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Abstract
We study the fair division problem consisting in allocating one item per agent so as to
avoid (or minimize) envy, in a setting where only agents connected in a given network may
experience envy. In a variant of the problem, agents themselves can be located on the network
by the central authority. These problems turn out to be difficult even on very simple graph
structures, but we identify several tractable cases. We further provide practical algorithms
and experimental insights.

Keywords Object allocation · Envy-freeness · Complexity · Algorithms

1 Introduction

Fairly allocating resources to agents is a fundamental problem in economics and computer
science, and has been the subject of intense investigations [17,23]. Recently, several papers
have explored the consequences of assuming in such settings an underlying network con-
necting agents [2,6,11,19,23]. The most intuitive interpretation is that agents have limited
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information regarding the overall allocation. Two agents can perceive each other if they are
directly connected in the graph.

A fairness measure, very sensitive to the information available to agents, is the notion of
envy [32]. Indeed, envy occurs when an agent prefers the share of some other agents over her
own. Accounting for a network topology boils down to replacing “other agents” by “neigh-
bors”. The notion of envy can thus naturally be extended to account for the limited visibility
of the agents. Intuitively, an allocation will be locally envy-free if none of the agents envies
her neighbors. This notion has been referred as graph, social, or local envy-freeness [2,6,19,
22,23,31]. It finds its origins in Festinger’s work on social comparisons which are not made
globally but locally, i.e. with respect to an individual’s neighbors in the social network [30].

In this paper, we are concerned with the allocation of indivisible goods within a group of
agents. The settingwe study in this paper is arguably one of the simplest in resource allocation,
known in economics as house allocation [1,37,49]: agents have (strict) preferences over
items, and each agent must receive exactly one item. In the case of a complete network,
envy-freeness is not a very exciting notion in that setting. Indeed, for an allocation to be
envy-free, each agent must get her top object (and this is obviously also a Pareto-optimal
allocation in that case). When an agent is only connected to a subset of the other agents,
she may not need to get her top-resource to be envy-free. The locations of the resources on
the graph as well as the connections between the agents are then crucial issues in order to
compute a locally envy-free allocation.

To see how the network can make a difference, consider the following scenario.

Example 1 Suppose for instance a team of workers taking their shifts in sequence, to which
a central authority must assign different jobs. Workers have preferences regarding these
jobs. As the shifts are contiguous and as the employees work at the same place, they have
the opportunity to see the job allocated to some other workers, as one ends and the other
one begins her shift. This would be modeled as a line topology in our setting as depicted
on the graph in Fig. 1. To make things concrete, suppose there are three jobs, chop the
tree, mow the lawn, and trim the hedge, and three gardeners (1, 2 and 3) with preferences
1 : chop � mow � tr im, 2 : mow � chop � tr im, 3 : chop � tr im � mow, taking shifts
in order 1, 2 and finally 3. On Fig. 1, rankings are mentioned over agents (with top jobs at
the top, etc.)

By allocating the job chop the tree to agent 1,mow the lawn to agent 2, and trim the hedge
to agent 3, we get an envy-free allocation if we disregard the fact that agent 3 may be envious
of agent 1. Note that a locally envy-free allocation is not necessarily Pareto-optimal (take the
same allocation, but the ranking of agent 1 to be tr im � chop � mow). However, giving
her top item to each agent if possible will always be an envy-free Pareto-optimal allocation
in any network.

Now, consider that we switch the locations of agent 2 and agent 3, as depicted in the graph
of Fig. 2.

In this instance, there is no locally envy-free allocation. In fact, if agent 3 gets the job chop
the tree, she will be envied by agent 1. If agent 1 or agent 2 gets the job chop the tree, agent
3 will be envious of one of her neighbors. From these observations, it is worth investigating
the problem of deciding whether a locally envy-free allocation exists.

When a locally envy-free allocation does not exist, one can try to optimize the number of
agents that are locally envy-free or to optimize the degree of non-envy in the network. Hence,
by allocating the job mow the lawn to agent 1, trim the hedge to agent 3 and chop the tree
to agent 2, only one agent is envious of another agent (agent 3 is envious of agent 2). This
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Fig. 1 Example of working
locations and preferences of three
gardeners over three jobs to
perform

1

chop
mow
trim

2

mow
chop
trim

3

chop
trim
mow

Fig. 2 Switch in the working
locations of the three gardeners

1

chop
mow
trim

3

chop
trim
mow

2

mow
chop
trim

solution both optimizes the number of agents that are locally envy-free and the degree of
non-envy in the network. In this paper, we will also investigate these optimization problems.

The reader may object that, in the first network of Example 1, agent 3 may still be envious
of agent 1, because she knows that this agent must have received the task agent 2 didn’t get,
i.e. chop the tree. This is a valid point, to which we provide two counter-arguments. First, as
a technical response, note that in general agents would not know exactly who gets the items
they do not see. Thus, although agents may know that they must be envious of some agents,
they cannot identify which one, which makes a significant difference in the case of envy. It
could also be that agents actually do not know which objects are to be allocated in the first
place. For instance, while the central authority may know the preferences of gardeners over
all the possible tasks to be performed, the gardeners themselves may not know each morning
exactly which task is to be performed on that day. Our second point is more fundamental
and concerns the model and the motivation of this work. Clearly, the existence of a network
may be due to an underlying notion of proximity (either geographical, or temporal as in our
example) in the problem. However, another interpretation of the meaning of links must be
emphasized: links may represent envy the central authority is concerned with. In other words,
although there may theoretically be envy among all agents, the central authority may have
reasons to only focus on some of these envy links. For instance, you may wish to avoid envy
among members of the same team in your organization, because they actually work together
on a daily basis (in that case links may capture team relationships). Under this interpretation,
a network of degree n − 2 (the total number of agents minus 2), where an agent can envy
everyone except one another agent, could for instance model a situation where agents team-
up in pairs and conduct a task together, sharing their resources. In a similar vein, we may
focus on avoiding envy among “similar” agents, because they may be legitimate to complain
if they are not treated equally despite similar competences, for instance.

1.1 Related work

Our work is connected to a number of recent contributions addressing fair allocation on
graphs.

Both Abebe et al. [2] and Bei et al. [11] studied envy-freeness and proportionality for
the cake cutting problem where comparisons between agents are limited by an underlying
network structure. Cake cutting deals with the fair allocation of divisible goods (e.g. land)
while the present work is devoted to indivisible resources.

Bredereck et al. [19] introduced a model with indivisible resources which is very close
to ours. The underlying graph is directed (agent u can envy agent v if the arc oriented from
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u to v exists), and the number of objects that an agent receives is not fixed (it can be 0)
and it may differ between the agents. The present work deals with undirected graphs, and
every agent must receive exactly one object. An instance described with an undirected graph
can also be described with a directed graph because an edge can be replaced by two arcs of
opposite orientations. However, an algorithm or a reduction designed for a kind of graphs
(directed or not) may not translate to the other kind. Bredereck et al. investigate the standard
and parameterized computational complexity of finding an allocation where the agents have
additive and monotone utility functions over the objects. Envy-freeness has to be satisfied
along the arcs of the directed graph, together with an additional requirement which can be
completeness (all the objects are assigned), Pareto-efficiency, or the fact that the utilitarian
social welfare is maximized.

There exist different fairness criteria (max-min fair share, proportionality, envy-freeness,
CEEI, etc.), which are connected by implication relations and form a scale of fairness accord-
ing to the strength of their requirement [18]. For example, under mild assumptions on the
agents’ utilities, envy-freeness implies proportionality which implies max-min fair share.
The relations between these fairness concepts were recently enriched by Aziz et al. with a
novel notion called graph epistemic envy-freeness [6]. Agents are solely aware of the shares
of their neighbors in a given social network (a directed graph). An agent i is envious if her
share A(i) is worse than a neighbor’s share, or any allocation of the objects not present in
the shares that she is aware of, must contain a share that agent i finds better than A(i).

Recently, house allocation settings have been discussed, notably in relation with swap
dynamics [24,35]. In particular, Gourvès et al. [35] show how graph structures can affect
the complexity of some decision problems regarding such dynamics. More specifically, they
study the complexity of deciding whether some object is reachable by a given agent or
whether some allocation is reachable by a sequence of swaps among agents. The complexity
of searching a Pareto-efficient solution is also studied. The reachable object problem is re-
examined by Saffidine andWilczynski [44], assuming that the number of swaps and the total
duration of the process are limited. Even more recently, Kondratev and Nesterov unveiled
surprising connections in house allocation settings between the minimization of the number
of envious agents, and popular matchings [40]. Their notion of envy slightly differs from
ours though, in the sense that it excludes envy towards those agents who get their preferred
item (which they call “inevitable” envy).

The allocation of a graph has also recently been studied [13,16,38,46]. In this context, the
nodes of the graph represent indivisible resources to allocate and edges formalize connectivity
constraints between the resources: each agent must receive items which form a connected
component in the graph. The graph structure enables to capture dependencies between the
resources, like spatial dependencies for pieces of land or time constraints.

In a similar framework, some computational aspects of allocating agents on a line are
discussed by Aziz et al. [7]. In this setting, the line concerns slots to allocate to the agents,
and can be viewed as the problem of placing the agents at the nodes of a line. The agents
have specific target locations on the line, which induces a domain restriction (stronger than
single-peakedness).

Several ways for a central authority to control fair division have been discussed by Aziz
et al. [8]: the structure of the allocation problem can be changed by adding or removing
items to improve fairness. Interestingly our model introduces a new type of control action:
locating agents on a graph. Finally, because envy-freeness cannot be guaranteed in general
(with indivisible items), and as related decision problems can be difficult even in simple
settings [25,41], different notions of degree (or relaxation) of envy have been studied [13,21,
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Table 1 The complexity of dec-LEF with respect to the degree of its nodes

Degree of G Δ(G) = k (k ≥ 1 fixed) NP-c Cor. 1

δ(G) = n − k (k ≥ 3 fixed) NP-c Cor. 2

δ(G) = n − 2 P Th. 2

Number of clusters c in a cluster graph c ∈ {k, n/k} (k ≥ 2 fixed) NP-c Cor. 3

c ∈ {1, n} P

Parameter k on the vertex cover size XP Th. 5

W[1]-hard Th. 6

k is a positive integer and n denotes the number of agents. Pmeans polynomial time solvable andNP-c means
NP-complete. Δ(G) and δ(G) are the maximum and minimum degrees, respectively, of a vertex in G

28,41,42], and the relation between some of these relaxations has been studied byAmanatidis
et al. [3].

1.2 Contributions and organization

A formal definition of the model, together with the definition of the main problems that we
address, are provided in Sect. 2. Section 3 is dedicated to the problem, called dec-LEF,
of deciding if a central planner, who has a complete knowledge of the social network and
the agents’ rankings of the objects, can allocate the objects such that no agent will envy a
neighbor. Note that in this setting the central planner does not decide where the agents are
located on the network. We identify intractable and tractable cases of this decision problem,
with respect to the number of neighbors of each agent, that is the degree of the nodes in the
graph representing the social network. Remarkably, we show that the problem turns out to
be intractable even on social networks with simple structure: when agents are matched one-
to-one (Theorem 1), when agents are located on a line, or when agents are split in teams of
two equal size (Theorem 4), to cite a few examples. On the contrary, the problem is tractable
when the graph is very dense (Theorem 2). It is also easy to see that the problem can be
solved efficiently on a star network: certainly the center node has to receive her preferred
object, and then the remaining question (whether the other agents can each be assigned an
object they prefer to the one of the center) turns out to be a matching problem. This gives
the intuition that a relevant parameter to study is the size of a vertex cover (a subset of nodes
in the network including at least one extremity of each edge). For instance the center of a
star is a vertex cover. Since at least one of the extremities of each edge is contained in a
vertex cover, the rest of the vertices forms a set of pairwise non-adjacent vertices, and thus
envy cannot occur within the corresponding set of agents. We provide an algorithm which
shows that dec-LEF is in XP (parameterized by the size of a vertex cover) and a proof of
W[1]-hardness (Theorems 5 and 6). Our findings for dec-LEF are summarized in Table 1.

