Upcoming events

lamsade.ml@gmail.com
Thu 6th Jun
14 h 30 min
17 h 00 min
gr. de lecture Alex A. LDR
D102
Add event to google
Fri 7th Jun
10 h 00 min
12 h 00 min
Arrivée Tom Darmon (stagiaire Causalité)
Add event to google
Thu 13th Jun
14 h 30 min
17 h 00 min
gr. de lecture Celine
D102
Add event to google
Thu 20th Jun
13 h 30 min
16 h 00 min
gr. de lecture Mateus Graph Neural networks
D102
Add event to google
Thu 27th Jun
14 h 30 min
17 h 00 min
gr. de lecture Alex V. (reseau inversible)
D102
Add event to google
Fri 28th Jun
14 h 00 min
15 h 00 min
séminaire de Aurelien Bellet
room C131

Title: Privacy-Preserving Algorithms for Decentralized Collaborative Machine Learning

Abstract: With the advent of connected devices with computation and storage capabilities, it becomes possible to run machine learning on-device to provide personalized services. However, the currently dominant approach is to centralize data from all users on an external server for batch processing, sometimes without explicit consent from
users and with little oversight. This centralization poses important privacy issues in applications involving sensitive data such as speech, medical records or geolocation logs.
In this talk, I will discuss an alternative setting where many agents with local datasets collaborate to learn models by engaging in a fully decentralized peer-to-peer network. We introduce and analyze asynchronous algorithms that allow agents to improve upon their locally trained model by exchanging information with other agents that have similar objectives. I will then describe how to make such algorithms differentially private to avoid leaking information about the local datasets, and analyze the resulting privacy-utility trade-off. These results are illustrated by a set of numerical experiments.

Add event to google
Wed 3rd Jul
11 h 00 min
to Fri 5th Jul
20 h 00 min
CAP
Add event to google
Tue 3rd Sep
14 h 00 min
20 h 00 min
AI For Finance

2:00 pm - Damien GROMIER, CEO, Startup Inside - Founder, AI for Finance
Mathieu ROUX, Executive Director, Palais Brongniart
2:05 pm - Cédric VILLANI, Mathematician, Field Medal Recipient Member of Parliament -expected*
2:15 pm - Philippe AYMERICH, Deputy CEO, Société Générale
2:25 pm - Charles-Edouard BOUÉE, CEO, Roland Berger
2:35 pm - Aldrick ZAPPELLINI, Data Director, Crédit Agricole SA

2:45 pm - AI & Cybersecurity
David SADEK, VP Research, Technology and Innovation, Thales
Christopher MUFFAT, CEO, Dathena
Raphael DE CORMIS, VP Business Angel Cyber & AI, Thales

3:05 pm - Risk management use cases
Adina GRIGORIU, CEO, Active Asset Allocation
Sophie ELKRIEF, Chief Investment Offcer, MAIF
Anne LAMOTTE, “My Future“ ecosystem leader, Allianz
Emma SEZEN, Head of AI for Finance, Startup Inside

3:25 pm - Can AI accelerate local ecosystem’s growth?
Jean-Paul MAZOYER, General Manager, Crédit Agricole
Pyrénées Gascogne Carlo PURASSANTA, President of Microsoft France, Microsoft

3:45 pm - Customer experience with AI
Gregory RENARD, Co-Founder and Chief AI Offcer, xBrain

3:55 pm - Insurance use case
Jean-Laurent GRANIER, CEO, Generali France
4:05 pm - Magali NOE, CDO, CNP Assurances
Gilles MOYSE, CEO, reciTAL
4:20 pm - Ronan LE MOAL, CEO, Arkea

4:35 pm - AI in retail
Jean-Philippe DESBIOLLES, Vice President, IBM Watson Europe
4:35 pm - Jean-Philippe DESBIOLLES, Vice President, IBM Watson Europe
Arnaud CAUDOUX, Executive Vice President, BPI France
Claire CALMEJANE, Group CIO, Société Générale
Marie-Caroline BAERD, Executive VP AI Offer Leader, Capgemini Invent
Cyrille FOILLARD, CIO, RCI Bank and Services
Damien PERILLAT, Managing Director Western Europe, PayPal

5:10pm - From POC to industrialization of AI use cases
David GIBLAS, CDO, Malakoff Mederic Humanis
Pascal COGGIA, CEO UK, ARTEFACT
Lorenzo CROATI, VP and Co-Founder, Startup Inside

