
Java 101 - Magistère BFA
Lesson 1

Stéphane Airiau

Université Paris-Dauphine

Lesson 1– (Stéphane Airiau) Java 1

Evaluation
small project mainly to make you implement a small application

Slides (in English) will be posted at this webpage.

There are also lecture notes, used in my course for L3 (in French, covering
more material).

http://www.lamsade.dauphine.fr/~airiau/Teaching/L3-Java/2018.pdf

Lesson 1– (Stéphane Airiau) Java 2

http://www.lamsade.dauphine.fr/~airiau/Teaching/L3-Java/2018.pdf

Object Oriented Programming in Java

Lesson 1– (Stéphane Airiau) Java 3

Objects and Classes

An object can be defined by its states and its behaviours

A car seen as an object
States Behaviours
brand accelerate
model gear up
power gear down
fuel level turn wheel
oil level opening door
tires pressure closing door
rpm break

A class can be seen as a blue print used for creating objects
states are represented by variables
behaviours are represented by methods.

An object is a class instance.

The state of an object can only be changed by the behaviour of the object
ë using the methods of the object.

Lesson 1– (Stéphane Airiau) Java 4

Object

An object is an instance of a class.

The running example for the course will be a class of characters of comic
books such as Astérix.

We will create a class Character. When we will create a particular cha-
racter, say Astérix, we will instantiate the class Character to create the
instance / the object Astérix.

By convention, the name of a class always start by an upper case letter.
The instances/objects and everything else will start by a lower case letter.

We will write a class MyClass in a file MyClass.java. We will write the
code of the class starting with the keyword class

class Character {
. . .

}

to be saved in a file Character.java

Lesson 1– (Stéphane Airiau) Java 5

Java comes with many classes!

Java comes with a large class library. The library is organised in different
packages.

http://docs.oracle.com/javase/8/docs/api/
overview-summary.html

For instance, the package java.lang contains all the basic classes of
Java. The class to manipulate strings of characters is located in that pa-
ckage and is called String.

Lesson 1– (Stéphane Airiau) Java 6

http://docs.oracle.com/javase/8/docs/api/overview-summary.html
http://docs.oracle.com/javase/8/docs/api/overview-summary.html

Instance variables

instance variables :
these variables define the characteristics of the objects.
• initialisation is optional.
access : <name object>.<instance variable name>

Character asterix;
. . .
asterix.name;

class variables : these variables are common to all the instances of the
class,
• declaration with the keyword static
• initialisation is compulsory
access : <class name>.<class variable name>

example : the class Float encapsulates a floating point number float.
class variables : MAX_VALUE, MAX_EXPONENT, NaN, etc.

Lesson 1– (Stéphane Airiau) Java 7

Class method and Instance methods

Instance methods : these methods allows to access or modify the state
of an instance/object
Class methods : these methods do not modify the state of an object.
Usually, there are utility methods to work with object of the class.

For now, class methods may not appear so useful, just remember they
exist.

Example : Float class

instance method String toString()
ë returns a representation of the current object as a character string

class method static String toString(Float f)

ë returns a representation of an object passed in parameter

1 Float f;
2 . . .
3 System.out.println(f.toString());
4 System.out.println(Float.toString(3.1419));

Lesson 1– (Stéphane Airiau) Java 8

Encapsulation

The behaviour or the state of an object can be known by every other object
ë public

Any class can
execute a public method
access or modify a public variable

hidden to other classes ë private
one can call a private method, access or modify a private variable only if
it is inside the class

ë goal is to hide what is "under the hood"
(one will be able to change code without affecting any other class).

ë protection

Lesson 1– (Stéphane Airiau) Java 9

Creating an object : call a constructor

A class is just a blue print to create instances.
To create an object, we use a special method called a constructor.
In the class, we need to implement a constructor
signature of the constructor

the name of the method is the name of the class
there is not return type nor void

The default constructor is the constructor with no argument :

1 public class <class name> {
2 // declare variables
3 // (class or instance)
... . . .