Given that locally envy-free allocations may not exist in the first place, and that the
associated decision problems can be hard, it is natural to take an optimization perspective.
In our ordinal setting, we shall be concerned with the maximization of the number of non-
envious agents, and of a metric averaging the degree of (non-)envy in the society, solely
based on the ranks of the items that agents possess. Section 4 is dedicated to optimization
problems taking these two different perspectives. We provide approximation algorithms for
both approaches. In the first case, we elaborate on the fact that, when an independent set
of agents can be identified, a simple sequential picking sequence protocol is sufficient to
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guarantee that the agents in this set will be locally non-envious (Proposition 1). In fact,
this connection to the (maximum) independent set can be further exploited to show that no
constant approximation can be found for this objective (Proposition 3), unlessP = NP. In the
second case, we build on the observation that random matchings are actually likely to give a
high degree of non-envy, and exploit derandomization techniques to obtain a polynomial-time
approximation algorithm (Proposition 5).

A variant of dec-LEF called dec-location-LEF is studied in Sect. 5. This problem
asks if one can decide both the placement of the agents (on a given social network) and the
object allocation so as to satisfy local envy-freeness. For instance, in Example 1, it is natural
to imagine that the central authority can also assign agents to their shifts. The problem is
(unsurprisingly) shown to be NP-complete. A much less expected result, on the positive
side, is that the special case of very dense graphs can still be resolved in polynomial time
(Theorem 8).

In Sect. 6 we study the likelihood, for randomly chosen instances of our problems, to be
positive (i.e. to accept a locally envy-free allocation)—in particular how does it depend on
the density of the graph. We first exhibit an asymptotic result ( Proposition 6) showing that
this event has negligible probability as soon as the degree of the graph is above a fraction 1/e
of the number of nodes. We complement this by empirical evidence of instances of moderate
size (recall that the underlying problems are NP-complete), studying in addition how more
likely it becomes when the central authority has the extra flexibility to assign agents on
the network, as assumed in the dec-location-LEF. These experiments are conducted on
graphs of regular degree, which are not necessarily realistic. We thus complement our results
by using more realistic graphs distributions and restrictions on agents preferences, such as
single-peaked domains. In terms of graph structures, we consider scale-free networks, and
graphs whose structure depends on the “similarity” between agents (either because similar
agents are more likely to be connected, or the other way around).

We provide open problems and future directions in Sect. 7.

2 Ourmodel and problems

A set of objects O and a set of agents N are given. We assume that |O| = |N | = n. This
hypothesis on the number of objects being equal to the number of agent does not preclude
the case where there are more agents than objects. Indeed, one can add dummy items which
will be allocated to the agents who do not receive an object. Each agent i has a preference
relation �i over O (a linear order). Let �= (�1, . . . ,�n) denote the preference profile of
the agents. For any positive integer k, [k] stands for {1, 2, . . . , k}.

We are also given a network modeled as an undirected graph G with vertex set N and
edge set E . Each edge in E represents a relation between the corresponding agents. Two
agents are directly connected in the network if they can perceive each other and they may
envy each other. An instance of a resource allocation problem is thus described by a tuple
〈N , O,�,G = (N , E)〉.

When the networkG is dense, it may be easier to describe it through its complement graph
G which is the unique graph defined on the same vertex set and such that two vertices are
connected if and only if they are not connected in G.

The degree of a vertex v ∈ N , denoted by degG(v), is the number of edges incident to v.
The maximum (respectively, minimum) degree of a graphG, denoted byΔ(G) (respectively,
δ(G)) is themaximum (respectively, minimum) degree of its vertices. A regular graph is such
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that all of its nodes have the same degree. In other words, G is a regular graph if and only if
δ(G) = Δ(G).

A partial allocationA is a subset of N ×O in which no agent nor object appears twice. If
each object and each agent appears exactly once, this partial allocation is called an allocation.
If agent i appears in A, by an abuse of notation, A(i) will refer to the object owned by i .

Definition 1 (Locally envy-free) An allocation A is locally envy-free (LEF) if no pair of
agents {i, j} ∈ E satisfies A( j) �i A(i).

Note that the classical notion of envy-freeness corresponds to the local envy-freenesswhen
graph G is complete. Therefore, the notion of local envy-freeness generalizes the notion of
envy-freeness. For a given allocation, an agent is locally envy-free (LEF) if she prefers her
object to the object(s) of her neighbor(s).

Several notions of degrees of envy1 have been studied [21,23,27,41,42]. In our context
we shall study the number of envious agents, and a degree measure capturing some simple
notion of intensity of envy, in terms of the difference of ranks2 between items (these two
notions would correspond to esum,max,bool and esum,sum,raw, up to normalization, under the
classification of Chevaleyre et al. [23]).

Definition 2 (Degrees of (non)-envy) Given an allocation A, the degree of envy of agent i
towards agent j is

e(A, i, j) = 1

n − 1
max(0, ri (A(i)) − ri (A( j)))

where ri (o) is the rank of object o in i ′s preferences, and 0 ≤ e(A, i, j) ≤ 1. Note that for
a given allocation A, an agent i envies a neighboring agent j if and only if e(A, i, j) > 0.
Observe also that e(A, i, j) = 1 when i holds an object she ranks last, while j holds an
object i ranks first.

Definition 3 (Average degree of (non-)envy) The average degree of envy in the group is

E(A) = 1

2 |E |
∑

{i, j}∈E
e(A, i, j) + e(A, j, i)

Respectively, the average degree of non-envy in the group is

NE(A) = 1 − E(A).

In other words, we simply average over all the pairs of agents that are connected in the graph
(note that the notion of envy being directed, while the underlying graph is not, both directions
need to be considered for each edge).

We mainly address four problems: dec-LEF, max-LEF, max-NE and dec-location-
LEF. The first one is a decision problem regarding the existence of an LEF allocation over a
given social network. The second and the third ones are optimization problems in which an
allocation that is as close as possible to local envy-freeness is sought, using the aforemen-
tioned criteria.

Definition 4 (dec-LEF) Given an instance 〈N , O,�,G = (N , E)〉, is there an LEF alloca-
tion?

1 The degree of a vertex in a graph should not be confused with the degree of envy which measures howmuch
an agent envies the share of another agent.
2 This is similar to assuming Borda utilities for the preferences of agents.
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Definition 5 (max-LEF) Given an instance 〈N , O,�,G = (N , E)〉, find an allocation that
maximizes the number of LEF agents.

Definition 6 (max-NE) Given an instance 〈N , O,�,G = (N , E)〉, find an allocationA that
maximizes the average degree of non-envy, that is NE(A).

In dec-location-LEF, one has to place the agents on the network in addition to allocate
objects to them. This placement makes sense if we consider Example 1 where the agents
take shifts.

Definition 7 (dec-location-LEF) Given an undirected network (V , E), and 〈N , O,�〉, are
there an allocation A and a bijection L : N → V (L determines the location of the agents
on the network) such that A(i) �i A( j) for every edge {L(i),L( j)} ∈ E?

Example 2 As a warm-up, consider 5 agents located on a line, as depicted below. Each agent
has a strict ranking over objects (with top items at the top, e.g. �1: a � b � c � d � e).

1

a
b
c
d
e

2

c
a
b
d
e

3

a
b
d
c
e

4

b
a
d
c
e

5

c
e
b
a
d

Is there an LEF allocation of goods to agents? If not, what is the minimum number of envious
agents? Finally, is it possible to find an LEF allocation by relocating agents on this line?

Let us try to construct an allocation A that is LEF. Observe that agents 3 and 4, who
are neighbors, both rank objects a and b as their first two preferred objects and rank the
remaining objects in the last positions of their preference ranking following the same order.
This implies that they cannot obtain one of the remaining objects in an LEF allocation, i.e.,
an object within {c, d, e}. Indeed, if only one agent between agents 3 and 4 obtains an object
in this subset, then she will be envious of the other agent. Otherwise, if they both get an object
from this subset, since their preferences over these objects are the same, one of them will
necessarily envy the other. Therefore, we have to assign objects a and b to agents 3 and 4 in
A, respectively. Consequently, agent 2, neighbor of agent 3, must obtain an object preferred
to object a, which is assigned to agent 3. The only object that agent 2 prefers to object a is
object c, so we have to assign object c to agent 2 inA. Agent 5, neighbor of agent 4, must get
an object preferred to object b, which is assigned to agent 4. The only possible objects are
objects c and e, but object c is already assigned to agent 2, thus we assign object e to agent
5 in A. Finally, there only remains object d and agent 1. Agent 1 prefers object c, the object
assigned to her neighbor (agent 2), to object d . Therefore, by assigning object d to agent 1 in
A, we get that agent 1 is envious of agent 2. Thus, there is no LEF allocation in this instance,
implying that this is a no-instance of dec-LEF.

Observe that allocation A is almost LEF since only agent 1 is envious in A. Therefore,
there exists an allocation with only one envious agent. Because there is no LEF allocation,
this is the minimum number of envious agents that we can obtain in any allocation. Now in
terms of degree of envy, as agent 1 (who holds an object she ranks 4th) only envies agent 2
(who holds agent 1 ranks 3rd), we get that e(A, 1, 2) = (4− 3)/4 = 1/4. As this is the only
strictly positive envy between any pair of agents, and as there are 4 edges in the network, the
average degree of envy is 1/8 × 1/4 = 1/32, and the degree of non-envy is thus 31/32.
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Finally, remark that, in allocation A, the only envious agent 1 gets object d , and the
only object that agent 1 likes less than d is object e. Object e is owned by agent 5 who is
located at a leaf of the path and who, on the opposite, prefers object e to object d . Therefore,
by considering a new location of the agents on a path which is the same as the current
graph except that agent 1 is a leaf of the path who is connected to agent 5 (i.e., the new
path [2, 3, 4, 5, 1]), allocation A = {(1, d), (2, c), (3, a), (4, b), (5, e)} is LEF. Hence, this
instance is a yes-instance of dec-location-LEF.

3 Decision problem

This section is devoted to dec-LEF. Our main findings settle the computational status of
dec-LEF with respect to the degree of the nodes in the network, as well as the size of a
vertex cover.

First of all, note that some objects cannot be assigned to certain agents for the allocation to
be LEF. For example, the best object of an agent cannot be assigned to one of her neighbors.
More generally, no better object than the one allocated to an agent can be assigned to one of
her neighbors, leading to the following observations:

Observation 1 In any LEF allocation, an agent with k neighbors must get an object ranked
among her n − k top objects.

Observation 2 In any LEF allocation, the best object for an agent is either assigned to herself
or to one of her neighbors in G.

Observation 1 implies that an agent having n − 1 neighbors must receive her best object in
any LEF allocation. Similarly, agents who do not have any neighbor can receive any object
in an LEF allocation.

3.1 DEC-LEF and degree of nodes

Our first result shows that dec-LEF is computationally difficult, even if the network is very
sparse, i.e. each agent has only one neighbor in G (a graph whose every vertex has degree
one is called a matching). This is somewhat surprising as such a network offers very little
possibility for an agent to be envious.

Theorem 1 dec-LEF is NP-complete, even if G is a matching.

Proof The reduction is from 3SAT [33]. We are given a set of clauses C = {c1, · · · , cm}
defined over a set of variables X = {x1, · · · , xp}. Each clause is disjunctive and consists
of 3 literals. The question is whether there exists a truth assignment of the variables which
satisfies all the clauses.

Take an instance I = 〈C, X〉 of 3SAT and create an instance J of dec-LEF as follows.
The set of objects is O = {u j

i : 1 ≤ i ≤ p, 1 ≤ j ≤ m} ∪ {u j
i : 1 ≤ i ≤ p, 1 ≤ j ≤

m} ∪ {q j : 1 ≤ j ≤ m} ∪ {t ji : 1 ≤ i ≤ p, 1 ≤ j ≤ m} ∪ {h� : 1 ≤ � ≤ m(p − 1)}.
Here, u j

i and u j
i correspond to the unnegated and negated literals of xi possibly present in

clause c j , respectively, q j corresponds to clause c j , and the t
j
i ’s and h�’s are gadgets. Thus,

|O| = 4mp.
The set of agents N is built as follows. For each (i, j) ∈ [p] × [m], create a pair of

variable-agents X j
i , Y

j
i which are linked in the network. For each j ∈ [m], create a pair of
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clause-agents K j , K ′
j which are linked in the network. For each � ∈ [m(p − 1)], create a

pair of garbage-agents L�, L ′
� which are linked in the network. Thus, the network consists

of a perfect matching with 4mp agents.
Each clause c j is associated with the pair of clause-agents (K j , K ′

j ), q j and 3 objects
corresponding to its literals. For example, c2 = x1 ∨ x4 ∨ x5 is associated with objects q2,
u21, u

2
4, and u

2
5. The preferences of the clause-agents are:

– K j : q j � �( j, 1) � �( j, 2) � �( j, 3) � rest
– K ′

j : �( j, 1) � �( j, 2) � �( j, 3) � q j � rest

where �( j, i) is the object related to the i th literal of c j , and “rest” means the remaining
objects which are arbitrarily ordered, but in the same way for K j and K ′

j .

