
 1

Mise à niveau en Java

Generics and Collections
M1

Amin Farvardin
m.Farvardin@hotmail.com

 2

Collections

● Lists, sets, stacks, queues are objects that group several elements
into a single entity.

– in common:

● same questions: do they contain elements? how much?
● same operations: we can add or remove an element to the

structure, we can empty the structure. One can also browse
the elements contained in the structure.

– different implementations

● Q: How can we manipulate all of these structures?

● R: use a hierarchy of interfaces

 3

Hierarchy of interfaces

Collection: Basic methods to browse, add, remove elements.

Set: This interface represents a set, and therefore, this type of collection does not
admit any duplicate.

List: This interface represents a sequence of elements: the order of adding or
removing elements is important (duplicates possible)

Queue: There is the leading element and there are the following elements.
The order of adding or removing elements is important (duplicates possible)

Deque (Double ended queue): This interface looks like queues, but the important
elements are the header and queue elements.

Collection <E>Collection <E>

Set <E>Set <E> Queue <E>Queue <E>List <E>List <E>

Deque <E>Deque <E>SortedSet <E>SortedSet <E>

Map <E>Map <E>

SortedMap <E>SortedMap <E>

 4

Hierarchy of interfaces

Map: This interface represents a binary relation (surjective): each element is associated

with a cell and each key is unique (but we can have duplicates for the elements).

SortedSet: is the ordered version of a set.

SortedMap: is the ordered version of a binary relation where the keys are ordered.

These interfaces are generic, i.e. we can give them a parameter to indicate that we

have a collection of Integer, String, objects(animals), etc.

Note: We can use a "for each" loop on any object implementing the iterable interface.

Collection <E>Collection <E>

Set <E>Set <E> Queue <E>Queue <E>List <E>List <E>

Deque <E>Deque <E>SortedSet <E>SortedSet <E>

Map <E>Map <E>

SortedMap <E>SortedMap <E>

Iterable <E>Iterable <E>

 5

Browse in collection: First solution
● By using a generic, the compiler understands the type of elements in the collection.

● Solution: we have a collection which contains objects of type E (e.g., Integer, String,
Object, etc.).

● We will access each element of the Collection using the for loop keyword,

● Each element will be stored in a variable X of type E.

● For example:

List<String> names = new ArrayList<String>();

names.add(“Bob”);

names.add(“Alice”);

for(String n: names)

System.out.println(n);

 6

Browse in collection: Second solution

● Use of an object dedicated to browsing elements in a collection: an object
that implements the Iterator interface.

● Obtain: call to the iterator() method (Iterable interface)

public interface Iterator<E> {
boolean hasNext();
E next();
void remove(); //optional

}

● hasNext(): returns a boolean indicating if there are any elements left for visitor,
● Next(): gives access to the next element,
● remove() removes the element from the collection.

Usage:
• Remove an element during iteration.
• Browses several collections in parallel.

 7

Browse in collection: Second solution

Output:

My name is Cetaumatix. I am a Gaulois.
My name is Agecanonix. I am a Gaulois.
My name is Ordralfabetix. I am a Gaulois.
My name is Bonemine. I am a Gaulois.

 8

Implementations

For each of the interfaces, there are several
implementations.

 9

Map

● a Map represents a binary relation: each element of a Map is a peer between a key and a
value.

● In a Map, each key is unique, but we can have duplicates for the values.

● Attention, Map is not a sub-interface of Iterable, so we cannot browse a Map with a For
each loop!

● We can obtain the set of keys, the set of values, and the set of pairs (key, value) using
the following methods:

– Set<K>: keySet()
– Set<Map.Entry<K,V>>: entrySet()
– Collection<K>: values()

● Map.Entry designates an Entry class which is internal to the Map class.

You can create classes inside classes, but I won't talk more about that today.

 10

Example route of a Map

This example starts with a Map so that its key is a number and its value is a string.

 11

Collection → List → ArrayList

● Array (recap):

– Ex: String[5] cars = {"Volvo", "BMW", "Ford", "Mazda"};

– The size of an array cannot be modified. The above example reserved five continuous
memory spaces for keeping car names in string type.

● ArrayList :
– The ArrayList class is a resizable array, which can be found in the

java.util package.

– Elements can be added and removed from an ArrayList whenever you want.
import java.util.ArrayList; // import the ArrayList class

ArrayList<String> cars = new ArrayList<String>(); // Create an ArrayList object
cars.add("Volvo"); // Add an Item
cars.add("BMW");
cars.get(0); // Access an Item
cars.set(0, "Mazda"); // Change an Item
cars.remove(0); // Remove an Item
cars.size(); // Size of the ArrayList
cars.clean(); // Clean the ArrayList

 12

Collection → List → LinkedList

● The LinkedList class is almost identical to the ArrayList.

