lamsade.ml@gmail.com | ![]() |
Thu 31st Jan 14 h 30 min 16 h 00 min | Groupe de lecture | |
Sun 3rd Feb | KDD paper submission | |
Tue 5th Feb | GECCO paper submission | |
Thu 7th Feb 14 h 30 min 16 h 00 min | Groupe de lecture Laurent (sujet en description) Reseaux de neurones bayesiens | |
Fri 8th Feb 10 h 30 min 12 h 00 min | séminaire pole3 Oana Balalau. "On Capturing Structure and Semantics in Graphs and Text" salle C | |
Thu 14th Feb 14 h 30 min 16 h 30 min | Groupe de lecture (Rafael) Rafael présentera le papier "Renyi Differential Privacy" | |
Fri 15th Feb 10 h 30 min 11 h 30 min | séminaire pole3 Anna Korba. "A Structured Prediction Approach for Label Ranking" P303 | |
Sun 17th Feb | GSI2019 Call for Papers | |
Mon 25th Feb | ACML Paper Submission opened | |
Thu 28th Feb 14 h 30 min 17 h 00 min | gr. de lecture P506 | |
Mon 4th Mar | UAI abstract | |
Thu 7th Mar 10 h 00 min 12 h 00 min | Seminar "Graph-Convolutional Neural Networks", Jeu 7 Mar 10h00, 46 rue Barrault amphi Grenat (un étage en-dessous de l'entrée rue Barrault) Seminar "Graph-Convolutional Neural Networks" that will be held by Dr. Diego Valsesia (Politecnico di Torino, Italy) on the 7th of March at 10h00, Télécom Paristech, 46 rue Barrault (room to be announced). Please find below an abstract of the seminar and feel free to circulate this invitation to whoever may concern. Abstract: Convolutional neural networks (CNNs) have enjoyed great success in tasks such as image classification, object detection, etc thanks to weight sharing, invariances to geometric transformations and hierarchical decompositions induced by the convolution operations. However, many data types of interest such as interactions in social networks, 3D point clouds, biological data, etc. do not lie on regular grids like images do and are better represented by graphs. A graph signal has scalar or vector information on every node and edges describe relationships among nodes. Extending the notion of convolution to this kind of signals creates a new building block called graph convolution that can be used in neural networks to solve new problems. Graph-convolutional neural networks are a hot research topic and have been shown to be state-of-the-art for problems such as fake news detection, link prediction in networks, point cloud classification and generation that are badly suited for traditional convolution. Latest research is also showing that graph convolution can improve upon classic convolution even for more traditional problems such as image segmentation and denoising. This lecture will introduce concepts from graph signal processing to present the approaches to define graph-convolutional neural networks. It will then present their application to supervised, semi-supervised and unsupervised problems. | |
Thu 7th Mar 14 h 45 min 17 h 00 min | gr. de lecture C110 | |
Sat 9th Mar 12 h 00 min 13 h 00 min | UAI Paper | |
Wed 13th Mar 14 h 30 min 17 h 00 min | soutenance thèse - Aude Genevay (Ceremade) soutenance d'Aude Genevay la soutenance de la thèse intitulée « Régularisation entropique du transport optimal pour l’apprentissage statistique », effectuée sous la direction de Gabriel Peyré. Celle-ci aura lieu le mercredi 13 mars à 14h30 en salle des thèses (D520) à l’Université Paris Dauphine. D520 | |
Thu 14th Mar 14 h 45 min 17 h 00 min | gr. de lecture Laurent | |
Thu 21st Mar 14 h 45 min 17 h 00 min | gr. de lecture Eric DQN NB : il faudra aller chercher les clés à l'accueil avant le début du séminaire Les papiers qui seront abordés Sutton et al, "Policy Gradient Methods for Reinforcement Learning with Function Approximation" (1999), NIPS papers.nips.cc/paper/1.....n.pdf et les deux papiers de Deep Mind: Volodymyr et al, "Playing Atari with Deep Reinforcement Learning', (2013) arxiv.org/abs/1312.5602 Volodymyr et al, Human-level control through deep reinforcement learning, Nature, (2015) web.stanford.edu/class.....L.pdf A707 (Eric prendre la clef) | |
Fri 22nd Mar 10 h 15 min 11 h 15 min | séminaire pole 3 Frederic Koriche "Online combinatorial optimization with arithmetic circuits" Abstract: In online optimization, the goal is to iteratively choose solutions from a decision space, so as to minimize the average cost over time. As long as this decision space is described by combinatorial constraints, the problem is generally intractable. In this talk, we shall discuss about two ideas: (i) using the paradigm of compilation for encoding a set of combinatorial constraints into an arithmetic circuit, and (ii) providing efficient characterizations of existing online optimization algorithms, with a particular attention to Bregman projections in mirror descent techniques. We shall conclude with open questions about the extension of this framework to combinatorial semi-bandits and bandits, and the potential interest of using arithmetic circuits in structured prediction." www.cril.univ-artois.fr/~koriche/ C108 | |
