
 1

Mise à niveau en Java

Introduction and Basic Concepts
M1

Amin Farvardin
m.Farvardin@outlook.com

 2

Course Presentation

● 19 hours module

● Classes

● Tutorials

● Practical work

 3

Course objectives

● Introduce the object-oriented paradigm

● Consolidate the basics in object-oriented programming

● Become familiar with the Java language

 4

Generalities

● Little more than a programming language:

– Object oriented language
– Platform independent (via VM)
– Interpreted language and byte code
– Numerous libraries
– Strongly typed

● Any variable must be declared with a type
● The compiler checks that the uses of variables are compatible

with their type
● The types are on the one hand provided by the language, but

also by the definition of the classes

 5

Java Platform

● The Java compiler generate a .class
in byte code (intermediate language
independent of the platform)

● The byte code is interpreted by a
Java JVM interpreter.

 6

● Java source program = set of ".java" files

● Each “.java” file may contains:

– One or more class definitions (e.g., class A, class B, class HelloWorld, etc.)

– Packages (e.g., java.lang, java.util, java.io, etc.)

– Definition of functions

– Definition of the main program

General architecture of a Java program

 7

Types in Java

● Separation between primitive types and object types

● Primitive types handled by their value

– Boolean value: boolean (true or false)
– Signed integer numeric value: byte (8 bits), short (16 bits), int (32 bits), long (64 bits)
– Floating numeric value: float (32) bits), double (64 bits)
– Unicode character: char (16 bits)

● Object types handled by reference

– Present in the JDK API (Date, String, …)
– User Defined Classes

● When we declare an object variable, we are actually reserving memory space for the
reference. (Class is like a building blueprint and an Object is the building itself)

 8

Objects and Classes

● A class is an abstract type characterized by properties
common to a set of objects and allowing the creation of
objects having these properties.

● A class is made up of:

– Attributes: data representing the state of the object
– Methods: operations applicable to objects

● An object or a class instance has a behavior and state
that can only be changed by the actions of the behavior.

 9

Naming

● By convention:

– Class starts with a capital letter.
– A method, a field, a local variable start with a lowercase
– Variables with more than one part, from the second

part, start with a capital letter. (e.g., cityName)

 10

Already existing classes

● Java has a large class library. The bookstore consists of different packages and sub-
packages:

– Java.lang: basic types and functions
– Java.io.File: file management
– Java.io: input/output management
– Java.awt: elements of graphical interfaces
– Java.math: types and mathematical functions
– And many other packages

● How to use a package in a class:

 import java.lang.Integer;
● Full use of a package:

import java.lang.*;

Useful link: http://docs.oracle.com/javase/7/docs/api/overview-summary.html

 11

● To create an object from a class, we use the
new operator

 MyClass c1 = new MyClass();

● The new operator calls the class constructor.

● A constructor has the same
name as the class in which
it is defined.

● A constructor has no return
type (not even void)

Constructor

 12

Constructor Cont.

● Default constructor: constructor without arguments, initializes
the variables of the class to the default values

● Overloaded constructor: constructor with different signatures

Person() {}
OR
Person() {

age=25;
nationality= ‘french’;

}

Person(int age, char nationality) {
this.age=age;
this.nationality: nationality;

}

 13

Constructor Cont.

● If no constructor is created in the class, the java compiler
automatically creates a default constructor.

● If an overloaded constructor is created in the class, the default
constructor will no longer be created by the compiler.

● The java platform differentiates between the different constructors
declared within the same class based on the number of parameters
and their types.

● You cannot create two constructors with the same number and types
of parameters.

Person(int age) {
 this.age=age;
}
Person(int age) {
 his.age=age*2;
}

Compilation error

 14

Constructor Cont.

Person.java Application.java

public class Person{
public String firstName;
public String lastName;
public int age;

// Definition of a constructor
public Person(String fn, String ln, int a)
{

this.firstName = fn;
this.lastName = ln;
this.age=a;

}
}

public class Application
{

public static void main (String args[])
{

Person jean = new Person();
jean.setName(‘Jean’);

}
}

!! Compilation Error
Default constructor no longer exists

 15

Constructor Cont.

public class Shirt{
int id;
char color;
float price;
int quantity;
String description;

Shirt(){}

Shirt (int id){
this.id = id;

}

Shirt (int id, char color){
this.id = id;
this.color = color;

}
}

Which constructor will choose Java
when from the compilation?

1) Shirt sh1 = new Shirt();
2) Shirt sh1 = new Shirt(122);
3) Shirt sh1 = new Shirt(122, ’B’);

Shirt.java

 16

Visibility (4 visibility modifiers for members of a class)

● public: Visible to everyone

● private: Visible only in the classroom

● protected: Visible by inherited classes and that of the same package

● Without modifier: Visible by inherited classes and that of the same
package

public private protected No
modifier

In the same class Yes Yes Yes Yes

In a class of the same package Yes No Yes Yes

In a subclass of another package Yes No Yes No

In any class of another package Yes No No No

 17

Instance variables and class variables

Instance variables:
● Each instance of a class has its own variable values. These variables define

the characteristics of the object.

Access: <Object name>.<Attribute name> => An attribute value of the corresponding object
Example: System.out.println(p1.firstname) => jean

public class Person{
public String firstname;
public String lastname;
public int age;

public Person(String fn, String ln, int a)
{

this.firstname=fn;
this.lastname=ln;
this.age=a;

}
}

● Person p1 = new Person(‘jean’, ‘louis’,27);
● Person p2 = new Person(‘steve’, ‘madden’,60);

 18

Instance variables and class variables

Class variables
– The value of a class variable is common to all instances of the class, that is, the class variable

does not belong to a particular instance.

● Statement with the keyword static

● Mandatory initialization

● Person p1 = new Person(‘jean’, ‘louis’,27);
● Person p2 = new Person(‘steve’, ‘madden’,60);

nbrPersons
2

public class Person{
public String firstname;
…
static int nbrPersons;
public Person(String fn, String ln, int a)
{

this.firstname=fn;
…
nbrPersons++;

}
}

access : <class name>.<number of the class variables>
Example: System.out.println(Person.nbrPersons) => 2

 19

Instance methods and class methods

● instance method: these methods allow you to modify or access the
state of the object.

● class method: these methods do not change the internal state of an
object.

Example: the Float class

● Instance method of class String: toString()

– returns a string representation of the current object

● class method of static String: toString(Float f)

– returns a string representation of the float passed as a parameter

Float f = 3F;
System.out.println(f.toString());
System.out.println(Float.toString(3.14F));

 20

Destruction of an object

● The destruction of objects is handled by Java using a
garbage collector (GC).

● The GC destroys objects (i.e. clears memory) that are not
referenced by any other object.

● The destruction is asynchronous and there is no guarantee
that the objects will be destroyed.

● An optional method called finalize() is called when the
object is destroyed.

– For example, it can ensure that files or connections are
closed before the destruction of the object.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