Each variable xi is associated with the m pairs of variable-agents (X j
i , Y

j
i ), 1 ≤ j ≤ m.

The preferences of these variable-agents are:

– X1
i : u1i � t1i � u1i � t2i � rest1i

– Y 1
i : t1i � u1i � t2i � u1i � rest1i

– X2
i : u2i � t2i � u2i � t3i � rest2i

– Y 2
i : t2i � u2i � t3i � u2i � rest2i

– X3
i : u3i � t3i � u3i � t4i � rest3i

– Y 3
i : t3i � u3i � t4i � u3i � rest3i

...

– Xm−1
i : um−1

i � tm−1
i � um−1

i � tmi � restm−1
i

– Ym−1
i : tm−1

i � um−1
i � tmi � um−1

i � restm−1
i

– Xm
i : umi � tmi � umi � t1i � restmi

– Ym
i : tmi � umi � t1i � umi � restmi

where “rest ji ” means the remaining objects arbitrarily ordered, but in the same way for X j
i

and Y j
i . The preferences of the garbage-agents (L�, L ′

�), 1 ≤ � ≤ m(p − 1) are:

– L� : h� � U � rest
– L ′

� : U � h� � rest

where U = {u j
i , u

j
i : i ∈ [p], j ∈ [m]}, “rest” is the set of remaining objects, and both U

and “rest” are arbitrarily ordered in the same way for L� and L ′
�.

Figure 3 summarizes the construction.
We claim that there is an LEF allocation in J if, and only if, there is a truth assignment

satisfying I.
Take a truth assignment which satisfies I. One can allocate objects to each variable-agent

pair (X j
i , Y

j
i ) in such a way that it is LEF: If xi = true, then X j

i gets u j
i and Y j

i gets t j+1
i

(where tm+1
i := t1i ), otherwise xi = f alse, X j

i gets u j
i and Y j

i gets t ji . One can allocate
objects to each clause-agent pair (K j , K ′

j ) in such a way that it is LEF: c j is satisfied thanks
to one of its literals; K j gets q j and K ′

j gets an unallocated object corresponding to a literal
of c j . Finally, allocate objects to each garbage-agent pair (L�, L ′

�) in such a way that it is
LEF: L� gets h� and L ′

� gets any unallocated objects of U .
Suppose an LEF allocation exists for J . Consider a variable xi . By construction of the

preferences of the variable-agent pair (X1
i , Y

1
i ), we observe that there is absence of envy in
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Km

qm (m, 1) (m, 2) (m, 3)
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Fig. 3 An overview of the instance of dec-LEF. Only the most preferred objects of each agent are represented,
and the order over the remaining objects is the same for two connected agents. For each j ∈ {1, . . . ,m} and
i ∈ {1, 2, 3}, �(i, j) is the object related to the i th literal of c j , and U represents an arbitrary order over

{u j
i , u j

i : i ∈ [p], j ∈ [m]}

only two cases: either (i) X1
i gets u

1
i and Y

1
i gets t1i , or (i i) X1

i gets u
1
i and Y

1
i gets t2i . If we

are in case (i), then there is absence of envy between Xm
i and Ym

i only if Xm
i gets umi and Ym

i

gets tmi because t1i is already allocated, there is absence of envy between Xm−1
i and Ym−1

i

only if Xm−1
i gets um−1

i and Ym−1
i gets tm−1

i because tmi is already allocated, and so on; the

X j
i ’s get all the u

j
i ’s (i is fixed but 1 ≤ j ≤ m). If we are in case (i i), then there is absence

of envy between X2
i and Y

2
i only if X2

i gets u
2
i and Y

2
i gets t3i because t2i is already allocated,

there is absence of envy between X3
i and Y 3

i only if X3
i gets u

3
i and Y 3

i gets t4i because t3i is

already allocated, and so on; the X j
i ’s get all the u

j
i ’s (i is fixed but 1 ≤ j ≤ m). Thus, set

xi to f alse (respectively, xi to true) if every X j
i gets u j

i (respectively, X
j
i gets u j

i ).
Consider any clause c j . By construction of the preferences of the clause-agent pair

(K j , K ′
j ), we observe that there is absence of envy in only three cases: K j gets q j and

K ′
j gets one of the 3 objects associated with the literals of c j . Since the allocation is LEF,

there is some i∗ such that K ′
j gets either u

j
i∗ or u

j
i∗ . This means that variable xi∗ is set to truth

if K ′
j gets u

j
i∗ since u

j
i∗ is not allocated to agent X

j
i∗ , and variable xi∗ is set to false if K

′
j gets

u j
i∗ since u

j
i∗ is not allocated to agent X

j
i∗ . In both cases, this implies that c j is satisfied since

one of its literal (either xi∗ or ¬xi∗ ) is satisfied. To conclude, all the clauses are satisfied. �
The strength of this result lies on the fact that the network structure is extremely simple.

As a consequence, it can easily be used as a building block to show hardness of a large variety
of graphs. The following lemma shows that one can add a pair of agent/object in an instance
of dec-LEF without changing the complexity of the problem.
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Lemma 1 One can add a pair of agent/object to an instance of dec-LEF without changing
the set of LEF allocations (where the additional object is assigned to the additional agent in
all solutions). Furthermore, this result does not depend on the set of agents connected to the
additional agent in the network (under the condition that she has at least one neighbor).

Proof Let I = 〈N , O,�,G = (N , E)〉 denote an instance of dec-LEF, and let a and o be
the additional agent and object, respectively. The new instance, including a and o, is denoted
J = 〈N ∪ {a}, O ∪ {o},�′,G ′ = (N ∪ {a}, E ′)〉, where �′= (�′

i )i∈N∪{a} are the new
preferences of the agents over O ∪ {o}, and E ′ is the new set of edges of the network. Set
E ′ contains E and does not add a new edge between two agents of N . Furthermore, the set
of edges containing a in E ′ is arbitrary, but contains at least one edge. Let v denote one of
the neighbors of agent a in G ′. Preference �′

a of agent a will be defined as a copy of the
preference �v of agent v but with object o at its top. On the contrary, the preference �′

v of
agent v will be defined as a copy of �v but with object o at its bottom. In other words, the
preferences of agent a and v differ only on the position of object o. Finally, preference �′

i of
any other agent i of N is defined as a copy of �i but with object o at its bottom.

Note first that one can extend any LEF allocationA of I into an allocationA′ of J where
each agent of N receives the same object as in A, and where agent a receives object o.
Allocation A′ is obviously LEF in J since agent a receives her most preferred object which
is also the last preferred object of any other agent.

We show now that each LEF allocation A′ of J corresponds to an LEF allocation A of
I. First of all, note that object o should be assigned to agent a inA′. Otherwise, either agent
v receives o in A′ and agent a envies agent v, or both agents receive an object of O in A′.
In the latter case, one of the agents necessarily envies the other one since they have the same
preferences over O , leading to a contradiction with A′ being LEF. Since agent a receives
object o in A′, one can easily construct allocation A by assigning to each agent of N the
same object as in A′. Allocation A is obviously LEF in I since otherwise A′ would not be
LEF in J .

This concludes the proof since we have shown that there is a one-to-one correspondence
between the LEF allocations of I and J . �

As a consequence of Theorem 1 and Lemma 1, the following results hold:

Corollary 1 dec-LEF is NP-complete on a line, or on a circle, and generally on graphs of
maximum degree k for k ≥ 1 constant.

Proof We only provide a formal proof for the case of the line. The other proofs are similar.
We reduce an instance I of dec-LEF where the graph is a matching (see Theorem 1) into an
instance J where the graph is a line. Let (vi , v

′
i ) denote the i

th pair or connected agents in
the network of instance I, where the order over pairs is arbitrary. Instance J will be a copy
of I with an additional agent v′′

i for each i ∈ {1, n
2 − 1}, who will be connected to the agents

v′
i and vi+1 in the network of J . The network of J forms a line. The size of J is at most
twice the size of I. According to Lemma 1, one can define the preferences such that the set of
LEF allocations of instance I is the same as the set of LEF allocations of instance J (except
for the additional agents who receive the same additional objects in any LEF allocation).
Therefore, the complexity of dec-LEF is equivalent in instances I and J . (For the case of a
circle, we add an extra agent who will connect the first and last agent of I; and for the case
of a graph of maximum degree k, we further connect additional agents to the agents v′′

i ). �
Given this result, one may suspect the problem to be hard on any graph structure beyond a

clique.Our next result shows that if the network is dense enough, thendec-LEF is polynomial.
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Theorem 2 dec-LEF in graphs of minimum degree n − 2 is solvable in polynomial time.

Proof Nodes have degree either n − 2 or n − 1 in G. In G, which is the complement graph
of G, nodes have degree either 1 or 0. Let φ : N → N be such that φ(i) is the neighbor of i
in G if i has degree 1 in G, otherwise φ(i) = i .

We reduce the problem to 2-SAT which is solvable in linear time [4]. Let us consider
Boolean variables xi j for 1 ≤ i, j ≤ n, such that xi j is true if and only if object j is assigned

to i . Denote by o j
i the object at position j in the preference relation of agent i .

Consider the following formula ϕ:

ϕ ≡
∧

i∈N
(xio1i

∨ xio2i
) ∧

∧

1≤i<�≤n
1≤ j≤n

(¬xi j ∨ ¬x� j ) ∧
∧

i∈N
(xio1i

∨ xφ(i)o1i
)

The first part of formula ϕ expresses that each agent must obtain an object within her
top 2, as noted in Observation 1. By combination with the second part of ϕ, we get that the
solution must be an assignment: each agent must obtain her first or second choice but not
both since every object is owned by at most one agent and |N | = |O|. Observation 2 implies
that the best object for agent i must be assigned either to agent i or φ(i). This condition is
given by the last part of the formula. Hence, formula ϕ exactly translates the constraints of
an LEF allocation. �

Interestingly, the status of dec-LEF changes between networks of degree at least n − 2
and those of degree n − 3.

Theorem 3 dec-LEF is NP-complete in regular graphs of degree n − 3.

Proof The reduction is from (3, B2)-SAT [12], which is a restriction of 3SAT where each
literal appears exactly twice in the clauses, and therefore, each variable appears four times.
Take an instance I = 〈C, X〉 of (3,B2)-SAT, where C = {c1, . . . , cm} is a set of clauses
defined over a set of variables X = {x1, . . . , xp}, and create an instance J of dec-LEF as
follows.

Instead of describing the network in J , we describe its complementary G. Note that G is
a regular graph of degree 2. Hence, G contains a collection of cycles. For each variable xi ,
we introduce:

– dummy variable-objects q1i and q2i ,
– literal-objects u1i , u

2
i , u

1
i and u2i corresponding to its first and second occurrence as an

unnegated and negated literal, respectively,

– a cycle in G containing literal-agents X1
i , X

1
i , X

2
i and X

2
i , connected in this order.

We denote by Xi the subset of literal-agents containing X1
i , X

1
i , X

2
i and X

2
i . The prefer-

ences of the literal-agents are as follows, for each i ∈ [p]:
– X1

i : q1i � q2i � u1i � . . .

– X
2
i : q2i � q1i � u2i � . . .

– X
1
i : q1i � q2i � u1i � . . .

– X2
i : q2i � q1i � u2i � . . .

Note that only the 3 top objects are represented since no object ranked below can lead to
an LEF allocation (see Observation 1). We show that in any LEF allocation, either q1i and q2i
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are allocated to agents X1
i and X2

i , respectively, or q
1
i and q2i are allocated to agents X

1
i and

X
2
i , respectively. For any j ∈ {1, 2}, if q j

i is allocated to agent Y /∈ Xi , then agents X j
i will

envy agent Y because they are neighbors in G and q j
i is the most favorite object of agent X j

i .