5:25 pm- Ethics by design in AI
Bibi NDIAYE, Innovation Director and Data Intelligence, BPCE
Jean-Marc BONNEFOUS, Co-Founder and Board member, Bonseyes
Frère Eric SALOBIR, President, Optic Technology
Alex PANICAN, Head of Partnerships and Ecosystem, The LHOFT

5:45pm - Cloud Migration
Eric HADDAD, Managing Director, Google Cloud
Arnaud MULLER, CEO & Founder, Saagie

6:05pm - Laurent MIGNON, CEO and Chairman of Group BPCE Management Board, BPCE

6:20 pm - Deploying trusted and industrialized AI
Philippe LIMANTOUR, CIO, EY

6:30pm - Renaud DUMORA, CEO, BNP Paribas Cardif

6:45pm - AI for green fnance
Emmanuel BACRY, Chief Scientifc Offcer, Health Data Hub
Grégory LABROUSSE, CEO & Founder, NamR
Bettina LAVILLE, Conseiller d'Etat

7:00 pm- Reinforcement learning for algorithmic trading
Charles-Albert LEHALLE, Head of Data Analytics and visiting
researcher, CFM & Imperial College London

7:10pm - Using deep learning to deliver value to banks and their customers
Imtiaz ADAM, CEO Founder & Director of DATA, Deep Learn Strategies

7:20pm - Fraud Detection
Yannick MARTEL, Co founder & Head of strategy, Bleckwen
Caroline LAMAUD, Chairman & Co-Founder, Anaxago
Remy SANONER, Senior Advisor, Startup Inside

7:30pm - AI & quantum computing
Paula FORTEZA, In charge of the report on the Quantum Technologies,

Member of the French Parliament,

7:40pm - Pierre-Alain RAPHAN, Member of the French Parliament
7:50pm - Agnès PANNIER-RUNACHER, Secretary of State to the Minister of
Economy and Finance -expected
Palais Brongniart, 16 Place de la Bourse, 75002 Paris, France
Show in Google map
Add event to google
Thu 19th Sep
15 h 00 min
17 h 00 min
groupe de lecture
Eric on neural hawkes process
papers.nips.cc/paper/7.....s.pdf
salle B 113
Show in Google map
Add event to google
Thu 26th Sep
10 h 30 min
11 h 30 min
Séminaire pole 3 - Fabian Castano
Nous allons avoir le plaisir d'écouter Fabian Castaño, Assistant Professor à Ponticia Universidad Javeriana, Colombie (invité du 23 au 27 septembre au LAMSADE par André Rossi), nous présenter ses travaux lors du prochain séminaire du pole 3.

Title : Using open access data to model a technician routing and scheduling problem in a congested urban setting
Date : September 26 - 10h30
Room : B208
Abstract:
This research aims at studying and improving the attended home services delivery in the city of Bogota (Colombia) by considering varying traffic patterns along the day. The goal is to improve routing decisions by adopting appropriate travel time functions between pairs of locations that are built upon the basis of freely available information gathered from collaborative consumption platforms. In first place, data collected from Uber Movement ® platform is used to identify the 1-hour consolidated traffic patterns based on coordinates and time of the day for all pairs of neighborhoods within the city. However, not all the information is available, as there might exist some journeys scarcely required by Uber users. To overcome this problem, a K-nearest neighbor regression is used to predict missing travel times when required and considering as an input the coordinates and the time of the day. Then, a piecewise linear function representing the travel time between pairs of locations is constructed by assuming that a breakpoint, or change on travel time behavior, takes place at the middle point of each one-hour time frame. A set of piecewise linear functions is then obtained after solving a system of linear equations. Following, two different approaches are used to generate solutions for a technician routing and scheduling problem with hard time windows. The first consists in an approximation Integer Programming model that represents the problems using an acyclic directed graph. The second consist in a Memetic Algorithm that minimizes the number of vehicles and vehicles field time. Preliminary results show that both approaches present similar results and can be used in practical applications.