● The LinkedList class has all of the same methods as the
ArrayList class because they both implement the List
interface.

● But LinkedList is built very differently.

– The ArrayList class has a regular array inside it.
– The LinkedList stores its items in "containers." The list

has a link to the first container and each container has a
link to the next container in the list.

 13

LinkedList representation

class Node {
 // node variables
 int data;
 Node next;

 public Node(int data) {
 this.data = data;

this.next = null;
 }
}

 14

LinkedList implementation

class SinglyLList {
 Node head; // create reference Node

 void InsertAtStart(int data) {
 // create a node
 Node new_node = new Node(data);

 new_node.next = head;
 head = new_node;
 }

 void InsertAtLast(int data) {
 Node new_node = new Node(data);
 if (head == null) {

 head = new_node;
 return;
 }

 new_node.next = null;
 Node last = head;
 while (last.next != null) {
 last = last.next;
 }
 last.next = new_node;
 }
}

class Node {
 // node variables
 int data;
 Node next;

 public Node(int data) {
 this.data = data;
 this.next = null;
 }
}

SinglyLList list = new SinglyLList();

list.InsertAtLast(3);
list.InsertAtLast(97);
System.out.println(list.head.data);

Output:

97

 15

September 7, 2020
4th session

 16

Recap (Hierarchy of interfaces)

 17

LinkedList of string

class Node {
 // node variables
 String data;
 Node next;

 public Node(String data) {
 this.data = data;

this.next = null;
 }
}

What if we would like to
 make a list of People?

 18

Generics concept in Java

● Idea 1: Change the primitive type of the Node and SinglyList class from string
to Person object.

● Idea 2: Put Object in place of String and make a string list of Object.

● Java offers Generic parameter to the Node and SinglyList class.

class Node<E> {
 // node variables
 E data;
 Node next;

 public Node(E data) {
 this.data = data;
 this.next = null;
 }
}

Possible but will require explicit casts

Code duplication!

class Node {
 // node variables
 People data;
 Node next;

 public Node(People data) {
 this.data = data;

this.next = null;
 }
}

 19

Generics concept in Java

● Attention, the generic method, we cannot use primitive

data type (ex: int, char, double, etc), instead we need to

use their wrapper class (ex: Integer, Character, Double,
etc.).

● Generics also provide compile-time type safety that
allows programmers to catch invalid types at compile time.

 20

LinkedList implementation

class SinglyLList <E> {
 Node<E> head;

 void InsertAtStart(E data) {
 // create a node
 Node<E> new_node = new Node<>(data);

 new_node.next = head;
 head = new_node;
 }

 void InsertAtLast(E data) {
 Node<E> new_node = new Node<>(data);
 if (head == null) {

head = new_node;
return;

 }

 new_node.next = null;
 Node<E> last = head;
 while (last.next != null) {

last = last.next;
 }
 last.next = new_node;
 }
}

class Node<E> {
 // node variables
 E data;
 Node<E> next;

 public Node(E data) {
 this.data = data;
 this.next = null;
 }
}

SinglyLList<Integer> list = new SinglyLList<>();
list.InsertAtLast(3);
list.InsertAtLast(97);

SinglyLList<Person> list = new SinglyLList<>();
list.InsertAtLast(new Person(“Bob”));
list.InsertAtLast(new Person(“Alice”));

 21

Introduce Diamond operation

● Raw type (There is no way for type arguments to be parameterized when constructing a collection)

● Generic type (which allowed us to parameterize the type arguments for classes)

– Specifying the parameterized type in the constructor, which can be somewhat unreadable:

– Raw types still exist for the sake of backward compatibility, But it will prompt us with a warning
message (ArrayList is a raw type. References to generic type ArrayList<E> should be parameterized):

Led to potential casting
exceptions at runtime

 22

Introduce Diamond operation

● The diamond operator – introduced in Java 1.7 – adds type inference
and reduces the verbosity in the assignments – when using generics:

● The Java compiler's detect the suitable constructor declaration that matches the
invocation. For example:

● Internally, the compiler knows that Diesel implements the Engine interface and then is able to
determine a suitable constructor by inferring the type.

 23

Autoboxing

● Now that Java can know the type of objects contained in a
structure, Java offers possibilities to simplify the code: for
example the automatic transformation in primitive types.