Moreover, if q j
i is owned by agent X3− j

i (respectively, X
3− j
i ) then agent X j

i (respectively,

X
j
i ) will be envious of agent X

3− j
i (respectively, X

3− j
i ) because they are neighbors in G and

q j
i is the most favorite object of agent X j

i (respectively, X
j
i ). Therefore, q

j
i is assigned to

either agent X j
i or X

j
i . Finally, if agent X

j
i (respectively, X

j
i ) receives q

j
i and agent X3− j

i

(respectively, X
3− j
i ) does not receive q3− j

i then agent X3− j
i (respectively, X

3− j
i ) will envy

agent X j
i since they are neighbors in G and agent X3− j

i (respectively, X
3− j
i ) did not receive

her most favorite object and her second most favorite object is q j
i .

The case where q1i and q2i are allocated to agents X1
i and X2

i , respectively, can be inter-

preted in I as setting xi to true, and the case where q1i and q2i are allocated to agents X
1
i and

X
2
i , respectively, as setting xi to false.
For each clause c j we introduce:

– dummy clause-objects d1j and d
2
j ,

– a cycle in G containing clause-agents K 1
j , K

2
j , and K 3

j .

The preferences of clause-agent K i
j , for j ∈ [m] and i ∈ [3], are:

– K i
j : d1j � d2j � �( j, i) � . . .

where �( j, i) is the literal-object corresponding to the i th literal of c j . We denote by K j the
subset of clause-agents containing K 1

j , K
2
j and K 3

j . We show that an allocation is LEF if d1j ,

d2j and one literal-object corresponding to a literal of c j are assigned to the agents of K j .

For any i ∈ {1, 2}, if dij is allocated to agent Y /∈ K j then one of the agents of K j receives

neither d1j nor d
2
j and will envy agent Y who is her neighbor in G. Therefore, objects d1j and

d2j are assigned among the agents of Ki . If the agent of Ki who receives neither d1j nor d
2
j ,

say K i
j , does not receive �(i, j) then she will envy the agent who receives �(i, j) and who

necessarily is her neighbor in G. This gadget can be interpreted in I as the requirement for
at least one literal of c j to be true.

Figure 4 summarizes the agents of the reduction introduced so far.
The reduction is almost complete but it remains to describe gadgets collecting all unas-

signed objects. Indeed, so far we have introduced 4p + 3m agents and 6p + 2m objects.
It remains to construct garbage collectors for the 2p − m remaining objects. Note that
2p − m ≥ 0 holds since each variable appears in 4 clauses and each clause contains 3
literals (in other words, 4p = 3m holds). Note also that no dummy object (neither variable
nor clause) may be part of the remaining objects since they must be assigned to literal-agents
or clause-agents in any LEF allocation. Let L = {u j

i , u
j
i : i ∈ [p], j ∈ [2]} denote the

set of literal-objects, where literal-objects are ordered arbitrarily, and let L(i) denote the i th

element of L.
Let us now describe a gadget collecting a single object of L. For each i ∈ [4p], we

introduce:

– objects t1i and t2i ,
– a cycle in G containing gadget-agents L1

i , L
2
i and L3

i .
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X1
1

q1
1 � q2

1 � u1
1

X
2
1

q2
1 � q1

1 � u2
1

X2
1

q2
1 � q1

1 � u2
1

X
1
1

q1
1 � q2

1 � u1
1

X1
p

q1
p � q2

p � u1
p

X
2
p

q2
p � q1

p � u2
p

X2
p

q2
p � q1

p � u2
p

X
1
p

q1
p � q2

p � u1
p

K1
1

d1
1 � d2

1 � �(1, 1)

L2
1

d1
1 � d2

1 � �(1, 2)

L3
1

d1
1 � d2

1 � �(1, 3)

K1
m

d1
m � d2

m � �(m, 1)

L2
m

d1
m � d2

m � �(m, 2)

L3
m

d1
m � d2

m � �(m, 3)

Fig. 4 A partial description of the graph of non-envy G. Note that the neighborhood of each agent in G
corresponds to the whole set of agents except for her two neighbors in G (described in this figure). Only the
most preferred objects of each agent are represented. For each j ∈ {1, . . . ,m} and i ∈ {1, 2, 3}, �(i, j) is the
literal-object corresponding to the i th literal of c j

Furthermore, for each i ∈ [4p − 1], we introduce gadget-object hi . Globally, in this gadget,
we introduce 12p new agents and 12p − 1 new objects. Preferences are as follows, for each
i ∈ [4p] (where h0 and h4p stand for h1 and h4p−1, respectively):

– L1
i : t1i � t2i � hi−1 � . . .

– L2
i : t1i � t2i � L(i) � . . .

– L3
i : t1i � t2i � hi � . . .

Note that in any LEF allocation, objects t1i and t2i are allocated to agents belonging to
{L1

i , L
2
i , L

3
i }, and the remaining unassigned agent receives either hi−1, hi or L(i) (the proof

is similar as the above proof for the clause-agents). Since no more than 4p − 1 agents can
receive a gadget-object, at least one literal-object is assigned to agent L2

i for some i ∈ [4p].
Moreover, all gadget-objects must be assigned to gadget-agents since no other agent has a
gadget-object in her top 3 objects. Therefore, in every LEF allocation, exactly one literal-
object is allocated to an agent belonging to the gadget.

Figure 5 provides a graphical description of this gadget.
Now let us show that one can allocate objects without envy in the gadget. Let L(i) be the

literal-object assigned in the gadget. This object must be assigned to L2
i . Assign objects t1i

and t2i to agents L1
i and L3

i , respectively. For any j �= i , assign object t1j to agent L
2
j . Finally,

for any j > i , object h j−1 is assigned to L1
j and t2j is assigned to L3

j , and for any j < i ,

object h j is assigned to L3
j and object t2j is assigned to L1

j .
We use exactly 2p − m copies of this gadget in order to collect all the remaining literal-

objects of the first part of the construction, and thus obtaining as many agents as objects in
the whole reduction.
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Fig. 5 The graph of non-envy for the gadget aiming to absorb one literal-object not assigned to an agent of
Fig. 4. For each i ∈ {1, . . . , 4p}, L(i) is the i th literal-object

We claim that C is satisfiable in instance I if and only if J has an LEF allocation.
Suppose first that there exists a truth assignment φ of the variables in X which satisfies

all clauses in C . For each variable xi which is true (respectively, false) in φ, we assign

objects q1i to agent X1
i (respectively, X

1
i ), object q

2
i to agents X2

i (respectively, X
2
i ), object

u1i (respectively, u
1
i ) to agents X

1
i (respectively, X

1
i ) and object u

2
i (respectively, u

2
i ) to agent

X
2
i (respectively, X

2
i ). Note that each agent of Xi receives either her most preferred object,

or receive her third most preferred and her two neighbors in G receive her first and second
most preferred object. Therefore, no agent of Xi envies one of her neighbors in G. Note
also that the unassigned literal-objects are associated with literals which are true according
to φ. Since each clause c j is satisfied by φ, there exists at least one unassigned literal-object
that we assign to clause-agents K i

j , where i is the index of its corresponding literal in c j .
Note that this is her third most preferred object. The two other clause-agents of K j receive
their first and second most preferred objects i.e., dummy-objects d1j and d2j . Since the three
agents of K j are not neighbors in G, none of them envies one of her neighbors. Finally, it
suffices to assign the remaining literal-objects to garbage-agents, as previously described in
the construction of the gadgets, in such a way that no garbage-agent can be envious. We
obtain an LEF allocation.

Suppose now that there exists an LEF allocation. As shown above, in any LEF allocation,
objects q1i and q2i must be assigned either to (i) agents X1

i and X2
i , respectively, or to (i i)

agents X
1
i and X

2
i , respectively. In case (i), literal-objects u1i and u2i must be assigned to

agents X
1
i and X

2
i , respectively. In case (i i), literal-objects u1i and u2i must be assigned to

agents X1
i and X2

i , respectively. Let φ denote the truth assignment of the variables of X such
that for each variable xi , if literal-objects are assigned to the variable-agents of Xi as in case
(i) then xi is set to true, and otherwise xi is set to false. We claim that φ satisfies all clauses
in C . Indeed, we have shown above that in any LEF allocation, dummy clause-objects d1j
and d2j , as well as one literal-object corresponding to one literal appearing in c j , must be
assigned to the agents of K j . This literal-object is true according to φ since the corresponding
literal-object is not assigned to a variable-agent. Therefore, φ satifies clause c j . �

In the same vein as for Theorem 1, the hardness result of Theorem 3 can be extended to
more general classes of graphs.

Corollary 2 dec-LEF isNP-complete on graphs of minimum degree n−k for k ≥ 3 constant.

123



Autonomous Agents and Multi-Agent Systems (2019) 33:591–627 607

Proof The proof is similar to the proof of Corollary 1 except that we add only one additional
agent who is connected to n − k agents chosen arbitrarily (note that n refers to the number
of agents in the new instance). �

Related to the question of the degree of the nodes, it appears interesting to determine
how the computational hardness of dec-LEF evolves on cluster graphs (such graphs are
collections of disjoints cliques). The cluster graphs are relevant in the context of a social
network, because they may represent several groups of agents that do not have interconnec-
tions (e.g. families or different sport teams). In fact, the problem is computationally hard
when the cluster graph is composed of n/2 cliques because this is the case of the matching
(Theorem 1). This hardness result is extended to any cluster graph composed of n/k cliques
(for k ≥ 2 constant) according to the construction used to obtain Corollary 1. Note that the
case of n clusters is trivial since it is the empty graph. Moreover, the problem is solvable
in polynomial time when there is only one clique in the cluster graph (the easy case of the
complete graph). A natural question is then the complexity of dec-LEF when the cluster
graph is only composed of two cliques. The next theorem shows that even in this case, the
problem is NP-complete.

Theorem 4 dec-LEF isNP-complete evenwhen the social network is restricted to two cliques
of equal size.

Proof The reduction is from an instance I of 3SAT. Let C = {c1, . . . , cm} and X =
{x1, . . . , xp} denote the set of clauses and variables, respectively. The reduction to an instance
J of dec-LEF is as follows. Let Q1 and Q2 denote the two cliques of G that we are going
to construct. We introduce

– two agents Q1
1 and Q2

1 belonging to Q1,
– two agents Q1

2 and Q2
2 belonging to Q2,

– four objects q11 , q
2
1 , q

1
2 and q22 .

The preferences of agents Q1
i and Q2

i , for each i ∈ {1, 2}, are:
– Q1

i : q1i � q2i � rest
– Q2

i : q2i � q1i � rest

where rest is an arbitrary order over the objects different from q1i and q2i , but in the same
order for both agents Q1

i and Q2
i . We show that in any LEF allocation, agents Q1

i and Q2
i ,

who are neighbors in G, will receive objects q1i and q2i , respectively. Assume that agent Q j
i ,

with i, j ∈ {1, 2}, receives object o �= q j
i in an LEF allocation. If agent Q3− j

i receives object

o′ /∈ {q1i , q2i } then o′ �
Q j
i
o ⇔ o′ �

Q3− j
i

o holds and either Q j
i envies Q

3− j
i or Q3− j

i envies

Q j
i , a contradiction. On the other hand, if agent Q

3− j
i receives either q1i or q2i then agent Q j

i

envies Q3− j
i , a contradiction. Assume now that agent Q j

i , with i, j ∈ {1, 2}, receives object
q3− j
i . Since q3− j

i is the most preferred object for agent Q3− j
i and Q j

i is a neighbor of Q
3− j
i

inG, agent Q3− j
i envies Q j

i , a contradiction. Finally, if q
j
i receives object q j

i and agent Q3− j
i

does not receive object q3− j
i then agent Q3− j

i envies Q j
i , a contradiction. Therefore, agent

Q j
i receives object q j

i for any i, j ∈ {1, 2}. As we will see later, the fact that the allocation
of each objects q j

i , with i, j ∈ {1, 2}, is fixed will enforce the other agents to obtain a more
preferred object according to their preference.

For each variable xi we introduce:
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– variable-agent X1
i belonging to clique Q1,

– variable-agent X2
i belonging to clique Q2,

– variable-objects ui and ūi .

