Exercise 01 [MatrixMultiplication]

For this exercise, a matrix is represented in the following way: (i, j, value) where " i " is the row number, " j " the column number and "value" the value of the matrix at the $\mathrm{i}^{\text {th }}$ row and j " column.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 7
\end{array}\right) \cdot\left(\begin{array}{ccc}
2 & 4 & 8 \\
1 & 5 & 10 \\
3 & 6 & 9
\end{array}\right)
$$

1 Create two RDDs to represent the following matrices.

2 Find the SQL query that allows you to compute matrix multiplication if you suppose that each matrix represents a table, i.e., Table A (column I, column J, column Value) represents matrix A, and Table B (column I, column J, column Value) represents matrix B.

3 Implement the SQL query you just designed in Spark and test out your implementation. Result should be:
$\left(\begin{array}{ccc}13 & 32 & 55 \\ 30 & 75 & 129\end{array}\right)$

4 To test out the scalability of your algorithm generate two random matrices: A of dimensions (1000000×3) and B of dimensions (3×3) and apply your Spark code once again. Do you think you can improve the performance of your Spark code? If so how?
Note: the two random matrices generatedmust have the same structure as above, i.e. (row number, column number, value).

Exercise 02 [Simple Moving Average (SMA)]

Suppose you have time series values $\mathrm{Y} 1, \mathrm{Y} 2, \ldots \mathrm{Yn}$. A value Yi is represented as such: (timestamp, value at given time). m is called the "window" of the Simple Moving Average we aim to compute, e.g.: 7 days.

For a given natural $\mathrm{m}>0$, this operation consists of mapping each Yi to Yi^{\prime}, where:

$$
Y i^{\prime}=\operatorname{avg}(Y(i-m)+Y(i-(m-1))+\ldots+Y(i))
$$

take $Y(i-m)$ as NULL if $Y(i-m)$ does not exist in the time series data Consider the following dataset:

Timestamp (i)	Value at timestamp (Y(i))
2018-03-10T $15: 27: 18+00: 00$	17.00
2018-03-11T12:27:18+00:00	13.00
2018-03-12T11:27:18+00:00	25.00
$2018-03-13 \mathrm{~T} 15: 27: 18+00: 00$	20.00
$2018-03-14 \mathrm{~T} 12: 27: 18+00: 00$	56.00
$2018-03-15 \mathrm{~T} 11: 27: 18+00: 00$	99.00
$2018-03-22 \mathrm{~T} 11: 27: 18+00: 00$	156.00
$2018-03-31 \mathrm{~T} 11: 27: 18+00: 00$	122.00
$2018-04-15 \mathrm{~T} 11: 27: 18+00: 00$	7000.00
$2018-04-16 \mathrm{~T} 11: 27: 18+00: 00$	9999.00

Given a window $m=7$ days, transform the dataset into an RDD, then design and implement the Spark algorithm that allows you to compute the simple moving average for each day of the dataset.

Note: Consider that the timestamps composing the dataset are not always sequential.

