Mise a niveau en Java

Introduction and Basic Concepts
M1

Amin Farvardin
m.Farvardin@outlook.com

Course Presentation

19 hours module
Classes
Tutorials
Practical work

Course objectives

Introduce the object-oriented paradigm
Consolidate the basics in object-oriented programming
Become familiar with the Java language

Generalities

Little more than a programming language:

Object oriented language
Platform independent (via VM)
Interpreted language and byte code
Numerous libraries
Strongly typed
Any variable must be declared with a type

The compiler checks that the uses of variables are compatible
with their type

The types are on the one hand provided by the language, but
also by the definition of the classes

Java Platform

The Java compiler generate a .class
In byte code (intermediate language
independent of the platform) !

Java Code (.java)

The byte code is interpreted by a JAVAC
Java JVM interpreter. o

l

Byte Code (.class)

|
v

¢

Windows ‘

General architecture of a Java program

Java source program = set of ".java" files
Each “.java” file may contains:

One or more class definitions (e.g., class A, class B, class HelloWorld, etc.)
Packages (e.g., java.lang, java.util, java.io, etc.)
Definition of functions

Definition of the main program

[J] Helloworld.java 2

1 public class HelloWorld {

public static void main(String args[]) {
System.out.println("Hello World!");
}

Types in Java

Separation between primitive types and object types
Primitive types handled by their value

Boolean value: boolean (true or false)

Signed integer numeric value: byte (8 bits), short (16 bits), int (32 bits), long (64 bits)
Floating numeric value: float (32) bits), double (64 bits)

Unicode character: char (16 bits)

Object types handled by reference

Present in the JDK API (Date, String, ...)
User Defined Classes

When we declare an object variable, we are actually reserving memory space for the
reference. (Class is like a building blueprint and an Object is the building itself)

Objects and Classes

A class is an abstract type characterized by properties
common to a set of objects and allowing the creation of
objects having these properties.

A class is made up of:

Attributes: data representing the state of the object
Methods: operations applicable to objects

An object or a class instance has a behavior and state
that can only be changed by the actions of the behavior.

Naming

By convention:

Class starts with a capital letter.
A method, a field, a local variable start with a lowercase

Variables with more than one part, from the second
part, start with a capital letter. (e.g., cityName)

[4] Mmyclass.java 2 |
1 public class MyClass {
public static void main(String args[]) {
int temp = 20;
String cityName = "Paris";

System.out.printin(cityName + " " + temp);

Already existing classes

Java has a large class library. The bookstore consists of different packages and sub-
packages:

Java.lang: basic types and functions
Java.io.File: file management
Java.io: input/output management
Java.awt: elements of graphical interfaces
Java.math: types and mathematical functions
And many other packages

How to use a package in a class:

import java.lang.Integer;

Full use of a package:
import java.lang.*;

Useful link: http://docs.oracle.com/javase/7/docs/api/overview-summary.htmi

Constructor

To create an object from a class, we use the
new operator

MyClass cl = new MyClass();
The new operator calls the class constructor.

A constructor has the same [creetingjava %
name as the class in which 1 public class Greeting {

it is defined. public Greeting() {

- 1 i |7y .
A constructor has no return : System.out.println("Hi, Welcome!");

type (not even void)
// declaration of attributes

I e
J/ definition of methods

i SRR

public static void main(String args[]) {
// your code

Constructor Cont.

Default constructor: constructor without arguments, initializes
the variables of the class to the default values

: Person() {}

: OR

: Person() {

: age=25;
nationality= ‘french’;

Person(mt age, char nationality) {
this.age=age,; '
this.nationality: nationality;

Constructor Cont.

If no constructor is created in the class, the java compiler
automatically creates a default constructor.

If an overloaded constructor is created in the class, the default
constructor will no longer be created by the compiler.

The java platform differentiates between the different constructors
declared within the same class based on the number of parameters

and their types.

You cannot create two constructors with the same number and types

of parameters.
i Person(int age) {
+ this.age=age;
)

Person(int age) { ,
! his.age=age*2; i Compilation error

Constructor Cont.

Person.java Application.java

public class Person{ public class Application
: public String firstName; R

public String lastName; P public static void main (String argsf])

public int age; P { _

D Person jean = new Person();

/I Definition of a constructor jean.setName(‘Jean’);
public Person(String fn, String In, inta) |
{ '

this.firstName = fn;
this.lastName = In; .
« I Compilation Error
: Default constructor no longer exists

Constructor Cont.

Shirt.java R

public class Shirt{ : Which constructor will choose Java
: int id; when from the compilation?
char color; '
float price; :
int quantity; 1) Shirt shl = new Shirt();
String description; 2) Shirt shl = new Shirt(122);

3) Shirt shl = new Shirt(122, 'B’);
Shirt(){}

Shirt (int id){
this.id = id;
}

Shirt (int id, char color){
this.id = id;
this.color = color;

VISIbIlIty (4 visibility modifiers for members of a class)

public: Visible to everyone

private: Visible only in the classroom

protected: Visible by inherited classes and that of the same package

Without modifier: Visible by inherited classes and that of the same
package

public private protected No
modifier

In the same class Yes Yes Yes Yes
In a class of the same package Yes No Yes Yes
In a subclass of another package Yes No Yes No

In any class of another package Yes No No No

Instance variables and class variables

Instance variables:

Each instance of a class has its own variable values. These variables define
the characteristics of the object.

Access: <Object name>.<Attribute name> => An attribute value of the corresponding object
Example: System.out.printin(pl.firstname) => jean

public class Person{ * Person pl = new Person(‘jean’, ‘louis’,27);
' public String firstname; * Person p2 = new Person(‘'steve’, ‘madden’,60);

gag::g ?}ttl’iar‘lge[asmame; Person [class]

public Person(String fn, String In, int a) !
{]

this.firstname=fn; :

this.lastname=In; : Person Person

this.age=a; : [instance] [instance]
. ’ firstname: jean firstname: steve

lasttname: louis lastthame: madden
age: 27 age: 60

Instance variables and class variables

Class variables

The value of a class variable is common to all instances of the class, that is, the class variable
does not belong to a particular instance.

Statement with the keyword static

Mandatory initialization .
access : <class name>.<number of the class variables>

Example: System.out.printin(Person.nbrPersons) => 2

- * Person pl = new Person(‘jean’, ‘louis’,27);
pUbIIgucblfilgsslt::ier:‘gs?i?s‘.{tname' * Person p2 = new Person(‘steve’, ‘madden’,60);

Person [class]

.s.t.atic int nbrPersons;
: - : : brP
public Person(String fn, String In, int a) nobriEersons

{

this.firstname=fn;

S
-

HiorPersons++' Person Person
’ [instance] [instance]

firstname: jean firstname: steve
lasttname: louis lasttname: madden
age: 27 age: 60

Instance methods and class methods

Instance method: these methods allow you to modify or access the
state of the object.

class method: these methods do not change the internal state of an
object.

Example: the Float class
Instance method of class String: toString()

returns a string representation of the current object
class method of static String: toString(Float)

returns a string representation of the float passed as a parameter

i Float f =
: System.out.println(f.toString());
§System.out.println(Float.toString(3.14F));

Destruction of an object

The destruction of objects is handled by Java using a |
garbage collector (GC).

The GC destroys objects (i.e. clears memory) that are not
referenced by any other object.

The destruction is asynchronous and there iIs no guarantee
that the objects will be destroyed.

An optional method called finalize() is called when the
object is destroyed.

For example, it can ensure that files or connections are
closed before the destruction of the object.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