The preferences of variable-agent X j
i , for each i ∈ {1, . . . , p} and j ∈ {1, 2}, are:

– X j
i : ui � ūi � q1j � rest

where rest is an arbitrary order over the remaining objects. We show that in any LEF alloca-
tion, objects ui and ūi are assigned to agents X

j
i and X3− j

i , respectively, with j either equal

to 1 or 2. Assume by contradiction that agent X j
i , with i ∈ {1, . . . , q} and j ∈ {1, 2}, receives

object o /∈ {ui , ūi } in an LEF allocation. Since the allocation is LEF, agent Q1
j must receive

object q1j (see the proof above). However, agents X
j
i and Q1

j are neighbors in G and agent

X j
i prefers q

1
j to o, and therefore agent X

j
i envies Q

1
j , a contradiction. The case where ui and

ūi are assigned to agents X1
i and X2

i , respectively, can be interpreted in I as setting variable
xi to true, and the case where ui and ūi are assigned to agents X2

i and X1
i , respectively, can

be interpreted in I as setting variable xi to false.
For each clause c j we introduce:

– clause-agents K 1
j , K

2
j and K 3

j belonging to Q1,

– clause-agent K j and dummy agents L1
j and L2

j belonging to Q2,

– clause-objects t j , t1j , t
2
j and t

3
j ,

– dummy objects h1j and h2j .

The preferences of clause-agents K i
j and K j and dummy agent L�

j , for each j ∈ {1, . . . ,m},
i ∈ {1, 2, 3} and � ∈ {1, 2}, are:
– K i

j : t ij � �̄( j, i) � t j � q11 � rest

– K j : t1j � t2j � t3j � q12 � rest

– L�
j : h�

j � q12 � rest

where �̄( j, i) denotes the variable-object corresponding to the negation of literal i in clause
c j , and rest is an arbitrary order over the remaining objects. It is easy to show that each
dummy agent L�

j should receive object h
�
j for an allocation to be LEF since agent Q1

2 should

receive object q12 . For the same reason, agent K j should receive either t1j , t
2
j or t

3
j . Assume

that K j receives t ij . In that case, agent K
i
j should receive item t j for the allocation to be LEF

since �̄( j, �) should be assigned to a variable-agent and q11 should be assigned to agent Q1
1

who is a neighbor of K i
j inG. Furthermore, for the allocation to be LEF, �̄( j, i) should not be

assigned to an agent of Q j since otherwise, K i
j would be envious of this agent. This gadget

can be interpreted in I as the requirement for at least one literal of c j to be true (Table 2).
We claim that C is satisfiable in I if and only if J contains an LEF allocation. Suppose

first that there exists truth assignment φ of X that satisfies each clause of C . We construct
from φ an LEF allocation in J . Assign q j

i to agent Q j
i for each i, j ∈ {1, 2}. Furthermore,

assign h�
j to agent L�

j for each j ∈ {1, . . . ,m} and � ∈ {1, 2}. Since each of these agents
receives her most preferred object, none of them will be envious. For each variable xi , assign
ui and ūi to agents X1

i and X2
i , respectively, if xi is true in φ, and otherwise assign ui and ūi

to agents X2
i and X1

i , respectively. Since X
1
i and X2

i are not neighbors in G and ui and ūi are
their two most favorite objects, neither of them will be envious. Finally, for each clause c j ,
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Table 2 The agents of clique Q1 (clique Q2, respectively) are listed in the first column (third column,
respectively) and their preferences are given in the second column (fourth column, respectively)

Agents of Q1 Preferences Agents of Q2 Preferences

Q1
1 q11 � q21 Q1

2 q12 � q22
Q2
1 q21 � q11 Q2

2 q22 � q12
X1
1 u1 � ū1 � q11 X2

1 u1 � ū1 � q12
. . . . . . . . . . . .

X1
p u p � ū p � q11 X2

p u p � ū p � q12
K 1
1 t11 � �̄(1, 1) � t1 � q11 K1 t11 � t21 � t31 � q12

. . . . . . . . . . . .

K 1
m t1m � �̄(m, 1) � tm � q11 Km t1m � t2m � t3m � q12

K 2
1 t31 � �̄(1, 3) � t1 � q11 L11 h11 � q12

. . . . . . . . . . . .

K 2
m t3m � �̄(m, 3) � tm � q11 L1m h1m � q12

K 3
1 t31 � �̄(1, 3) � t1 � q11 L21 h21 � q12

. . . . . . . . . . . .

K 3
m t3m � �̄(m, 3) � tm � q11 L2m h2m � q12

For any i ∈ {1, . . . ,m} and j ∈ {1, 2, 3}, �̄( j, i) denotes the variable-object corresponding to the negation of
literal i in clause c j

pick one literal which is true according to φ, say literal i , and assign t ij and t j to agents K j

and K i
j , respectively. Furthermore, assign to the remaining clause-agents in Q1 their most

favorite objects. It is easy to check that none of these agents will be envious, and the resulting
allocation is LEF.

Suppose now that there exists an LEF allocation A for J . We construct from A a truth
assignment φ which satisfies each clause of C . As shown above, in A either ui or ūi is
assigned to agent Xi for each i ∈ {1, . . . , p}. Therefore, set to true in φ each variable xi such
that ui is assigned to Xi , and set to false in φ each variable xi such that ūi is assigned to Xi .
As shown above, for each j ∈ {1, . . . ,m}, there exists agent K i

j who receives object t j inA.

Since K i
j is not envious, then no variable-agent receives �̄( j, i). Therefore, literal �( j, i) is

true according to φ, and each clause of C is satisfied by φ. �
By adding clusters of dummy agents having their associated dummy resource on top of

their preference ranking, we can generalize the previous negative result to any cluster graph
with k ≥ 2 (k constant) clusters.

Corollary 3 dec-LEF isNP-complete in any cluster graph with k ≥ 2 clusters or n/k (k ≥ 2)
clusters for k constant.

Proof As for Lemma 1, we show that we can add an agent, who is isolated in the network,
without changing the set of LEF allocations (under the condition that each vertex of the
network had at least one neighbor). Let I denote the original instance of dec-LEF, and let J
denote the new instance obtained after adding agent a and object o. The preferences of agent
a in J are arbitrary but object o must be on top. On the other hand, the other agents keep in
J the same preferences as in I except that object o is at the bottom of their preferences. It
is easy to check that there is a one-to-one correspondence between the set of allocations of
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I and J . This is mainly due to the fact that no agent, except a, can receive object o without
envying one of her neighbors (object o is her least preferred object). Furthermore, every LEF
allocation of I can be completed by allocating object o to agent a without creating envy.

This means that, starting from an instance of dec-LEF where the network is a clique,
on can add one by one isolated cliques of the same size without changing the set of LEF
allocation. Indeed, an additional clique, say K , can be added vertex by vertex, starting with
an isolated vertex. According to the first paragraph, the first vertex can be added without
changing the set of LEF allocations. Furthermore, the remaining vertices will be connected
to the vertices of K already present in the graph, and therefore Lemma 1 implies that this
can be done without changing the set of LEF allocation. All in all, one can add k −1 isolated
cliques without changing the set of LEF allocations, leading to an equivalent instance of
dec-LEF containing k cliques of the same size. �

3.2 DEC-LEF and vertex cover

So far the complexity of dec-LEF has been investigated through the degree of its nodes, but
other parameters can be taken into account. Let us show how the size of a (smallest) vertex
cover can help. A vertex cover C ofG = (N , E) is a subset of nodes such that {u, v}∩C �= ∅
for every edge {u, v} ∈ E . Since at least one of the extremities of each edge is contained
in C , I := N\C must be an independent set, that is a set of pairwise non-adjacent vertices.
Thus, an agent of I can only envy an agent of C .

Theorem 5 If the network G admits a vertex cover of size k, then dec-LEF can be answered
in O(nk+3).

Proof Let C be a vertex cover of the network and let I := N\C be the corresponding
independent set. One can easily construct a vertex cover of size k (if such a set exists) by
testing every subset of vertices of size k. The complexity of such a brute force algorithm is
in O(nk+3) since there is at most nk subsets of vertices of size k and testing if each of them
is a vertex cover can be done in O(n2) by checking if each edge is covered.

Then, use brute force to assign k objects of O to the agents of C with time complexity in
O(nk). For each partial allocationAwithout envy withinC , let O−A be the set of unassigned
objects (if no such partial allocation exists, then we can immediately conclude that no LEF
allocation exists). Build a bipartite graph (I , O−A; E ′) with an edge from agent i ∈ I to
object o ∈ O−A if assigning o to i does not create envy. There is an LEF allocation which
extends A if and only if the bipartite graph admits a perfect matching. The existence of a
perfect matching in a bipartite graph can be checked inO(n3) (see e.g., the book of Burkard,
Dell’Amico and Martello [20]). �

Themethod is efficientwhen k is small. For instance,dec-LEF is polynomial if the network
is a star because the central node of a star is a vertex cover.More generally, Theorem 5 implies
that dec-LEF is polynomial when k = O(1).

Theorem 5 implies that dec-LEF belongs to XP when the fixed parameter under con-
sideration is the size of a vertex cover. Recall that a problem belongs to FPT if there is an
algorithm to solve it with time complexity in O( f (k)nc), where c is a constant value and f
is an arbitrary function depending only on k. One could expect that dec-LEF also belongs
to FPT for the same parameter since the problem of finding a vertex cover of size k is FPT
[39]. However, the following theorem shows that there is no hope that dec-LEF belongs to
FPT.
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K1 K2

K3Km

Xv
e

oe ov oe

Xv
e

oe ov oe

Fig. 6 The graph of envy constructed by the reduction. Agents K1, K2, . . . , Km form a clique and the agents
out of this clique are only connected to one agent belonging to the clique. We assume that e = (v, v′) is an
edge of E , v belongs to V1 and v′ belongs to V2

Theorem 6 dec-LEF parameterized by the size of a vertex cover isW[1]-hard.

Proof We present a parameterized reduction fromMulticolored Independent Set [29].
An instance I of Multicolored Independent Set consists of a graph G = {V, E}, an
integer k, and a partition (V1, . . . ,Vk) of V . The task is to decide if there is an independent
set of size k in G containing exactly one vertex from each set Vi . Let m and p denote the
number of vertices and edges in G, respectively.

We construct an instance J of dec-LEF as follows. For each vertex v in V , we introduce
object ov . Let Oi denote the set of objects {ov : v ∈ Vi }, and let O↑

i denote an arbitrary order

over the objects of Oi . For each edge e = {v, v′} in E , we introduce two agents Xv
e and Xv′

e ,

and two edge-objects oe and o′
e. Let OE denote the set of edge-objects, and let O↑

E denote an
arbitrary ranking over the objects of OE .

For each integer i ≤ k, we introduce agent Ki . The agents of {Ki }i≤k form a clique in the
network G. Furthermore, for each vertex v ∈ Vi and for each edge e = {v, v′} in E , agent
Xv
e is connected to agent Ki in G. Finally, for each integer j ≤ |V| − k, we introduce agent

Dj who is isolated in G. All in all, there are m + 2p agents and objects.
Preferences are the following:

– Ki : O↑
i � O↑

1 � . . . � O↑
i−1 � O↑

i+1 � . . . � O↑
k � O↑

E
– Xv

e : oe � ov � o′
e � . . .

Since agent Dj is isolated in G, her preferences may be arbitrary. It is easy to check that
{Ki }i≤k forms a vertex cover in the network.

Figure 6 summarizes the construction.
We show that G has an independent set of size k containing one vertex in each set Vi if

and only if an LEF allocation exists in J . Assume first that {v1, . . . , vk} is an independent
set in G, where vi ∈ Vi for each i ≤ k. We construct an LEF allocation in J as follows. For
each i ≤ k, assign ovi to Ki , and for each edge e = (vi , v

′) in E , assign oe to Xvi
e . For each

agent Xv
e such that v is not selected in the independent set (i.e., v /∈ {v1, . . . , vk}), assign

oe to Xv
e if it is still available, and otherwise assign o′

e to Xv
e . Finally, assign the remaining

objects arbitrarily. We claim that this allocation is envy-free. Indeed, each agent Ki receives
an object of Oi . Therefore, no agent Ki will envy another agent K j with j �= i . Furthermore,
for each vertex v in Vi and for each edge e in E , agent Xv

e has a single neighbor who is Ki . If
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Ki receives ovi and v = vi then Xvi
e receives oe, and otherwise Xv

e receives o
′
e. In both cases,

agent Ki does not envy Xv
e since Xv

e receives an object of OE , and agent Xv
e does not envy

agent Ki since agent Xv
e receives either her most favorite object or her third most favorite

object while agent Ki does not receive ov (the second most favorite object of agent Xv
e ).