5 // default constructor
6 public <class name>(){
7 // body
8 }
9 }

Lesson 1– (Stéphane Airiau) Java 10

Example

In Java, we can use the same name for a method but with different orders
and/or numbers of parameters. We can have many constructors to make
it easier to build an object.

1 public class Character {
2 public String name;
3
4 // default constructor
5 public Character(){
6 name = ”unknown";
7 }
8
9 public Character(String my_name){

10 name = my_name;
11 }
12 }

In the example, we have two constructors.

Lesson 1– (Stéphane Airiau) Java 11

Declaring and Creating an Object

Declaration
In Java, we can declare and object telling Javathe nature of an
object : every time Javawill see the variable name, Javawill know
its declared nature.
In Java, any variable must be declared !

ë <class name> <object name>

Creation
we use the keyword new and we call the constructor :
new <class name>(<arguments list>);

we can declare and affect the object in the same instruction

1 Character asterix = new Character("Astérix");
2 Character obelix = new Character("Obelix"),
3 idefix = new Character(”Idéfix”),
4 romain = new Character();

Lesson 1– (Stéphane Airiau) Java 12

Ready to build a class

we know how to create a class
we know how to create objects
to build a class, we need to define

instance variables : they can be other objects (so we know how to
declare them and create them),
or "primitive types" such as int, double (we’ll talk about this soon).
instance methods : these methods access or modify the state of the
object. (we’ll talk about creating method soon).
class variables and methods if needed.
and we need to define at least one constructor (we already know how
to do that !)

Write your first class :
1- Code a class that represent students. Each students has a name and

3 grades : one for each subject : bank, finance, insurance.
2- What instance methods would be usefull ?

Lesson 1– (Stéphane Airiau) Java 13

Some basic knowledge

ë The basics
All about writing basic code without using the concept of object.

Variables, operators, types
Tests, loops
Arrays
methods

Lesson 1– (Stéphane Airiau) Java 14

Instructions and comments

1 // This is a comment

1 /* this is a
2 comment
3 using different lines */

An instruction must satisfy the grammar of the langage Java.

Most of the instructions finish with a ;

Lesson 1– (Stéphane Airiau) Java 15

Elementary Types

These types are not objects, they are primitive/elementary types that can
be used to build/work with objects.

The "number of bits" denotes the size (in bits) needed to encode one ele-
ment of each type.

Elementary
Types

number
of bits value interval

boolean 1 true and false
byte 8 an integer between -128 and 127
short 16 an integer between -215=−32768 et 215 −1=32767
int 32 an integer between -231 ≈−2.1 ·109 and 231 −1≈ 2.1 ·109

long 64 an integer between -263 ≈−9.2 ·1018 and 263 −1≈ 9.2 ·1018

char 16 unicode characters, there are 65536 codes
float 32 a floating point number following theIEEE norm
double 64 a floating point number following the IEEE norm

similar types are used for instance in VBA.

Lesson 1– (Stéphane Airiau) Java 16

Variables : declaration and initialisation

simple declaration :
<type> <nom>;

declaration with affectation :
<type> <name> = <value in the type> | <variable> |
<expression>;

multiple declarations :
<type> <name1>, <name2>, . . ., <namek>;

multiple declaration with partial affectation :
<type> <name1>, <name2>= <value in the type>, . . .,
<namek>;

Lesson 1– (Stéphane Airiau) Java 17

Cast : when types do not match

Here is the situation :
1 <type1> <nom1> = <valeur1>;
2 <type2> <nom2> = <nom1>;
3 <type2> <nom2> = <valeur1>;

Implicit cast : when type2 is « stronger » than type1

1 int i = 10;
2 double x = 10;
3 double y = i;

an int « fits » inside a double.
Explicit cast when <type1> is « strictly stronger » than <type2> :
we need to tell the compiler to do something

1 double x= 3.1416;
2 int i = (int)x;

We need to tell Java to « cut » the double to make it fit inside an
int.