 24

Generics and Parameterized type

● A generic type is a reference type that has one or more
type parameters. These type parameters are later
replaced by type arguments when the generic type is
instantiated. For example:

● The instantiation of a generic type with actual type
arguments is called a parameterized type.

interface Collection<E> {
 public void add (E x);
 public Iterator<E> iterator();
}

Collection<String> coll = new LinkedList<String>();

 25

Generic Type Instantiated

● By providing a type argument per type parameter.

● The type argument list is a comma separated list that is delimited by angle brackets
and follows the type name. The result is a so-called parameterized type.

OR

 26

Generic static methods

● Goal: write a swap method which permutes two elements of an array.

– Regardless of the type of array, the method for swapping two elements is the same.

– write a static method which takes an array as a parameter

➔ write a generic static method

● When declaring a generic method, the type parameter is declared before the return type and
after the scope (public, private) and the indication of a class method (static).

● Note that it is not useful to specify a parameter for the ArrayUtil class.

● When we are going to use swap, we will not instantiate an object, we will just call the
static method, so it is important that this method which uses a parameter is used.

 27

Calling a generic static method

● When calling a generic method, we don't need to specify
the type parameter, it is inferred by Java.

– ex: ArrayUtil.swap(villager, 2, 6);

● If we want to, we can still give the type (this will give a
better error message if something goes wrong).

– ex: ArrayUtil.<Gaulois> swap(villagers, 2, 6);

 28

Generic types are invariant

● A subtlety that is important to understand

Error message: Type mismatch: cannot convert from LinkedList<Gaulois> to
LinkedList<Person>

● In the second line, we want to say that a list of Gaulois is a list of Person.

● When we get an element via the lg list, we don't necessarily get a Gaulois!

● The Java compiler will not allow the second line.

– Note: If F is a class of the descendants of class M, and if G is a generic class, G<F> is not in the
descendants of G<M>.

– In other words, there is no relation between G<F> and G<M>

 30

September 9, 2020
5th session

 31

Wildcard (Jockers)

● Java offers the possibility of using "Wildcard" which will be used to express an unknown type.

● The question mark (?) is known as the wildcard in generic programming .

● It represents an unknown type.

● The wildcard can be used in a variety of situations such as the type of a parameter, field, or local
variable; sometimes as a return type.

● Unlike arrays, different instantiations of a generic type are not compatible with each other, not even
explicitly.

● This incompatibility may be softened by the wildcard if ? is used as an actual type parameter.

● Types of wildcards in Java:

– Unknown Wildcard Boundary

– Extends Wildcard Boundary

– Super Wildcard Boundary

 32

Unknown Wildcards Boundary

A list of unknown type is used
in the following cases:

● When writing a method
which can be employed
using functionality
provided in Object class.

● When the code is using
methods in the generic
class that don’t depend
on the type parameter

 33

extends Wildcards Boundary

● It can be used when you
want to relax the restrictions
on a variable.

● For example, to write a
method that works on List
<Integer>, List<Double>,
and List<Number> , you
can using an upper
bounded wildcard.

● Here, Integer (i.e., list1) and
Double (i.e., list2) are
subclasses of class
Number.

 34

super Wildcards Boundary

● However if we pass list of type Double then we will get compilation error. It is because only
the Integer field or its superclass can be passed . Double is not the superclass of Integer.

● Use extend wildcard when you want to get values out of a structure and super wildcard
when you put values in a structure. Don’t use wildcard when you get and put values in a
structure.

● Note: You can specify
an upper bound or a
lower bound for a
wildcard, but you
cannot specify both.

 36

Order

● Comparable Interface contains only one method:

● This method returns:

– A negative integer if the object is smaller than the object passed as a parameter.

– zero if they are equal.

– A positive integer if the object is larger than the object passed as a parameter.

● String, Integer, Double, Date, GregorianCalendar and many others all
implement the Comparable interface.

Public interface Comparable<T> {
 int compareTo(T o);
}

 37

Example

Output
 1
 0
-1

 38

Example

str1 & str2 : -16
str1 & str3 : 0
str2 & string argument comparison : 0

 39

Example

 40

Interface Comparator

● Ex: sorting the elements of a collection: using the interface Collections

● To compare Gaulois, and even all Person according to their size, we can
write the following class:

 41

Example

● Then, we can use
this new class to
sort Person
according to their
height.

Output:

My name is Obelix. I am a Gaulois.
My name is Astrix. I am a Gaulois.
My name is Cesar.

My name is Astrix. I am a Gaulois.
My name is Cesar.
My name is Obelix. I am a Gaulois.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