Assume now that an LEF allocation A exists in J . We claim that each agent Ki should
receive an object of Oi inA. By contradiction, assume that agent Ki receives object o /∈ Oi in
A. Note that for any j �= i , Ki and K j are neighbors. Hence, for any object o′, if o /∈ Oj and
o′ /∈ Oi ∪ Oj then o �Ki o

′ if and only if o �K j o
′ holds. Furthermore, if agent K j receives

an object of Oi in A then agent Ki will envy her. This implies that if o /∈ Oj then an object
of Oj must be assigned to K j in A to avoid envy between agents Ki and K j . Therefore, if
o ∈ OE then each agent K j , with j �= i , receives an object of Oj in A and agent Ki will
envy them, a contradiction. On the other hand, if o ∈ Oj for some j �= i then agent K j

receives an object of Oj inA and either Ki envies K j or K j envies Ki since o �Ki o
′ if and

only if o �K j o′ holds, a contradiction. Hence, each agent Ki should receive an object of
Oi in A. Let ovi denote the object assigned to Ki in A. We claim that {v1, . . . , vk} forms an
independent set in G. By contradiction assume that an edge, say e, connects vi and v j in G.
This implies by construction that Xvi

e and X
v j
e are neighbors of Ki and K j in G, respectively.

On one hand, if Xvi
e does not receive oe in A then she envies Ki who receives vi . On the

other hand, if X
v j
e does not receive oe inA then she envies K j who receives v j . Therefore, oe

must be assigned to both Xvi
e and X

v j
e , leading to a contradiction since oe cannot be assigned

twice. �

4 Optimization

In light of Sect. 3, we know that both max-LEF and max-NE are NP-hard even on very
simple graph structures. We present in this section approximation algorithms for max-LEF
and max-NE.

4.1 Maximizing the number of LEF agents

This subsection is dedicated to max-LEF, which aims at maximizing the number of non-
envious agents. A general method is proposed in Algorithm 1. For a maximization problem,
an algorithm is ρ-approximate, with ρ ∈ [0, 1], if it outputs a solution whose value is at least
ρ-times the optimal value, for any instance.

Algorithm 1:
Data: An instance 〈N , O, �,G = (N , E)〉
Result: An allocation A

1 Let A be an empty allocation
2 Find an independent set I of graph G (in any opportune way)
3 foreach i ∈ I do
4 Agent i receives in A her most preferred object according to �i within O
5 RemoveA(i) from O

6 CompleteA (in any opportune way) and returnA
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Proposition 1 Algorithm 1 is |I |
n -approximate for max-LEF, where I is the independent set

computed in step 2 of Algorithm 1.

Proof By construction, every member of I is LEF, and the largest number of LEF agents is
|N | = n. �
Proposition 2 The construction of I in Algorithm 1 (Step 2) can be done so that a polynomial
time (Δ(G) + 1)−1-approximation for max-LEF is produced, where Δ(G) is the maximum
degree in G as introduced previously.

Proof The independent set is built as follows. I is initially empty and while N �= ∅, do:
choose i ∈ N , add i to I , and remove i and its neighbors from N . Since a node has at most
Δ(G) neighbors, I is an independent set of size at least n/(Δ(G) + 1). Use Proposition 1 to
get the expected ratio of (Δ(G) + 1)−1. �

The (Δ + 1)−1-approximation algorithm is long known for the maximum independent
set problem (that is, find an independent set of maximum cardinality) and slight improve-
ments were proposed [43]. The following lemma shows that max-LEF shares exactly the
same inapproximability results as maximum independent set.

Lemma 2 Any ρ-approximate algorithm for max-LEF is also a ρ-approximate algorithm
for maximum independent set.

Proof Suppose that we have a ρ-approximate algorithm for max-LEF and let us construct
a ρ-approximate algorithm for maximum independent set. Let G denote the graph of
s vertices for which we look for an independent set of maximum size. Consider a set of s
agents with identical preferences over a set of m objects. The agents are embedded in G.
Note that for any allocationA of objects to agents, the set of non-envious agents forA forms
an independent set of G. Indeed, a non-envious agent receives a better object in A than any
of her neighbors. Therefore, each of her neighbors envies her, and no two neighbors can be
non-envious. Furthermore, for each independent set I of G, one can construct an allocation
of objects to agents such that no agent of I is envious (one can use Algorithm 1). Therefore,
the largest set of non-envious agents for any allocation of objects to agents is at least as large
as the largest independent set in G.

A ρ-approximate algorithm for max-LEF computes for this instance an allocationA. Let
I denote the set of non-envious agents forA. As it was shown above, this set is an independent
set. Furthermore, the size of I is at least ρ times the size of the largest set of non-envious
agents for any allocation of objects to agents. Since the largest set of non-envious agents for
any allocation of objects to agents is at least as large as the largest independent set in G, I is
a ρ-approximation for maximum independent set in G. �

Maximum independent set in general is Poly-APX-hard, meaning it is as hard as any
problem that can be approximated to a polynomial factor. Lemma 2 implies that max-LEF
is also Poly-APX-hard.

Proposition 3 max-LEF is Poly-APX-hard.

Thus, as long as we assume that P �= NP, there is no constant approximation-ratio algorithm
for max-LEF [5].

Interestingly, there are graph classes where the size of an independent set can be expressed
as a fraction of n. Therefore, this fraction corresponds to the approximation ratio of Algo-
rithm 1.
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Proposition 4 A polynomial time 0.5-approximate algorithm for max-LEF exists if the net-
work is bipartite.

Proof Suppose that the network is a bipartite graph (N1, N2; E). By definition both N1 and
N2 are independent sets. If |N1| ≥ |N2|, then run Algorithm 1 with I := N1, otherwise run
Algorithm 1 with I := N2. Since |I | = max{|N1|, |N2|} and |N | ≤ 2max{|N1|, |N2|}, a
polynomial time 0.5-approximation is reached. �

Proposition 4 can be easily extended to k-partite graphs (whose vertex set can be parti-
tioned into k different independent sets), leading to a polynomial time k−1-approximation
algorithm.

Note that if the network admits a vertex coverC of size k, thenAlgorithm1with I := N\C
provides a (1 − k/n)-approximate solution to max-LEF.

4.2 Optimizing degree of (non)-envy

Instead of simply counting the number of non-envious agents, we will now focus on a
more subtle criterion, measuring the degree of envy among agents. This leads to the max-
NE optimization problem (defined in Sect. 2) which consists in minimizing the average
degree of envy E(A) (or equivalently maximizing the average degree of non-envy NE(A) =
1 − E(A)). Before describing the algorithm, we first state the following lemma

Lemma 3 Let Un denote the uniform distribution over all matchings from n agents to n
objects. Then we have EA∼Un [NE(A)] = 5

6 − o(1).

Proof In the following, by an abuse of notation we write x, x ′ ∼ O and u, u′ ∼ [n] to
mean that both x and x ′ (respectively both u and u′) are drawn uniformly at random from O
(respectively [n]).

EA∼Un [E(A)] = 1

2 |E |
∑

{i, j}∈E
EA∼Un [e(A, i, j) + e(A, j, i)]

= 1

|E | (n − 1)

∑

{i, j}∈E
Ex,x ′∼O

[
max

(
0, ri (x) − ri

(
x ′)) : x �= x ′]

= 1

|E | (n − 1)

∑

{i, j}∈E
Eu,u′∼[n]

[
max

(
0, u − u′) : u �= u′]

= 1

|E | (n − 1)
|E | · Eu,u′∼[n]

[
max

(
0, u − u′) : u �= u′]

= 1

(n − 1)
Eu,u′∼[n]

[
max

(
0, u − u′) : u �= u′]

By the law of total expectation, we have:

Eu,u′∼[n]
[
max

(
0, u − u′) : u �= u′] = Eu,u′∼[n]

[
u − u′ : u > u′] · P (

u > u′ :
u �= u′) + 0 · P (

u′ > u : u �= u′)

= 1

2
Eu,u′

[
u − u′ : u > u′]

= 1

n(n − 1)

n−1∑

k=1

k(n − k)
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= n + 1

6

Thus,EA∼Un [NE(A)] = 1−EA∼Un [E(A)] = 1 − 1
(n−1) · n+1

6 = 1− n+1
6(n−1) = 5

6−o(1).
�

This tells us that with high probability, randommatchings yield high degrees of non-envy.
To get a deterministic algorithm based on this idea, we apply a standard derandomization
technique. In our algorithm (Algorithm 2), at each step i , agent i receives one of the remaining
unallocated objects.Ai denotes the partial allocation built up to step i where each agent j ≤ i
is assigned an object. This object is chosen so as to minimize the conditional expectation of
E (line 5). Ax

i is one of the possible allocations built from Ai−1 by allocating x to agent i .
We will show below that this conditional expectation can be computed efficiently.

Algorithm 2:
1 A0 is an empty allocation
2 for each agent i ∈ N do
3 U is the set of unassigned objects in Ai−1
4 for each object x ∈ U do
5 Ax

i ← Ai−1 ∪ {(i, x)}
6 vx ← EA∼Un

[E(A) : Ax
i ⊆ A]

7 x∗ ← argminx∈U vx
8 Ai ← Ai−1 ∪ {(i, x∗)}

Proposition 5 Algorithm 2 is a polynomial-time 5
6 −o(1) approximation algorithm for max-

NE.

Proof First, by standard arguments of the derandomization method (similar to e.g. page 132
of Vazirani’s book on approximation algorithm [48]) together with Lemma 3, we will show
that this algorithm outputs an allocation AN such that NE(AN ) ≥ 5

6 − o(1). By design we
haveNE(A∗) ≤ 1 whereA∗ is the assignment which maximizes the degree of non-envy, so
the approximation ratio holds.

Let us show that E(AN ) ≤ 1
6 + o(1). Because AN is not a partial allocation,

E(AN ) = EA∼Un [E (A) : AN ⊆ A], so showing by induction that for all i ∈ N ,
EA∼Un [E (A) : Ai ⊆ A] ≤ 1

6 + o(1) will conclude this part of the proof. At iteration i = 1,
we haveEA∼Un

[E (A) : Ai−1 ⊆ A] = EA∼Un [E (A)] = 1
6 +o(1) by Lemma 3. At iteration

i > 1 of the algorithm, by the law of total expectation we have

EA∼Un

[E (A) : Ai−1 ⊆ A] ≥ min
x

EA∼Un

[E (A) : Ai−1 ∪ {(i, x)} ⊆ A]

= EA∼Un [E (A) : Ai ⊆ A]

Thus, the conditional expectations are non increasing. Therefore, at iteration i = N we
have E(AN ) ≤ 1

6 + o(1).
Next, to show that the algorithm runs in polynomial time, we need to bound the

computation time of vx . If A is a partial allocation, define P(A, l) as the set of goods
that agent l can own without violating A. For example, if A is a complete allocation,
P(A, l) = A(l) and if A = {}, then P(A, l) = O . First note that due to the fact that
the expectation operator is linear, vx can be calculated as a sum of conditional expectations
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1
2|E |

∑
{l,h}∈E EA∼Un

[
e(A, l, h)+e(A, h, l) : Ax

i ⊆ A]
. Next, note that for any l, h ∈ N the

expectation EA∼Un [e(A, l, h) : Ax
i ⊆ A] is equal to 1|Zl,h|·(n−1)

∑
(a,b)∈Zl,h max(0, rl(a) −

rl(b)) where Zl,h = {
(a, b) ∈ P(l,Ax

i ) × P(h,Ax
i ) : a �= b

}
. The computation of vx can

thus be done in O(n4). �

5 Location and allocation

This section is dedicated to dec-location-LEF. The problem asks whether there exists an
assignment of agents to positions of the graph as well as an assignment of objects to agents
such that the resulting allocation is locally envy-free. The following theorem shows that this
problem is computationally challenging.

Theorem 7 dec-location-LEF is NP-complete.

Proof The reduction is from problem independent setwhich isNP-complete [33] and can
be defined as follows. An instance I of independent set is described by an undirected
graph G = (V, E) and a positive integer k ≤ |V|, the question is whether there exists an
independent set I ⊆ V of size k. Let s denote the size of V , and V = {v1, · · · , vs}.

