
 1

Mise à niveau en Java

Legacy and consequences
M1

Amin Farvardin
m.Farvardin@hotmail.com

 2

Goal: not to code the same thing

● we now want to make "Gaulois" and "Romains" classes to have
more specific behaviors.

● How to do it?
● Copy what was done in the "Preson" class and add specific methods.

 3

Goal: not to code the same thing

● we now want to make "Gaulois" and "Romains" classes to have
more specific behaviors.

● How to do it?
● Copy what was done in the "Preson" class and add specific methods.

 4

Goal: not to code the same thing

● we now want to make "Gaulois" and "Romains" classes to have
more specific behaviors.

● How to do it?
● Copy what was done in the "Preson" class and add specific methods.
● Actually, we don't want to duplicate code! But how?

 5

Goal: not to code the same thing

we now want to make "Gaulois" and "Roman" classes to have more
specific behaviors.

● How to do it?
● Copy what was done in the "Preson" class and add specific methods.
● Actually, we don't want to duplicate code! But how?

Java offers inheritance as a solution.

 6

Heritage

● Inheritance allows an object to acquire the properties of another object
factorization:

● The parent class (or base class) is more general.

– It contains the properties common to all the child classes (or derived or
inherited class)

● The daughter classes have more specific properties:

– We obtain a hierarchy of classes.
● To express that a class is a child class, we use the extends keyword in the

declaration of a class:

 class <child_class_name> extends <parent_class_name>

● In Java, we are able to inherit from only a unique class.

● (A class that does not inherit from any class that actually inherits implicitly from the Object class)

 7

Consequences

● What happens to the instance variables.

● What happens to the methods in the parent class.

● Constructors

 8

public and private members

● Methods or attributes

– public members are always accessible by a child class.

– private members remain inaccessible, even for a child class!
● It may seem a little surprising.
● Obviously, the private attributes are still inherited: even if we

do not have direct access to the attributes, they are present!
● Leave the freedom to change the attribute in the parent class

without having to change anything in the child classes.

 9

Protected members - protected

● new protected scope:

– only the class and the derived classes have access to
members declared protected.

 10

Parent class methods

● For the public or protected methods, we have the choice:

– Either the behavior is the same: we can/must omit the rewriting
of the method.

– The behavior is different: we can rewrite the method.

● there are two references to browse the hierarchy:

– this: is a reference on the instance of the class.
– super: is a reference on the parent instance

● Obviously, we can add specific methods to the child class!

 11

Child class constructor

1)Call the constructor of the parent class: the method is
called super quite simply.

– If the call is not explicit, Java will try to automatically call
the default constructor (without an argument).

– If you have defined a constructor instead of the default
constructor in the parent class, therefore, you will need
to call explicitly the constructor of the parent class.

2)Carry out specific treatments for the child class.

 12

Example

 13

Example

Output:

My name is Asterix. I am a Gaulois.

 14

instanceof operator

● Operator to check if a class is indeed an instance of a class.

 15

instanceof operator

● Operator to check if a class is indeed an instance of a class.

true
true

Asterix is indeed a Gaulois, he is even an irreducible Gaulois, and especially not
a Romains.

 16

Access Levels (recap)

 17

Polymorphism

● Polymorphism means "many forms", and it occurs when we have many classes that are related
to each other by inheritance.

● Inheritance lets us inherit attributes and methods from another class. Polymorphism uses those
methods to perform different tasks. This allows us to perform a single action in different ways.

 18

Polymorphism

● Polymorphism means "many forms", and it occurs when we have many classes that are related
to each other by inheritance.

● Inheritance lets us inherit attributes and methods from another class. Polymorphism uses those
methods to perform different tasks. This allows us to perform a single action in different ways.

 19

Polymorphism

● Polymorphism means "many forms", and it occurs when we have many classes that are related
to each other by inheritance.

● Inheritance lets us inherit attributes and methods from another class. Polymorphism uses those
methods to perform different tasks. This allows us to perform a single action in different ways.

Output:
The animal makes a sound
The pig says: wee wee
The dog says: bow wow
The animal makes a sound

 20

final keyword (a non-access modifier)
● For a variable: the variable cannot be modified.

● For a method: this method cannot be re-defined in a derived class.

● For a class: a final class will not have a child class

– security reason to avoid "hijackings".

 21

final variables

● When a variable is declared with final keyword, its value can’t
be modified.

● This also means that you must initialize a final variable. If the
final variable is a reference, this means that the variable
cannot be re-bound to reference another object, but internal
state of the object pointed by that reference variable can be
changed

– i.e. you can add or remove elements from final array or
final collection.

● It is good practice to represent final variables in all
uppercase, using underscore to separate words.

 22

final methods

● When a method is declared with final keyword, it is called
a final method.

● A final method cannot be overridden.

● We must declare methods with final keyword for which we
required to follow the same implementation throughout all
the derived classes.

 23

final classes

● When a class is declared with final keyword, it is called a
final class. A final class cannot be extended(inherited).
There are two uses of a final class:

– To prevent inheritance, as final classes cannot be
extended. For example, all Wrapper Classes like
Integer, Float etc. are final classes. We can not extend
them.

– To create an immutable class like the predefined
String class. You can not make a class immutable
without making it final.

 24

Java abstract Classes and Methods

● Data abstraction is the process of hiding certain details and showing only
essential information to the user.

– Goal of use: To achieve security.

● Abstraction can be achieved with either abstract classes or interfaces (later we talk
about it)

● The abstract keyword is a non-access modifier, used for classes and methods:

– Abstract class is a restricted class that cannot be used to create objects (to
access it, it must be inherited from another class).

– Abstract method can only be used in an abstract class, and it does not have a
body. The body is provided by the subclass (inherited from).

● An abstract class can have both abstract and regular methods:

 25

Example 1

From the example above, it is not possible to create an object from the Animal class:

 26

Example 2

Output:

The pig says: wee wee
Zzz

 27

abstract Vs. final

● In java, you will never see a class or method declared with
both final and abstract keywords.

● For classes, final is used to prevent inheritance whereas
abstract classes depends upon their child classes for
complete implementation.

● In cases of methods, final is used to prevent overriding
whereas abstract methods needs to be overridden in sub-
classes.

 28

Interface (Another way to achieve abstraction)

● An interface is a completely "abstract class" that is used to group related methods
with empty bodies:

● To access the interface methods by another class, we use implements keyword
(instead of extends).

● The body of the interface method is provided by the "implement" class.

● A class can have more than one interface.

 29

Example

Output:

The pig says: wee wee
Zzz

 30

Interface - recap

● Like abstract classes, interfaces cannot be used to create objects (in the example above, it is not
possible to create an "Animal" object in the MyMainClass)

● Interface methods do not have a body - the body is provided by the "implement" class

● On implementation of an interface, you must override all of its methods

● Interface methods are by default abstract and public

● Interface attributes are by default public, static and final

● An interface cannot contain a constructor (as it cannot be used to create objects)

Why And When To Use Interfaces?

1) To achieve security - hide certain details and only show the important details of an object
(interface).

2) Java does not support “multiple inheritance” but support “multiple implements”

● A class can only inherit from one superclass. However, it can be achieved with
interfaces, because the class can implement multiple interfaces.

 31

Multiple Interfaces

Note: To implement multiple interfaces, separate them with a comma.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

