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Collections

● Lists, sets, stacks, queues are objects that group several elements 
into a single entity.

– in common:

● same questions: do they contain elements? how much?
● same operations: we can add or remove an element to the 

structure, we can empty the structure. One can also browse 
the elements contained in the structure.

– different implementations

● Q: How can we manipulate all of these structures?

● R: use a hierarchy of interfaces
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Hierarchy of interfaces 

Collection: Basic methods to browse, add, remove elements.

Set: This interface represents a set, and therefore, this type of collection does not 
admit any duplicate.

List: This interface represents a sequence of elements: the order of adding or 
removing elements is important (duplicates possible)

Queue: There is the leading element and there are the following elements. 
The order of adding or removing elements is important (duplicates possible)

Deque (Double ended queue): This interface looks like queues, but the important
elements are the header and queue elements. 

Collection <E>Collection <E>

Set <E>Set <E> Queue <E>Queue <E>List <E>List <E>

Deque <E>Deque <E>SortedSet <E>SortedSet <E>

Map <E>Map <E>

SortedMap <E>SortedMap <E>
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Hierarchy of interfaces 

Map: This interface represents a binary relation (surjective): each element is associated 

with a cell and each key is unique (but we can have duplicates for the elements).

SortedSet: is the ordered version of a set.

SortedMap: is the ordered version of a binary relation where the keys are ordered.

These interfaces are generic, i.e. we can give them a parameter to indicate that we 

have a collection of Integer, String, objects(animals), etc.

Note: We can use a "for each" loop on any object implementing the iterable interface.

Collection <E>Collection <E>

Set <E>Set <E> Queue <E>Queue <E>List <E>List <E>

Deque <E>Deque <E>SortedSet <E>SortedSet <E>

Map <E>Map <E>

SortedMap <E>SortedMap <E>

Iterable <E>Iterable <E>
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Browse in collection: First solution
● By using a generic, the compiler understands the type of elements in the collection.

● Solution: we have a collection which contains objects of type E (e.g., Integer, String, 
Object, etc.).

● We will access each element of the Collection using the for loop keyword,

● Each element will be stored in a variable X of type E. 

● For example:

List<String> names = new ArrayList<String>();

names.add(“Bob”);

names.add(“Alice”);

for(String n: names)

System.out.println(n);
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Browse in collection: Second solution

● Use of an object dedicated to browsing elements in a collection: an object 
that implements the Iterator interface.

● Obtain: call to the iterator() method (Iterable interface)

public interface Iterator<E> {
boolean hasNext();
E next();
void remove(); //optional

}

● hasNext(): returns a boolean indicating if there are any elements left for visitor,
● Next(): gives access to the next element,
● remove() removes the element from the collection.

Usage:
• Remove an element during iteration.
• Browses several collections in parallel.
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Browse in collection: Second solution

Output:

My name is Cetaumatix. I am a Gaulois.
My name is Agecanonix. I am a Gaulois.
My name is Ordralfabetix. I am a Gaulois.
My name is Bonemine. I am a Gaulois.
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Implementations

For each of the interfaces, there are several 
implementations.
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Map

● a Map represents a binary relation: each element of a Map is a peer between a key and a 
value.

● In a Map, each key is unique, but we can have duplicates for the values.

● Attention, Map is not a sub-interface of Iterable, so we cannot browse a Map with a For 
each loop!

● We can obtain the set of keys, the set of values, and the set of pairs (key, value) using 
the following methods:

– Set<K>: keySet()
– Set<Map.Entry<K,V>>: entrySet()
– Collection<K>: values()

● Map.Entry designates an Entry class which is internal to the Map class. 

You can create classes inside classes, but I won't talk more about that today.
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Example route of a Map

This example starts with a Map   so that its key is a number and its value is a string.
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Collection → List → ArrayList

● Array (recap):

– Ex: String[5] cars = {"Volvo", "BMW", "Ford", "Mazda"};

– The size of an array cannot be modified. The above example reserved five continuous 
memory spaces for keeping car names in string type.    

● ArrayList :
– The ArrayList class is a resizable array, which can be found in the 

java.util package. 

– Elements can be added and removed from an ArrayList whenever you want.
import java.util.ArrayList; // import the ArrayList class

ArrayList<String> cars = new ArrayList<String>(); // Create an ArrayList object
cars.add("Volvo"); // Add an Item
cars.add("BMW");
cars.get(0); // Access an Item
cars.set(0, "Mazda"); // Change an Item
cars.remove(0); // Remove an Item
cars.size(); // Size of the ArrayList
cars.clean(); // Clean the ArrayList
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Collection → List → LinkedList

● The LinkedList class is almost identical to the ArrayList.