We construct an instance J of dec-location-LEF as follows. The set of objects is
O = Q ∪ T , where Q = {q1, · · · , qs−k} and T = {t1, · · · , tk}. The set of agents is N =
{X1, . . . , Xs−k} ∪ {L1, . . . , Lk}. Let Q−i denote the set Q\{qi }, and let Q↑

−i , Q
↑ and T ↑

denote partial orders over Q−i , Q and T , respectively, where objects are ranked by increasing
order of indices. Preferences are as follows:

– Xi : qi � Q↑
−i � T ↑

– L j : T ↑ � Q↑

Finally, the network is G = G = (V, E).
We claim that we can place agents in G and allocate them objects such that there is no

envy in J if, and only if, G contains an independent set of size k in I.
Assume that I is an independent set of size k inG.We can assumewithout loss of generality

that I = {v1, . . . , vk}. We construct A and L as follows. If vi ∈ I then L(Li ) = vi and
(Li , ti ) ∈ A. Otherwise, agents are placed arbitrarily on G and receive their most preferred
object (i.e., (Xi , qi ) ∈ A). Thus, no agent Xi will envy one of her neighbors. Furthermore,
no two vertices L(Li ) and L(L j ) are neighbors in G. Therefore, no agent L j will envy one
of her neighbors, say Xi , who receives object qi that is less preferred by agent L j to object
ti .

Assume now that there exists L and A such that no agent envies one of her neighbors in
G when her position is defined by L and her assignment is defined by A.

For any Li and L j , either A(Li ) �L j A(L j ) or A(L j ) �Li A(Li ) holds since Li and
L j have the same preferences. Therefore, L(Li ) and L(L j ) cannot be neighbors in G since
otherwise either Li would envy L j or L j would envy Li .

Hence, {L(L1), . . . ,L(Lk)} forms an independent set of size k in G. �

Interestingly, the above reduction also holds whenA is fixed, i.e. the allocation of objects
to agents is imposed by the problem.

We shall extend the polynomial time result obtained for dec-LEF on networks of degree
at least n − 2.
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We claim that two agents having the same top object must be neighbors in G in any
yes-instance. Indeed, otherwise if one of them obtains her most preferred object then the
other will be envious, and if this object is assigned to one of her common neighbor in G (see
Observation 2) then this vertex will have a degree at most n − 3 in G. Therefore, one can
focus on L�, defined as the set of location functions such that each pair of agents having the
same top object are neighbors in G (or equivalently, not neighbors in G).

If an instance contains three (or more) agents with the same top object then it must be a
no-instance since each vertex in G has degree at most 1 and no three agents can be neighbors
in G. The following lemma shows that the location functions of L� are all equivalent for the
search of an LEF allocation.

Lemma 4 If A is an LEF allocation for some L, and A is Pareto-optimal among the LEF
allocations determined with respect to L, thenA is also LEF for any location function of L�.

Proof First of all, L must belong to L� for A to be LEF. Let L′ be another function of L�.
Since any pair of agents having the same top object should be neighbors inG for any location
function of L�, they have the same set of neighbors in G in both L and L′. Therefore, if none
of these agents envies one of her neighbors under Lwith allocationA, then they neither envy
their neighbors under L′ with allocation A.

Let i be an agent who is the only one to rank some object o at the first position in her
preferences. On one hand, if L(i) is a vertex of degree n − 1 then Observation 2 implies
that she must receive o. On the other hand, if L(i) is a vertex of degree n − 2 and j is the
unique neighbor of i in G then Observation 2 implies that o is assigned either to i or to j .
But j must also be the unique agent to have some object o′ ranked first in her preferences,
where o �= o′, because otherwise the other agent who ranks o′ first in her preference would
not be the neighbor of j under L(i). Therefore, either agent i or j must receive o′. Since by
hypothesis A is Pareto-optimal among the LEF allocations determined with respect to L, o
must be assigned to i and o′ must be assigned to j . All in all, agent i must receive her top
object in A and envies none of the other agents. Therefore, no agent will envy her neighbor
under L′ with allocation A. �

In order to solve dec-location-LEF, one can compute a function L of L� by assigning
the agents having the same top object to vertices connected in G, and by assigning the other
agents arbitrarily. If such a location does not exist then the instance is a no-instance. Once
L is fixed, one can use the algorithm presented in Theorem 2 to compute an LEF allocation
if such an allocation exists. If an LEF allocation A is returned then the algorithm returns
L and A. Otherwise, we know by Lemma 4 that no function in L� can lead to an LEF
allocation (if an LEF allocation for L had existed, then an LEF allocation which is Pareto-
optimal among the LEF allocations determined with respect to L would necessarily exist),
and the algorithm returns false. This algorithm clearly runs in polynomial time, leading to
the following theorem:

Theorem 8 dec-location-LEF in graphs ofminimumdegree n−2 is solvable in polynomial
time.

6 The likelihood of locally envy-free allocations

In order to better understand the impact of the structure of the graph on local envy-freeness,
we run some experiments where we investigate the influence of different characteristics of the
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Table 3 Experimental results for
our decision and optimization
problems in 1000 instances with
8 agents and graphs of regular
degree

Degree 1 2 3 4 5 6 7

LEF 1 0.72 0.22 0.05 0.02 <0.01 <0.01

Loc-LEF 1 1 1 0.92 0.49 0.07 <0.01

max-LEF 0 0.28 0.93 1.52 1.95 2.44 2.78

max-NE 1 0.99 0.99 0.99 0.98 0.98 0.98

MMPE 0 0.28 0.83 1.19 1.42 1.69 1.91

TheLEF andLoc-LEF lines refer to the likelihood of existence of an LEF
allocation in dec-LEF and dec-location-LEF problems. The max-
LEF and max-NE lines refer to the number of LEF agents in average
and to the average degree of non-envy, respectively, after optimization.
The MMPE line gives the maximum number of agents envied by any
agent, after optimization

network. In particular, we observe the impact of the degree of the nodes in all the problems
that we have studied and the behavior of specific classes of graphs close to real networks in
the existence of locally envy-free allocations.

6.1 Impact of the degree of the nodes

In this subsection we generate random instances of our decision and optimization problems
and use mixed integer linear program formulations to compute the optimal solutions of these
instances. We build on the ones proposed by Dickerson et al. [26] (which address envy-
freeness and the minimization of maximum pairwise envy among any two agents [41], in
a context of additive utilities with several goods per agent). To fit our setting, we adapt it
so as to account for graph constraints, the constraint that exactly one object per agent is
to be allocated, and strict ordinal (linear) preferences over these objects. We further design
three variants, two where the objective functions correspond to max-LEF and max-NE, and
another one where the locations of agents on the graph are treated as decision variables, to
address the more challenging dec-location-LEF. The interested reader may find this MIP
formulation in Appendix A.

For these experiments, we generate random regular graphs of degree k with 8 vertices for
k ranging from 1 to 7. We rely on the graph generator of the Python module NetworkX [36],
which produces random regular graphs using the algorithm of Steger and Wormald [45].
Agents’ preferences are randomly drawn from impartial culture [15,34], that is, all possible
preference orders are equally likely and chosen independently. Table 3 shows the results
(averaged over 1000 runs). The entry LEF gives the likelihood of picking a yes-instance
of the LEF problem, whereas Loc-LEF gives this likelihood for dec-location-LEF. On
line max-LEF, we report the number of remaining envious agents after solving the max-
LEF optimization problem, and max-NE gives the average degree of non-envy after solving
max-NE optimization problem. Finally, the entry MMPE corresponds to the “classical”
minimization of maximum pairwise envy (MMPE) of Lipton et al. [41] which in our context
can be interpreted as the maximum number of agents envied by any agent.

Discussion about the results The first question that we address is how the likelihood to pick
a positive instance of dec-LEF evolves, under impartial culture. It must clearly decrease: in
the extreme case of a complete graph, recall that all agents must have a different preferred
item, which occurs with a low probability, i.e. with probability equal to n!/nn .
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In fact, asymptotically (as the number of agents grows to infinity), it can be shown that
the likelihood to pick a positive instance is negligible, as soon as the degree of the graph is
above a fraction of 1/e (� 0.36) of the overall number of nodes. The following proposition
formally states this:

Proposition 6 Assume agent preferences are drawn from impartial culture. Suppose that
δ(G) ≥ cn, where c > e−1 is some constant. Then almost surely G is not locally envy-free.

Proof Consider a fixed allocation A. For any agent i , define NE(i) as the event that i does
not envy her neighbors. Clearly, since preference lists are completely independent, the events
NE(i) and NE( j) are independent for all i �= j . We note also that as preference lists are
random permutations, P (NE(i)) = 1

degG (i)+1 for every agent i . Thus, clearly

P(A is locally envy-free) ≤
(

1

δ(G) + 1

)n

Let X be the number of locally envy-free allocations. It follows that E[X ] ≤ n! ( 1
cn

)n ≤√
2πn

( n
e

)n
e

1
12n

( 1
cn

)n
, by Stirling’s formula. Thus, E[X ] ≤ 3

√
n

( 1
ec

)n
. Thus, by Markov’s

inequality, the probability that there is an LEF allocation is at most 3
√
n

( 1
ec

)n = o(1), since
ce > 1. �

On the other hand, for graphs of small degrees, it is often the case that an LEF can be
found. The question is thus how this drop will occur. Our experiments, displayed in Table 3,
suggest that this decrease is sharp.

Now let us turn our attention to dec-location-LEF. The ability to allocate agents on
the network gives the central authority some extra-power when it comes to finding an LEF.
However, note that this power heavily depends on the structure of the graph (for instance, it
is useless when the graph is complete, as all the different ways to label the graph with agents
are isomorphic). The entry Loc-LEF of Table 3 shows that this power can be significant: the
likelihood to pick an instance where an LEF allocation exists in that context remains above
90% until degree 4, while it was as low as 5.5% in the basic problem.

Although an LEF allocation may not exist, positive results are obtained regarding the
measures we optimize. Even with a complete graph, it is on average possible to allocate
items so as to make envious only about a third of the agents, and such that no agent envies
more than two other agents in our instance with 8 agents. Indeed, when the degree of the
graph is 7 (i.e. the graph is complete), the average number of envious agents (max-LEF) is
2.78 and the average maximum number of agents envied by any agent (MMPE) is 1.91.

6.2 Empirical existence of LEF allocations in realistic networks

In this subsection, we are especially concerned with the frequency of positive instances
of dec-LEF, that is how often a locally envy-free allocation exists, and how many LEF
allocations there are when they exist. We conduct experiments in more realistic settings, in
particular by considering domain restrictions for preferences, and graph structures which
may be induced by those agents’ individual preferences.

Like in the first subsection, we run 1000 instances with 8 agents. The linear preferences of
the agents are generated either from impartial culture (IC), with no restriction of domain, or
following two different distributions for preferences restricted to the single-peaked domain
[14]. Let us recall that a preference order �i is single-peaked with respect to an axis >O
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over the objects if there exists a unique peak object x∗ ∈ O such that for every couple of
objects a and b, x∗ >O a >O b implies that x∗ �i a �i b and a >O b >O x∗ implies
that x∗ �i b �i a. In our experiments, the single-peaked preferences are generated from the
single-peaked uniform culture (SP-U), i.e., they are uniformly drawn from the urn containing
all single-peaked rankings with respect to a given axis over the objects, or from the single-
peaked uniform peak culture (SP-UP), i.e., they are generated by uniformly drawing a peak
alternative on a given axis over the objects and then by iteratively choosing the next preferred
alternatives with equal probability either on the left of the peak in the axis, or on the right.

We restrict ourselves to specific classes of graphs, and more precisely to Barabási-Albert
random graphs [10], graphs with homophily, and graphs complementary to graphs with
homophily (we refer to them as graphs with heterophily). These graphs are supposed to be
closer to real networks than simple random graphs.

The Barabási-Albert graphs are typical scale-free networks. The scale-free property is
usually found in real networks and has been formulated in [10]. A network is scale-free if
the degree of its vertices follows a power-law distribution, that is the fraction of vertices
of degree k is proportional to k−γ , for some constant γ . The main observable feature on
a scale-free network is that it contains many hubs, that are nodes with high degree. The
Barabási-Albert random graphs are scale-free because the degree of their nodes follows a
power-law distribution with degree exponent γ equal to three. In such random graphs, the
network is iteratively constructed by adding to a subgraph a new node which is connected
with higher probability to high degree nodes, following a preferential attachmentmechanism.
More precisely, given a subgraph G ′ defined on a subset of vertices N ′ ⊆ N , a new graph
G ′′ is constructed by adding a new node i ∈ N\N ′ and a new edge connecting i and any
node j ∈ N ′ with probability p j = degG′ ( j)∑

i ′∈N ′ degG′ (i ′) .