Mon 25th Mar | Jacob Abernaty arrive au LAMSADE jusqu'au 20 avril | |
Mon 25th Mar 12 h 00 min 13 h 00 min | ENS-Data Science colloquium (by Béatrice Prunel and Gregory Chatonsky) - "Art and artificial imagination" ENS-Data Science colloquium in Salle Jaures - March 25th @ 12.00 by Béatrice Prunel and Gregory Chatonsky: "Art and artificial imagination" The seminar will take place at 12h00 in room Salle Jean Jaurès, 29 rue d’Ulm (sous-sol). The colloquium will be followed by an open buffet around which participants can meet and discuss. More information can be found on the web page of the seminar: data-ens.github.io/ These seminars and the buffet are being made possible through the support of the CFM-ENS Chair "Modèles et Sciences des Données". The organizers: Florent Krzakala, Stephane Mallat, Pascal Mamassian and Gabriel Peyré ——————— March 25th, 2019, 12h00-13h00, room Salle Jean Jaurès, 29 rue d’Ulm (sous-sol). Béatrice Prunel (ENS) and Gregory Chatonsky Title: Art and artificial imagination Abstract: Contemporary media are fascinated by the applications of neural networks in creation. They regularly highlight moments when artificial artistic productions have "deceived" humans and "replaced" artists. All this seems to confirm that AI would have conquered up to the last ramparts of humanity: interiority and creativity. The dialogue between an art historian, invested in the digital humanities, and an artist who is himself familiar with deep learning, invites us to change our perspective. A historical and materialistic approach makes it possible to better distinguish what is new in the apparent emergence of AI in the arts and to better grasp the implicit conception of art that develops there: the change of purpose of a new technique, which generates surprising results, is also a way of thwarting the assumptions of the contemporary economic system. It suggest criticism of it as much as it opens up new possibilities. Grégory Chatonsky est un artiste franco-canadien dont le travail pour sur Internet et l’imagination artificielle. Il a participé à de nombreuses expositions en France, au Canada et à l’étranger dont France Electronique à Toulouse, Terre/mer/signal au Rua Red de Dublin, Imprimer le monde en 2017 au Centre Pompidou, Capture : Submersion en 2016 à Arts Santa Mònica Barcelone, La condition post-photographique à Montréal, Walkers: Hollywood afterlives in art en 2015 au Museum of the Moving Image de New York, Telofossils en 2013 au Musée d’art contemporain de Taipei, Erreur d’impression en 2012 au Jeu de Paume. Il a été en résidence à Abou Dhabi (2017), en Amazonie à Taluen (2017), Colab à Auckland (2016), Hangar à Barcelone (2016), IMAL (2015), Villa Kujoyama (2014), CdA Enghein-les-Bains (2013), MOCA Taipei (2012), 3331 Arts Chiyoda (2012), Xiyitang, Shanghai, (2011), Les Inclassables à Montréal (2003), Abbaye royale de Fontevraud (2002). Il a reçu le prix Audi Talents en 2018 et est résident à la Cité Internationale des Arts de Paris en 2019-2020. Il a fondé en 1994 Incident.net, l’un des premiers collectifs de Netart en France. Il a été professeur-invité au Fresnoy (2004-2005), à l’UQAM (2007-2014), aété récipiendaire d’une chaire internationale de recherche à l’Université de Paris VIII (2015) et poursuit ses recherches à l’Ecole normale supérieure de Paris. Béatrice Joyeux-Prunel est maître de conférences HDR en histoire de l’art contemporain à l’Ecole normale supérieure de Paris. Elle travaille sur l’histoire des arts dans une perspective mondiale, transnationale et sociologique, tout en coordonnant à l’ENS l’enseignement de l’histoire de l’art contemporain et des humanités numériques. Spécialiste de la mondialisation culturelle, elle s’intéresse également à l’histoire culturelle et visuelle du pétrole, et à l’imaginaire des technologies numériques. Béatrice Joyeux-Prunel a fondé et dirige le projet ARTL@S. Elle coordonne avec Grégory Chatonsky le projet Postdigital. Parmi ses publications : Les avant-gardes artistiques – une histoire transnationale 1848-1918, Paris, Gallimard Folio histoire (inédit poche), 2016 ; volume 2 (1918-1945), paru en 2017 ; et volume 3 (1945-1970), à paraître en 2019. | |
Thu 28th Mar 14 h 45 min 17 h 00 min | gr. de lecture Eric A2C et A3C Talk about difference between Actor-Critic and Advantage Actor-Critic (A2C and A3C) A2C methods Peters et al, Natural Actor-Critic, (2005) homes.cs.washington.ed.....c.pdf Bhatnagar et al, Natural Actor–Critic Algorithms, (2009) hal.inria.fr/hal-00840470/document Grondman et al, A survey of actor-critic reinforcement learning: standard and natural policy gradients (2012) hal.archives-ouvertes......ument Volodymyr et al, Asynchronous Methods for Deep Reinforcement Learning, (2016), ICML proceedings.mlr.press/v48/mniha16.html lien google drive drive.google.com/open?.....sFDsT A707 (Eric prendre la clef) | |