● The LinkedList class has all of the same methods as the 
ArrayList class because they both implement the List 
interface.

● But LinkedList is built very differently.

– The ArrayList class has a regular array inside it.
– The LinkedList stores its items in "containers." The list 

has a link to the first container and each container has a 
link to the next container in the list. 
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LinkedList representation

class Node {
  // node variables
  int data;
  Node next;

  public Node(int data) {
    this.data = data;

this.next = null;
  }
}
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LinkedList implementation

class SinglyLList {
  Node head; // create reference Node 
 
  void InsertAtStart(int data) {
    // create a node
    Node new_node = new Node(data);

    new_node.next = head;
    head = new_node;
  }
 
  void InsertAtLast(int data) {
    Node new_node = new Node(data);
    if (head == null) {

  head = new_node;
      return;
    }

    new_node.next = null;
    Node last = head;
    while (last.next != null) {
      last = last.next;
    }
    last.next = new_node;
 }
}

class Node {
  // node variables
  int data;
  Node next;

  public Node(int data) {
    this.data = data;
    this.next = null;
  }
}

SinglyLList list = new SinglyLList(); 

list.InsertAtLast(3);
list.InsertAtLast(97);
System.out.println(list.head.data);

Output:

97
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Recap (Hierarchy of interfaces)
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LinkedList of string

class Node {
  // node variables
  String data;
  Node next;

  public Node(String data) {
    this.data = data;

this.next = null;
  }
}

What if we would like to
 make a list of People?
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Generics concept in Java

● Idea 1: Change the primitive type of the Node and SinglyList class from string 
to Person object. 

● Idea 2: Put Object in place of String and make a string list of Object.

● Java offers Generic parameter to the Node and SinglyList class.

class Node<E> {
  // node variables
  E data;
  Node next;

  public Node(E data) {
    this.data = data;
    this.next = null;
  }
}

Possible but will require explicit casts

Code duplication!

class Node {
  // node variables
  People data;
  Node next;

  public Node(People data) {
    this.data = data;

this.next = null;
  }
}
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Generics concept in Java

● Attention, the generic method, we cannot use primitive 

data type (ex: int, char, double, etc), instead we need to 

use their wrapper class (ex:  Integer, Character, Double, 
etc.).

● Generics also provide compile-time type safety that 
allows programmers to catch invalid types at compile time.
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LinkedList implementation

class SinglyLList <E> {
  Node<E> head; 
 
  void InsertAtStart(E data) {
   // create a node
   Node<E> new_node = new Node<>(data);

   new_node.next = head;
   head = new_node;
  }
 
  void InsertAtLast(E data) {
   Node<E> new_node = new Node<>(data);
   if (head == null) {

head = new_node;
return;

   }

   new_node.next = null;
   Node<E> last = head;
   while (last.next != null) {

last = last.next;
   }
   last.next = new_node;
 }
}

class Node<E> {
  // node variables
  E data;
  Node<E> next;

  public Node(E data) {
    this.data = data;
    this.next = null;
  }
}

SinglyLList<Integer> list = new SinglyLList<>();
list.InsertAtLast(3);
list.InsertAtLast(97);

SinglyLList<Person> list = new SinglyLList<>();
list.InsertAtLast(new Person(“Bob”));
list.InsertAtLast(new Person(“Alice”));
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Introduce Diamond operation

● Raw type (There is no way for type arguments to be parameterized when constructing a collection)

● Generic type (which allowed us to parameterize the type arguments for classes)

– Specifying the parameterized type in the constructor, which can be somewhat unreadable:

– Raw types still exist for the sake of backward compatibility, But it will prompt us with a warning 
message (ArrayList is a raw type. References to generic type ArrayList<E> should be parameterized):

Led to potential casting 
exceptions at runtime
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Introduce Diamond operation

● The diamond operator – introduced in Java 1.7 – adds type inference 
and reduces the verbosity in the assignments – when using generics:

● The Java compiler's detect the suitable constructor declaration that matches the 
invocation. For example:

● Internally, the compiler knows that Diesel implements the Engine interface and then is able to
determine a suitable constructor by inferring the type.
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Autoboxing

● Now that Java can know the type of objects contained in a 
structure, Java offers possibilities to simplify the code: for 
example the automatic transformation in primitive types.
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Generics and Parameterized type

● A generic type is a reference type that has one or more 
type parameters. These type parameters are later 
replaced by type arguments when the generic type is 
instantiated. For example:

● The instantiation of a generic type with actual type 
arguments is called a parameterized type.

interface Collection<E>  { 
  public void add (E x); 
  public Iterator<E> iterator();
}

Collection<String> coll = new LinkedList<String>();
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Generic Type Instantiated

● By providing a type argument per type parameter. 