A network respects homophily if two “similar” nodes tend to be connected in the graph.
In the context where agents are embedded in a network, two agents can be considered similar
if they have close preferences over the set of objects. We generate graphs with homophily
by following a protocol adapted for taking into account ordinal preferences: the more the
agents agree on pairwise comparisons of the objects, the more likely they are connected.
More precisely, two agents i and j are connected via edge {i, j} in G with probability
equal to qi j = |{(a, b) ∈ O2 : a �i b and a � j b}|/(n2

)
. Intuitively, in this model, the

probability of connection between two agents is inversely proportional to the Kendall-Tau
distance between their respective preference rankings. In particular, two agents with exactly
the same preferences are necessarily connected.

The results concerning the frequency of existence of an LEF allocation are presented in
Fig. 7.

Observe that the likelihood of finding an LEF allocation in a graph with homophily is
extremely low. Indeed, the closer the preferences of two agents, the more likely they are to
be connected in the network with homophily. Therefore, it appears natural that finding an
LEF allocation in such instances is difficult. On the contrary, when this is the complementary
graph, i.e., the non-envy graph G, that respects homophily, the likelihood of finding an LEF
allocation is clearly higher. Naturally, there are more LEF allocations when the complemen-
tary graph respects homophily because two agents with very different preferences are more
likely to be connected than two agents with similar preferences. Therefore, it should be easier
to find an LEF allocation in such graphs. The likelihood of existence of an LEF allocation
in such graphs is even higher for single-peaked profiles: an LEF allocation exists in 30% of
the instances under impartial culture whereas this frequency is around 40% for SP-U profiles
and more than 60% for SP-UP profiles. The significant increase in the frequency of existence
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Fig. 7 Likelihood of existence of an LEF allocation in dec-LEF problem for different classes of graphs (with
homophily, with heterophily or of type Barabási-Albert) and different types of ordinal preferences (IC, SP-U
or SP-UP) in 1000 generated instances with 8 agents

of LEF allocations for single-peaked profiles where the top object of each agent is uniformly
drawn (SP-UP) is due to the fact that preference orders that are single-peaked with the same
top object (or peak) are very close regarding the number of common pairwise comparisons
of objects. Therefore, in single-peaked profiles, two agents having the same top object are
very likely to be connected in graphs respecting homophily, and thus are very likely to not
be connected in graphs with heterophily. On the contrary, by construction of a single-peaked
preference order, two preference orders with different peak objects, and especially two peak
objects that are far from each other on the single-peaked axis over the objects, tend to agree
on a very few number of pairwise comparisons of objects. This is typically the case for the
two extreme points of the single-peaked axis which induce unique preference orders that
are completely reversed; two agents having these respective preferences are necessarily con-
nected in graphs with heterophily. Preference orders with different peak objects appear more
frequently in single-peaked profiles SP-UP than in single-peaked profiles SP-U. Indeed, in
the SP-UP distribution, the probability to pick a preference order with a given peak object
o ∈ O is equal to 1/n for every object o whereas, for instance, the probability of picking the
unique single-peaked preference order with an “extreme” object (in the single-peaked axis)
as its peak is equal to 1/2n−1 in the SP-U distribution.

Concerning the Barabási-Albert graphs, the likelihood of finding an LEF allocation is high
under impartial culture (around 80%), low for SP-U profiles (around 30%) and medium for
SP-UP profiles (around 50%). For these graphs, contrary to graphs where the complement
respects homophily, the likelihood of finding a locally envy-free allocation is significantly
higher in profiles generated uniformly (IC). This can be explained by the fact that the pref-
erences of the agents are less correlated and thus globally the agents do not desire the same
objects. Similarly, as with graphs whose complement respects homophily, the likelihood of
finding an LEF allocation is higher in SP-UP profiles than in SP-U profiles because the
preferences of the agents are more diverse.
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Table 4 Number of LEF
allocations in positive instances
of dec-LEF for different classes
of graphs with 8 agents

IC SP-U SP-UP

Homophily 4.26 0 1.5

Heterophily 9.86 267.08 146.40

Barabasi-Albert 7131.24 18,006.51 11,744.64

Regarding the number ofLEF allocations, the results are presented inTable 4. The numbers
are given in average without counting the negative instances for existence in order to have a
clearer idea and not being noised by the numerous instances with no LEF allocations. The
instances are the same as those considered for testing the likelihood of existence. Recall
that the total number of possible house allocations for instances with 8 agents is equal to
8! = 40,320.

In accordance with the likelihood of existence which is very weak for networks with
homophily, the number of locally envy-free allocations is also extremely low in such graphs.
For the other types of graphs, the number of LEF allocations is rather high, especially for
Barabási-Albert graphs. This is due to the very low density of Barabási-Albert graphs com-
pared to the other graphs. Globally, the number of LEF allocations is smaller under impartial
culture, even for Barabási-Albert graphs for which the frequency of LEF existence is the
highest under impartial culture. Moreover, the number of LEF allocations is the highest for
SP-U profiles. This may be surprising because the likelihood of existence of an LEF alloca-
tion is the lowest for SP-U profiles (see Fig. 7). This phenomenon may be explained by the
fact that the few instances with existence of LEF allocations in SP-U profiles may exhibit
opportune configurations where the LEF allocations are very numerous.

7 Conclusion and future work

We have studied different aspects of local envy-freeness in house allocation settings. First
of all, deciding whether a locally envy-free allocation exists in a given instance is computa-
tionally hard even for very simple and sparse graphs. Nevertheless, we were able to provide
some tractable cases according to the network topology. See Table 1 for the details of the
complexity results and polynomial cases, with respect to some parameters of the graph. Inter-
estingly, dec-LEF is solvable in polynomial-time in graphs of degree at least n − 2. This
case is very interesting because it relies on meaningful envy-graphs. Indeed, the graphs with
degree at least n − 2 refer to the case where the non-envy graph is of degree at most 1, and
thus includes the case where the non-envy graph is composed of couples of agents within
which there is no reason for envy to exist.

We have also investigated an optimization perspective, and have tried to maximize the
number of LEF agents or minimize the average envy with respect to specific degrees of
envy. We have provided for both cases approximation algorithms. Due to its connection with
maximum independent set (cf. Lemma 2), significant improvements for max-LEF are
unlikely.

In a third direction, we have studied the power of the central authority by assuming that,
given the structure of the network, she can assign in addition to the items to the agents, the
agents to the locations on the graph. This problem can be understood as assigning tasks to
workers as well as time slots (see Example 1). Although hard in general, this problem is
solvable in polynomial time for the interesting case of graphs of degree at least n − 2.
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Fig. 8 The only LEF allocation is
not Pareto
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Finally, the experiments confirm the intuition that the likelihood of finding a locally envy-
free allocation is higher in sparse graphs. But they also highlight the fact that for some
graphs close to real social networks, such as non-envy graphs with neighbors having similar
preferences or scale-free networks, the probability of existence of an LEF allocation is rather
high as well as the number of such allocations.

There are several interesting future directions to explore.We give below some preliminary
thoughts on the ones we find the most stimulating.

Constraints on the allocation Two other relevant challenges related to dec-LEF are: Given
a partial allocation of the objects, can a full LEF allocation be found? Given some forbidden
object-agent pairs, can an LEF allocation be found?

Pareto-efficiency and LEF This paper leaves aside efficiency concerns, except for the fact
that objects should not be wasted. A natural question is how LEF requirements interplay with
Pareto-efficiency. As we have seen already, as soon as the network is not complete, an LEF
allocation is not necessarily Pareto-efficient. More interestingly, it is also not the case that at
least one of the LEF allocation is Pareto. This can be seen on the example depicted in Fig. 8.

This instance admits a singleLEF allocation {(1, a), (2, b), (3, d), (4, c)}, which is Pareto-
dominated by {(1, c), (2, b), (3, d), (4, a)}, which is not LEF (agent 3 would envy agent 4).
Based on these remarks, it would be interesting to study Pareto-efficient allocations within
the set of LEF allocations (a notion which also emerged in Lemma 4, but remains to be
studied in depth).

Oriented graphs A natural extension of dec-LEF is to consider a network modeled with a
directed graph. An arc (u, v) indicates that u possibly envies v, but it does not indicate that v
possibly envies u, unless the arc (v, u) is also present. In this directed case, an allocation A
is said to be LEF if A( j) �i A(i) for every arc (i, j). It is not difficult to see that dec-LEF
is NP-complete in this directed case (use the proof of Theorem 1 where each edge {u, v} is
replaced by the arcs (u, v) and (v, u)). Interestingly, the directed variant of dec-LEF can be
solved efficiently in directed acyclic graphs (DAGs). Indeed, if the network is a DAG, then
an LEF allocation must exist, and it can be computed in polynomial time. In fact, a DAG has
at least one source, i.e. a vertex with indegree 0. If a source of a DAG is deleted, then we
get a (possibly empty) DAG. The algorithm computing an LEF allocation works as follows:
while the network is non empty, find a source s, allocate s her most preferred object os ∈ O ,
remove os from O , and delete s. The algorithm also guarantees a Pareto-optimal allocation
and mimics a serial dictatorship [47].

DAGshave also been considered byBredereck et al. [19,Observation 3] but their algorithm
is different because giving nothing to an agent is not allowed in our setting.

Note that DAGs actually characterize exactly those graphs guaranteeing LEF to exist (if
a cycle exists, simply set the preferences of all agents to be exactly the same within the
cycle to get a no-instance). But this leaves other interesting questions open: for instance, are
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there other natural classes of graphs admitting polynomial time algorithms for dec-LEF in
oriented graphs?
Domain restrictions There is a long tradition in social choice to consider domain restrictions
on agents’ preferences to obtain positive results. This would be natural to study our setting
under such assumptions. For example, we can fix the number of different rankings. To take
a concrete question, how difficult dec-LEF and dec-location-LEF are when there are
only two categories of agents: those with ranking �1 on the objects and those with ranking
�2? More generally, can well-known domain restrictions, such as single-peakedness, be
useful? Since the relevance of this domain restriction in the context of house allocation has
recently been emphasized [9,24], this might be an interesting road to pursue. As a first step
in that direction, we have conducted experiments which provide some insights regarding the
likelihood of locally envy-free allocations in this domain.
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A Appendix: MIP formulation for DEC-LOCATION-LEF

We describe the MIP formulation used to solve the dec-location-LEF problem. We are
given a set of objects O , a set of agents N equipped with preferences over those objects (for
the ease of exposure we refer here to ri,o as the rank of object o in the preference order of
agent i), and a graph G = (V , E).

Together with the real valued decision variable e, which will be used to express the envy
bound we try to minimize, we make use of the following (binary) decision variables:

– xi,o: agent i holds object o
– li,p: agent i is located on node p
– si, j,o: agent i sees that agent j holds object o

We first express that each agent must receive exactly one object, and that each object
must be assigned to exactly one agent (constraints (1) and (2)). Similarly, each agent must be
assigned to a single node of the network, and each node must have a single agent assigned
(constraints (3) and (4)).

∀i ∈ N : ∑
o∈O

xi, j = 1 (1)

∀o ∈ O : ∑
i∈N

xi,o = 1 (2)

∀i ∈ N : ∑
p∈V

li,p = 1 (3)

∀p ∈ V : ∑
i∈N

li,p = 1 (4)

When agent i is located on a node p connected to a node q where agent j holds o, i sees
that j holds o:

∀i, j ∈ N ,∀{p, q} ∈ E : li,p + l j,q + x j,o − 2 ≤ si, j,o (5)
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Finally, we try to minimize the amount of envy between any pair of agents (MMPE),
which is expressed by setting, together with the objective function min e, constraint (6):

∀i, j ∈ N :
∑

o∈O
ri,o × si, j,o −

∑

o∈O
ri,o × xi,o ≤ e (6)

Note that in the case of dec-location-LEF, we are only interested in whether we can
find a solution which sets the envy bound e at 0, i.e., whether an LEF allocation exists.
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