Lesson 1– (Stéphane Airiau) Java 18

Unary operator

Operator degree of priority action examples
+ 1 positive sign +a; +7
- 1 negative sign -a; -(a-b); -7
! 1 logical negation !(a<b);
++ affectation and increment by one n++;++n;
−− increment by one then affectation n++; −−i;

Lesson 1– (Stéphane Airiau) Java 19

Binary operator

Operator degree of priority action examples
* 2 multiplication a * i
/ 2 division n/10
% 3 remainder of integer division k%n
+ 3 addition 1+2
- 3 substraction x-5
< 5 strictly smaller than i<n
<= 5 smaller or equal to i <= n
> 5 strictly greater i < n
>= 5 greater or equal i >= n
== 6 equality i==j
!= 6 different i!=j
& 7 conjunction (logical and) (i<j) & (i<n)
| 9 disjunction (logical or) (i<j) | (i<n)
&& 10 optimised conjunction (i<j) && (i<n)
|| 11 optimised disjunction (i<j) || (i<n)
= affectation x = 10; x=n;

+=, -= affectation and increment i += 2; j-=4

Warning : do not use = for equality test!

Lesson 1– (Stéphane Airiau) Java 20

Expression type

Is the following code correct ?

1 int i = 5,j;
2 double x = 5.0;
3 j=i/2;
4 j=x/2;

1 double x=2.75;
2 int y = (int) x * 2;
3 int z = (int) (x *2);

What are the values of y and z ?

Lesson 1– (Stéphane Airiau) Java 21

Expression type

Is the following code correct ?

1 int i = 5,j;
2 double x = 5.0;
3 j=i/2;
4 j=x/2;

1 double x=2.75;
2 int y = (int) x * 2;
3 int z = (int) (x *2);

What are the values of y and z ?

Lesson 1– (Stéphane Airiau) Java 22

Equality between object

1 Character asterix = new Character("Astérix");
2 Character asterixBis = asterix;
3 Character asterixTer = new Character("Astérix");
4 if (asterix == asterixBis)
5 System.out.println("Red");
6 else
7 System.out.println("Green");
8 if (asterix == asterixTer)
9 System.out.println("Blue");

10 else
11 System.out.println("Yellow");

What is written in the output ?

a variable is a reference to an object in memory
and not the object !
== is the equality between references :
two references are equal if they refer to the same object in memory
For testing the equality between properties of an object
we use a special method boolean equals(Object o).

Lesson 1– (Stéphane Airiau) Java 23

Equality between object

1 Character asterix = new Character("Astérix");
2 Character asterixBis = asterix;
3 Character asterixTer = new Character("Astérix");
4 if (asterix == asterixBis)
5 System.out.println("Red");
6 else
7 System.out.println("Green");
8 if (asterix == asterixTer)
9 System.out.println("Blue");

10 else
11 System.out.println("Yellow");

What is written in the output ?

a variable is a reference to an object in memory
and not the object !
== is the equality between references :
two references are equal if they refer to the same object in memory
For testing the equality between properties of an object
we use a special method boolean equals(Object o).

Lesson 1– (Stéphane Airiau) Java 24

Let’s repeat again

Declaration of an object

Character asterix;

one tells that an object of a given type is known with a given name :
The object named as asterix is of type Character
Creation of an object

asterix = new Character("Astérix";)

The variable asterix refers to an object in memory that is a
Character

asterix = new Character("Idéfix");

The variable asterix now refers to a different object that is also a
Character.
What happens to the previous object ?

Lesson 1– (Stéphane Airiau) Java 25

Arrays

How to declare an array :

1 <type> [] line;
2 <type> [][] rectangle;
3 <type> [][][] cube;

How to create an array : you must tell the array size !

1 <type> [] line = new <type>[<taille1>];
2 <type> [][] rectangle = new <type>[<taille2>][<taille3>];

How to get the size of the array : cube.length

Warning : in computer Science,
the first entry of an array is indexed by 0.