● The type argument list is a comma separated list that is delimited by angle brackets 
and follows the type name. The result is a so-called parameterized type.

OR
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Generic static methods

● Goal: write a swap method which permutes two elements of an array.

– Regardless of the type of array, the method for swapping two elements is the same.

– write a static method which takes an array as a parameter

➔ write a generic static method

● When declaring a generic method, the type parameter is declared before the return type and 
after the scope (public, private) and the indication of a class method (static).

● Note that it is not useful to specify a parameter for the ArrayUtil class.

● When we are going to use swap, we will not instantiate an object, we will just call the 
static method, so it is important that this method which uses a parameter is used.
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Calling a generic static method

● When calling a generic method, we don't need to specify 
the type parameter, it is inferred by Java.

– ex: ArrayUtil.swap(villager, 2, 6);

● If we want to, we can still give the type (this will give a 
better error message if something goes wrong).

– ex: ArrayUtil.<Gaulois> swap(villagers, 2, 6);
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Generic types are invariant

● A subtlety that is important to understand

Error message: Type mismatch: cannot convert from LinkedList<Gaulois> to 
LinkedList<Person>

● In the second line, we want to say that a list of Gaulois is a list of Person.

● When we get an element via the lg list, we don't necessarily get a Gaulois!

● The Java compiler will not allow the second line.

– Note: If F is a class of the descendants of class M, and if G is a generic class, G<F> is not in the 
descendants of G<M>.

– In other words, there is no relation between G<F> and G<M>
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Wildcard (Jockers)

● Java offers the possibility of using "Wildcard" which will be used to express an unknown type.

● The question mark (?) is known as the wildcard in generic programming . 

● It represents an unknown type. 

● The wildcard can be used in a variety of situations such as the type of a parameter, field, or local 
variable; sometimes as a return type. 

● Unlike arrays, different instantiations of a generic type are not compatible with each other, not even 
explicitly. 

● This incompatibility may be softened by the wildcard if ? is used as an actual type parameter.

● Types of wildcards in Java:

– Unknown Wildcard Boundary 

– Extends Wildcard Boundary 

– Super Wildcard Boundary 
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Unknown Wildcards Boundary 

A list of unknown type is used 
in the following cases:

● When writing a method 
which can be employed 
using functionality 
provided in Object class.

● When the code is using 
methods in the generic 
class that don’t depend 
on the type parameter
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extends Wildcards Boundary

● It can be used when you 
want to relax the restrictions 
on a variable.

● For example, to write a 
method that works on List 
<Integer>, List<Double>, 
and List<Number> , you 
can using an upper 
bounded wildcard.

● Here, Integer (i.e., list1) and 
Double (i.e., list2) are 
subclasses of class 
Number.
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super Wildcards Boundary

● However if we pass list of type Double then we will get compilation error. It is because only 
the Integer field or its superclass can be passed . Double is not the superclass of Integer.

● Use extend wildcard when you want to get values out of a structure and super wildcard 
when you put values in a structure. Don’t use wildcard when you get and put values in a 
structure.

● Note: You can specify 
an upper bound or a 
lower bound for a 
wildcard, but you 
cannot specify both.
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Order

● Comparable Interface contains only one method:

● This method returns:

– A negative integer if the object is smaller than the object passed as a parameter.

– zero if they are equal.

– A positive integer if the object is larger than the object passed as a parameter.

● String, Integer, Double, Date, GregorianCalendar and many others all 
implement the Comparable interface.

Public interface Comparable<T> {
  int compareTo(T o);
}
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Example

Output
 1
 0
-1
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Example

str1 & str2 : -16
str1 & str3 : 0
str2 & string argument comparison : 0
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Example
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Interface Comparator

● Ex: sorting the elements of a collection: using the interface Collections

● To compare Gaulois, and even all Person according to their size, we can 
write the following class:
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Example

● Then, we can use 
this new class to 
sort Person 
according to their 
height.

Output:

My name is Obelix. I am a Gaulois.
My name is Astrix. I am a Gaulois.
My name is Cesar.

My name is Astrix. I am a Gaulois.
My name is Cesar.
My name is Obelix. I am a Gaulois.
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