Pour en savoir plus :
www.javerianacali.edu......stano
B208
Show in Google map
Add event to google
Thu 26th Sep
15 h 00 min
16 h 30 min
groupe de lecture miles
Eric on Harmonic Exponential Families on Manifolds tacocohen.files.wordpr.....f.pdf ICML 2015
Dauphine, B 113
Show in Google map
Add event to google
Thu 10th Oct
8 h 30 min
10 h 30 min
Séminaires ED
Manel Ayadi + Alexandre ARAUJO
Add event to google
Thu 10th Oct
11 h 00 min
12 h 00 min
Séminaire pole 3 - Ryoma Sato
Annonce à envoyer

Ryoma Sato - Kyoto University / RIKEN AIP

Title: Machine Learning for Combinatorial Graph Problems
Abstract:
Combinatorial graph problems are everywhere in computer science. For example, the scheduling problem can be formulated as the graph coloring problem, and the community detection problem can be formulated as the clique problem. Traditionally, algorithms for solving these problems have been invented by domain experts. Recently, machine learning methods have succeeded in many applications on graph data, such as community detection in social networks and automatic drug discovery. In this talk, I will describe the utilities and limitations of machine learning methods for solving combinatorial problems. First, I will introduce how to discover the worst-case instance of combinatorial problems using machine learning methods. This method helps us design efficient algorithms and understand the behavior of algorithms. Next, I will introduce the theoretical limitations of graph neural networks for solving combinatorial problems. Graph neural networks are the state-of-the-art machine learning method for graph data, and we expected that graph neural networks could learn efficient algorithms for solving combinatorial graph problems. However, we prove the graph neural networks cannot learn better algorithms than simple greedy algorithms in terms of approximation ratios.