ë the last entry of an array is then length-1.
How to use the array : use brackets [] :

rectangle[3][4] + cube[1][2][5];

Lesson 1– (Stéphane Airiau) Java 26

Examples

It is possible to initialise an array using a « list » notation :

primes : 2 3 5 7 11 13 17 19 triangle :

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

1 int[] premiers = {2, 3, 5, 7, 11, 13, 17, 19 };
2 int[][] triangle = {{1,1,1,1}, { 0,1,1,1},
3 { 0, 0, 1, 1}, {0, 0, 0, 1} };

A 2-dimensional array is a 1-dimensional array of 1-dimensional array...
so

1 int[][][] cube = new int[3][4][5];
2 int[][] rectangle = cube[2];
3 int n1 = cube.length;
4 int n2 = cube[0].length;
5 int n3 = cube[0][0].length;

Lesson 1– (Stéphane Airiau) Java 27

Instruction Blocks

A block gathers together instructions.
The variables that are declared inside a block are only known inside a
block.
i.e. outside the block, the variable does not exist !

1 int a,b=10;
2 {
3 int d=2*b;
4 {
5 int e=b+d;
5 a=e*d;
6 {
5 int g= b+ d*e;
6 }
6 }
7 }

a and b are known everywhere.
d only exists in the red part.
e only exists in the blue part.
g only exists in the green part

Lesson 1– (Stéphane Airiau) Java 28

Conditionnals : if . . . then . . . else

1 if (<boolean expression>)
2 <block to execute
3 when the condition is satisfied>
4 else
5 <block to execute
6 if the condition is not satisfied>

The else block is optional.

1 int gains,payment,withdraw,invest;
2 // some code that modify the gains
3 . . .
4 if (gains<0)
5 payment = gains;
6 else if (gains > 10) {
7 withdraw = 10;
8 invest = gains-10;
9 }

10 else
11 withdraw = gains;

Lesson 1– (Stéphane Airiau) Java 29

Multiple choices

1 int choice;
2 . . .
3 // something is done with choice
4 . . .
5 switch(choice) {
6 case 1:
7 //instruction block for case 1
8 . . .
9 break;

10 case 2:
11 //instruction block for case 2
12 . . .
13 break;
14 default
15 // default instruction block
16 . . .
17 }

Inside a switch we can use a variable with types int, char,
and String

Lesson 1– (Stéphane Airiau) Java 30

Loop : for loop

1 for (<initialisation>
2 <stopping condition> ;
3 <update>)
4 <instruction block>

What happens in that case ? Is this valid ?

1 for (;;){
2 // instructions
3 }

a classical example :

0 int n=10;
1 for (int i=0; i< n; i++){
2 // instructions
3 }

Lesson 1– (Stéphane Airiau) Java 31

Another example

0 int n=10;
1 for (int i=0, j=n; j< i; i++; j−−){
2 // instructions
3 }

Lesson 1– (Stéphane Airiau) Java 32

Loop : while loop

1 while(<condition>)
2 <instruction block>

The instruction block is execute as long as the condition is met.

Example for checking convergence of a series u : n→ rn :

1 double epsilon = 0.0000001;
2 double r = 0.75, u=1;
3 while(u-u*r <= -epsilon && u - u* r >= epsilon)
4 u = u * r;

Lesson 1– (Stéphane Airiau) Java 33

Loop do . . . while

1 do
2 <Instruction block>
3 while(<condition>);

Warning ! Do not forget the semi column ; right after the condition !

1 double epsilon = 0.0000001;
2 double r = 0.75, u=1;
3 do
4 u = u * r;
5 while (-epsilon >= u-u*r || u - u* r >= epsilon);

choosing a while loop or a do while loop is a matter of elegance, one
usually comes easier than the other.

Lesson 1– (Stéphane Airiau) Java 34

Choosing between a while loop or a for loop

if we know exactly how many times we iterate : use a for loop
otherwise, use a while loop.
what is more expected ?

ex :
search an element in an array ?
search for the largest element in an array ?

Lesson 1– (Stéphane Airiau) Java 35

Methods

It is the term used for function in a Object Oriented Programming Lan-
guage.

