROBI

• MOSEK

• XPRESS

Nonconvex MIQP

• GLOMIQO

195

The NEOS Server

http://www.neos-server.org/neos/solvers/index.html

196

http://www.neos-server.org/neos/solvers/index.html

7. What Else?: Overview

7. What Else?

197

Problem Classes

Mixed-Integer Quadratic Problems (MIQPs)

Minimization of quadratic objective over a mixed-integer polyhedral feasible set

Mixed-Integer Second-Order Cone Problems (MISOCPs)

Includes constraints of the form

‖Ax + b‖2 − p>x + q ≤ 0

Mixed-Integer Polynomial Problems (MIPPs)

Objective function and constraints may be general polynomials

198

Problem Classes

Mixed-Integer Quadratic Problems (MIQPs)

Minimization of quadratic objective over a mixed-integer polyhedral feasible set

Mixed-Integer Second-Order Cone Problems (MISOCPs)

Includes constraints of the form

‖Ax + b‖2 − p>x + q ≤ 0

Mixed-Integer Polynomial Problems (MIPPs)

Objective function and constraints may be general polynomials

198

Problem Classes

Mixed-Integer Quadratic Problems (MIQPs)

Minimization of quadratic objective over a mixed-integer polyhedral feasible set

Mixed-Integer Second-Order Cone Problems (MISOCPs)

Includes constraints of the form

‖Ax + b‖2 − p>x + q ≤ 0

Mixed-Integer Polynomial Problems (MIPPs)

Objective function and constraints may be general polynomials

198

Algorithms

• Generalized Benders Decomposition (GBD)

• Extended Cutting Plane (ECP) method

• Presolve techniques

• Bound tightening

• Primal heuristics

199

Valid Inequalities

• Disjunctive/split cuts

• Perspective cuts

• Chvátal–Gomory rounding and mixed-integer rounding cuts

for conic MINLP

• Intersection cuts

• Reformulation-Linearization Technique (RLT)

• Cut generating functions

200

Problem Classes

Mixed-integer . . .

• optimal control problems

• stochastic problems

• robust problems

• problems with black-box functions

• bilevel problems (leader-follower games)

201

8. Literature: Overview

8. Literature

202

Literature i

Ioannis Androulakis, Costas Maranas, and C. Floudas. “αBB: A Global

Optimization Method for General Constrained Nonconvex Problems.” In:

Journal of Global Optimization 7 (Dec. 1995), pp. 337–363. doi:

10.1007/BF01099647.

Pietro Belotti et al. “Mixed-integer nonlinear optimization.” In: Acta

Numerica 22 (2013), pp. 1–131. doi: 10.1017/S0962492913000032.

Marco A. Duran and Ignacio E. Grossmann. “An outer-approximation

algorithm for a class of mixed-integer nonlinear programs.” In:

Mathematical Programming 36.3 (1986), pp. 307–339. doi:

10.1007/BF02592064.

Roger Fletcher and Sven Leyffer. “Solving mixed integer nonlinear

programs by outer approximation.” In: Mathematical Programming 66.1

(1994), pp. 327–349. issn: 1436-4646. doi: 10.1007/BF01581153.

William E. Hart et al. Pyomo-optimization modeling in python. Vol. 67.

Springer, 2017.

203

https://doi.org/10.1007/BF01099647
https://doi.org/10.1017/S0962492913000032
https://doi.org/10.1007/BF02592064
https://doi.org/10.1007/BF01581153

Literature ii

Reiner Horst and Hoang Tuy. Global Optimization. Springer, 1993. doi:

10.1007/978-3-662-02598-7.

James E. Kelley Jr. “The Cutting-Plane Method for Solving Convex

Programs.” In: Journal of the Society for Industrial and Applied

Mathematics 8.4 (1960), pp. 703–712. doi: 10.1137/0108053.

A. H. Land and A. G. Doig. “An Automatic Method of Solving Discrete

Programming Problems.” In: Econometrica 28.3 (1960), pp. 497–520.

issn: 00129682, 14680262. url:

http://www.jstor.org/stable/1910129.

Leo Liberti and Constantinos C. Pantelides. “Convex Envelopes of

Monomials of Odd Degree.” In: Journal of Global Optimization 25.2

(2003), pp. 157–168. issn: 1573-2916. doi: 10.1023/A:1021924706467.

204

https://doi.org/10.1007/978-3-662-02598-7
https://doi.org/10.1137/0108053
http://www.jstor.org/stable/1910129
https://doi.org/10.1023/A:1021924706467

Literature iii

Garth P. McCormick. “Computability of global solutions to factorable

nonconvex programs: Part I — Convex underestimating problems.” In:

Mathematical Programming 10.1 (1976), pp. 147–175. issn: 1436-4646.

doi: 10.1007/BF01580665.

Pyomo Read the Docs.

https://pyomo.readthedocs.io/en/stable/index.html. Accessed:

2019-01-06.

Ignacio Quesada and Ignacio E. Grossmann. “An LP/NLP based branch

and bound algorithm for convex MINLP optimization problems.” In:

Computers & Chemical Engineering 16.10-11 (1992), pp. 937–947. doi:

10.1016/0098-1354(92)80028-8.

205

https://doi.org/10.1007/BF01580665
https://pyomo.readthedocs.io/en/stable/index.html
https://doi.org/10.1016/0098-1354(92)80028-8

206

	Introduction
	Problem Classes
	Source Problems

	Algorithms for Convex MINLP
	Nonlinear Branch-and-Bound
	Kelley's Cutting-Plane Method
	Outer Approximation
	LP/NLP-Based Branch-and-Bound

	MILP-Based Reformulations
	Nonconvex MINLP
	Generic Relaxation Strategies
	Spatial Branch-and-Bound
	Bound Tightening

	Modeling Languages
	Using Solver Interfaces Directly
	Pyomo

	Solvers
	What Else?
	Literature