This talk is based on these two papers:
* Ryoma Sato, Makoto Yamada, Hisashi Kashima, Learning to Sample Hard Instances of Graph Problems, ACML 2019.
* Ryoma Sato, Makoto Yamada, Hisashi Kashima, Approximation Ratios of Graph Neural Networks for Combinatorial Problems, NeurIPS 2019.
```
A309
Show in Google map
Add event to google
Thu 17th Oct
9 h 00 min
18 h 00 min
gdr ISIS - théorie du deep learning
Réunion du GdR ISIS

Titre : Théorie du deep learning
Dates : 2019-10-17
Lieu : Cnam Paris, amphithéâtre Paul Painlevé - 292, rue Saint Martin 75003 Paris.
Annonce :

Les réseaux de neurones profonds ont marqué l'entrée dans une nouvelle ère de l'intelligence artificielle, ponctuée par des succès opérationnels dans des domaines variés de la science des données comme la classification d'images, la reconnaissance vocale, ou le traitement de la langue naturelle.
En dépit de ces succès importants, les garanties théoriques associées à ces modèles décisionnels restent aujourd'hui toujours fragiles. L'objectif de cette journée est de faire un état des lieux sur la compréhension du fonctionnement des réseaux de neurones profonds, à travers un appel à contributions centré autour les thèmes (non exhaustifs) suivants :

Expressivité des modèles
Robustesse décisionnelle (incertitude, stabilité, attaques adversaires)
Optimisation et problèmes non convexes
Théorie de la généralisation
Lien entre modèles physiques et architectures de réseaux de neurones

Les outils utilisés pour aborder ces thématiques pourront venir de l'apprentissage statistique, mais des méthodes venant de disciplines connexes (décomposition tensorielles, analyse harmonique, méthodes géométriques / algébriques, physique statistique) sont fortement encouragées.

Orateurs inivtés :

Rémi Gribonval, LIP ENS Lyon,
Edouard Oyallon, LIP6 Paris, CNRS
Appel à contributions :
Les personnes souhaitant présenter leurs travaux à cette journée sont invitées à envoyer, par e-mail, leur proposition (titre et résumé de 1 page maximum) aux organisateurs avant le 26 septembre 2019.

Organisateurs :

Caroline Chaux-Moulin (valentin.emiya@lis-lab.fr), Université Aix-Marseille, I2M
Valentin Emiya (caroline.chaux@univ-amu.fr), Université Aix-Marseille, LIS
François Malgouyres (Francois.Malgouyres@math.univ-toulouse.fr), Institut de Mathématiques de Toulouse (IMT, CNRS UMR 5219)
Nicolas Thome (nicolas.thome@cnam.fr), Cnam Paris
Konstantin Usevich (konstantin.usevich@univ-lorraine.fr), Université de Lorraine, CRAN, Nancy
Lien : gdr-isis.fr/index.php?p.....n=405
Cnam Paris, amphithéâtre Paul Painlevé - 292, rue Saint Martin 75003 Paris
Show in Google map
Add event to google
Thu 17th Oct
13 h 00 min
15 h 00 min
Open Science: LAMSADE
Add event to google
Thu 17th Oct
15 h 00 min
16 h 30 min
SMILE seminar - topic: double descent phenomenon
Add event to google
Thu 7th Nov
10 h 00 min
12 h 00 min
Séminaires ED
Eric Benhamou + Raphael Pinot
Add event to google
Thu 21st Nov
10 h 45 min
11 h 45 min
Séminaire pole 3 - Arthur Mensch
Title : Functional smoothing for sparse and cost-informed prediction of output distributions.
Date : November 21 - 10h45
Room : B413
Abstract:
To facilitate training with gradients, supervised learning methods often
transform selecting a single element within a set of outputs to predicting a
probability distribution over this set (using e.g. the softmax operator). In
this talk, we will understand this transformation as a functional smoothing of
the output selection mechanism. Engineering this Nesterov smoothing yields new modelling perspective. First, we will observe that
selecting an output within a combinatorial set (e.g. a sequence of tags) is
often solved using dynamic programming algorithms. Smoothing turn DP algorithms
into differentiable operators, that may predict potentially sparse
probabilities over the output set. Secondly, we will design a smoothing that
takes into account a cost function defined on the output set. This approach
transforms the softmax operator into a cost-informed geometric softmax, that
has the further capabilities of predicting distributions over a continuous set.

Pour en savoir plus :
www.amensch.fr
B413
Show in Google map
Add event to google
Thu 28th Nov
10 h 45 min
11 h 45 min
Séminaire pole 3 - Nicolas Usunier
Title : Fair machine learning: optimal predictions under parity constraints
Date : November 28 - 10h45
Room : A303
Abstract:There is increasing attention given to the question of whether automated decision systems based on machine learning are unfair, or biased, with respect to protected characteristics such as gender or ethnicity. For classification problems, a common fairness criterion is demographic parity (DP), which states that if X% of the population belongs to one group, then X% of the individuals receiving a favorable outcome should belong to that group. In this talk, I will briefly motivate the main fairness criteria used in machine learning, and present our study on optimal predictors under parity constraints (DP, and equal opportunity (EO)) in a general setting including classification, regression and probability estimation. We give closed-form formula of Bayes-optimal predictors, which improves the understanding of the effects of parity constraints. Our results stress the predominant role of the rank of individuals within their protected group, already known in classification, in the problems of fair regression and probability estimation. We also show that under the DP (or EO) constraints, the optimal classifiers are obtained by thresholding the optimal estimator of posterior probability, as in the usual unconstrained case, whereas all previous results use group-dependent thresholds. As a by-product, we give analytical formula of optimal fair representations, learned with the intention to obfuscate the protected attribute while preserving the most relevant information. Our analysis stresses the difficulty of the unsupervised learning of such fair representations.
Joint work with Nicolas Carion, Moustapha Cisse and Yves Grandvalet

Short bio:
Nicolas Usunier is Research Scientist at Facebook AI Research since 2015. He was previously Associate professor at Université de Technologie de Compiègne (UTC), and Assistant professor at Université Paris VI. His research interests include machine learning theory, reinforcement learning and fairness in machine learning.
A303
Show in Google map
Add event to google
Thu 16th Jan
10 h 00 min
12 h 00 min
Seminaire ED
Amin Farvardin +
Add event to google
Thu 23rd Jan
11 h 00 min
12 h 00 min
groupe de lecture MILES
Oratrice: virginie Do
P516

Inherent Trade-Offs in the Fair Determination of Risk Scores
arxiv.org/abs/1609.05807
P516
Show in Google map
Add event to google
Mon 27th Jan
15 h 30 min
16 h 30 min
GdT STAT-NUM
Notre collègue Zhenjie Ren nous parlera de
"Game on random environment and Mean-field Langevin system with application to GAN"
Add event to google
Thu 13th Feb
10 h 00 min
12 h 00 min
Séminaires ED
: Raja Trabelsi + Felippe Garrido
Add event to google
Thu 12th Mar
10 h 00 min
12 h 00 min
Séminaires ED
Hajer Ben Fekih + Ons Nefla
Add event to google
Thu 14th May
10 h 00 min
12 h 00 min
Séminaires ED
Geovani Rizk+ Beji Celine
Add event to google
Thu 18th Jun
10 h 00 min
12 h 00 min
Séminaires ED
Axel Faure Beaulieu +
Add event to google