Fri 29th Mar | ECML/PKDD 2019 Abstract | |
Mon 1st Apr 10 h 30 min 11 h 45 min | séminaire pole 3 Fabrice Rossi "classification des sommets d'un graphe dynamique" Abstract: Je m'intéresse dans cette présentation à des graphes dynamiques dans lesquels les sommets sont fixés et les arêtes, éventuellement multiples, portent une estampille temporelle de précision arbitraire. Ce modèle est bien adapté aux interactions datées entre acteurs, comme par exemple l'envoi de messages ou la citation d'articles. Pour obtenir une vision synthétique d'un tel graphe, il est naturel de chercher à regrouper les sommets dont les schémas d'interaction avec les autres sommets sont similaires, comme le font les modèles de type stochastic block model dans le cas statique. Les extensions classiques de ces modèles au cas temporel supposent qu'une résolution temporelle est fixée pour les estampilles, par exemple l'heure. Les interactions sont alors agrégées à ce niveau de résolution ce qui transforme le graphe dynamique en une série temporelle de graphes statiques. Je présente un modèle qui s'affranchit de cette limitation en déterminant de façon simultanée les groupes de sommets et une segmentation temporelle. La segmentation est obtenue en détectant des ruptures dans les schémas d'interaction. Cela revient à agréger le graphe dynamique de façon adaptative en une série temporelle de graphes qui correspondent chacun à une phase stationnaire du schéma d'interaction. Je présente une stratégie d'estimation du modèle génératif correspondant et je l'illustre sur des données réelles. Pour en savoir plus : apiacoa.org A711 | |
Thu 4th Apr 15 h 15 min 17 h 45 min | gr. de lecture Eric A2C et A3C Talk about difference between Actor-Critic and Advantage Actor-Critic (A2C and A3C) A2C methods Peters et al, Natural Actor-Critic, (2005) homes.cs.washington.ed.....c.pdf Bhatnagar et al, Natural Actor–Critic Algorithms, (2009) hal.inria.fr/hal-00840470/document Grondman et al, A survey of actor-critic reinforcement learning: standard and natural policy gradients (2012) hal.archives-ouvertes......ument Volodymyr et al, Asynchronous Methods for Deep Reinforcement Learning, (2016), ICML proceedings.mlr.press/v48/mniha16.html lien google drive drive.google.com/open?.....sFDsT P303 (Eric prendre la clef) | |
Fri 5th Apr | ECML/PKDD 2019 Paper | |
Tue 9th Apr 14 h 00 min 16 h 00 min | séminaire pole 3 NB : dejeuner avec Vincent puis séminaire Vincent Cohen-Addad ## Title : Hierarchical clustering: Objective functions and algorithms Date : Apris 9 - 14h00 Room : Salle C (2eme étage) Abstract : Hierarchical clustering is a recursive partitioning of a dataset into clusters at an increasingly finer granularity. Motivated by the fact that most work on hierarchical clustering was based on providing algorithms, rather than optimizing a specific objective, Dasgupta framed similarity-based hierarchical clustering as a combinatorial optimization problem, where a `good’ hierarchical clustering is one that minimizes some cost function. He showed that this cost function has certain desirable properties.We take an axiomatic approach to defining `good’ objective functions for both similarity and dissimilarity-based hierarchical clustering. We characterize a set of “admissible” objective functions (that includes Dasgupta’s one) that have the property that when the input admits a `natural’ hierarchical clustering, it has an optimal value. Equipped with a suitable objective function, we analyze the performance of practical algorithms, as well as develop better algorithms. For similarity-based hierarchical clustering, Dasgupta showed that the divisive sparsest-cut approach achieves an O(log^{3/2} n)-approximation. We give a refined analysis of the algorithm and show that it in fact achieves an O(\\sqrt{log n})-approx. (Charikar and Chatziafratis independently proved that it is a O(\\sqrt{log n})-approx.). This improves upon the LP-based O(logn)-approx. of Roy and Pokutta. For dissimilarity-based hierarchical clustering, we show that the classic average-linkage algorithm gives a factor 2 approx., and provide a simple and better algorithm that gives a factor 3/2 approx..Finally, we consider `beyond-worst-case’ scenario through a generalisation of the stochastic block model for hierarchical clustering. We show that Dasgupta’s cost function has desirable properties for these inputs and we provide a simple 1 + o(1)-approximation in this setting. Joint work with Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Pour en savoir plus : www.di.ens.fr/~vcohen/ ## Salle C (2 etage) | |
Wed 10th Apr | CAP Paper (initially April 1st modified to 10) | |
Thu 11th Apr 15 h 15 min 18 h 15 min | gr. de lecture ??? D102 | |
Mon 15th Apr | ACML Paper submission | |
Wed 17th Apr | FOGA 2019 (conf d'optim) Call of papers |