
Spark Applications

December 2020, Lecture: FARVARDIN Amin.
Thanks to AISSAOUI Ahlam for her contribution

Exercise 01 [Matrix Multiplication]

For this exercise, a matrix is represented in the following way: (i, j, value) where “i” is the row
number, “j” the column number and “value” the value of the matrix at the ith row and jth
column.

1 Create two RDDs to represent the following matrices.

2 Find the SQL query that allows you to compute matrix multiplication if you suppose that each
matrix represents a table, i.e., Table A (column I, column J, column Value) represents matrix A, and
Table B (column I, column J, column Value) represents matrix B.

3 Implement the SQL query you just designed in Spark and test out your implementation. Result

should be:

4 To test out the scalability of your algorithm generate two random matrices:
A of dimensions (1 000 000 x 3) and B of dimensions (3 x 3) and apply your Spark code once again.
Do you think you can improve the performance of your Spark code? If so how?
Note: the two random matrices generated must have the same structure as above, i.e. (row
number, column number, value).

Spark Applications

December 2020, Lecture: FARVARDIN Amin.
Thanks to AISSAOUI Ahlam for her contribution

 Exercise 02 [Simple Moving Average (SMA)]

Suppose you have time series values Y1, Y2, … Yn. A value Yi is represented as such: (timestamp,
value at given time). m is called the “window” of the Simple Moving Average we aim to compute,
e.g.: 7 days.

For a given natural m>0, this operation consists of mapping each Yi to Yi’, where:

Yi’ = avg(Y(i-m) + Y(i-(m-1))+… +Y(i))

take Y(i-m) as NULL if Y(i-m) does not exist in the time series data Consider the following dataset:

Given a window m=7 days, transform the dataset into an RDD, then design and implement the
Spark algorithm that allows you to compute the simple moving average for each day of the
dataset.

Note: Consider that the timestamps composing the dataset are not always sequential.

Timestamp (i) Value at timestamp (Y(i))

2018-03-10T15:27:18+00:00 17.00

2018-03-11T12:27:18+00:00 13.00

2018-03-12T11:27:18+00:00 25.00

2018-03-13T15:27:18+00:00 20.00

2018-03-14T12:27:18+00:00 56.00

2018-03-15T11:27:18+00:00 99.00

2018-03-22T11:27:18+00:00 156.00

2018-03-31T11:27:18+00:00 122.00

2018-04-15T11:27:18+00:00 7000.00

2018-04-16T11:27:18+00:00 9999.00