Goal : Factorise/gather together a sequence of instruction that could be
used multiple times.
The code becomes

more readable (if a pertinent name is used !)
shorter
important If one wants/needs to modify the code, one just need to
update the code in one location !

Lesson 1– (Stéphane Airiau) Java 36

Method

1 <static or ∅> <public or private> <type of what is returned> <name>
2 (<parameter list>) {
3 body of the method
4 }

Choose an illustrative name !
the order of the parameters is significant :
Java does not match the parameters using names, it uses the order !

If the method does not return something (it is a procedure), we use
the return type void.
when the method returns something, the instruction return
<result> is used to terminate the method and to output result.

Lesson 1– (Stéphane Airiau) Java 37

Example

1 public static int max(int[] tab) {
2 int m= tab[0];
3 for (int i=1;i<tab.length; i++){
4 if (tab[i] > m)
5 m = tab[i];
6 }
7 return m;
8 }

Calling the method :
1 int tab = {7, 12, 15, 9, 11, 17, 13};
2 int m = max(tab);

Lesson 1– (Stéphane Airiau) Java 38

Overloading

We call signature the name of the method with its list of argument.

The signature of a method must be unique to avoid ambiguities.

ë We can have two methods with the same name but different lists of
parameters !

1 public static double max(double[] tab) {
2 double m= tab[0];
3 for (int i=1;i<tab.length; i++){
4 if (tab[i] > m)
5 m = tab[i];
6 }
7 return m;
8 }

Lesson 1– (Stéphane Airiau) Java 39

Passing arguments of primitive types

1 public int f(int n){
2 n = 3 * n * n -2 *n + 1
3 if (n > 0)
4 return n;
5 else
6 return 0;
7 }

1 int i=13;
2 int j= f(i);

What is the value of i ?

We pass the argument of primitive type by value.

Lesson 1– (Stéphane Airiau) Java 40

Compilation, execution, virtual machine

Java is not only a langage and a library of classes
Java has tools for generating and executing code.

Source code .java

Compilation javac

Bytecode .class
so

us
w

in
do

w
s sous

linux

sous
m

ac
O

S

Exécution java
virtual

machine

windows machine linux machine apple machine android smartphone

Lesson 1– (Stéphane Airiau) Java 41

Compilation

A class <MyClass> is saved in a file <MyClass>.java : the name of the
class must match the name of the file with the extension .java.

If the class is named Character, it must be stored in a file called
Character.java.

To compile, we use a program called javac that translate your code into
machine readable code.

The compiler translates your code into a langage that the virtual machine
understands.

For Java it produces bytecode.

The result of the compilation is a file name <MyClass>.class

Lesson 1– (Stéphane Airiau) Java 42

Compilation

Roughly, there are two stages in the compilation process :

syntaxic analysis : we check the grammar of the code
semantic analysis : translation of the code in bytecode
and we check if everything is well known (other classes)

Lesson 1– (Stéphane Airiau) Java 43

Execution

What is executed is a special method called main.
Each class can have one main.
If a method main is implemented in a class MyClass, we lauch the virtual
Javamachine, which runs the main :
java MaClass
(on linux or mac os, you can run this command)

The main method has a well specified signature

1 public static void main(String[] args)

public : it must be called from outside the class
static : we have not yet been able to create an object !
void : lthe method does not return anything (to whom should it
return something ?)
String[] args : when we start the execution, we can add some
text, which will be accessible in this array of string. This is useful
when we want to launch an application with some options.

Lesson 1– (Stéphane Airiau) Java 44

Your turn : back to the student class!

String toString() that returns a representation of the student
a method to add each grade
a method that compute the average of the grades. If one note is
missing, write a message. As you must return a value, choose an
appropriate one.
a method that tells whether the student passes.

Use a main method to test your code.

PS : to write a message on the console, use the following instruction :
System.out.println(<a string>)

PPS : for Strings, the binary operator + appends the two strings

Lesson 1– (Stéphane Airiau) Java 45

