
Java 101 - Magistère BFA
Lesson 2: Object Oriented Programming in Java

Stéphane Airiau

Université Paris-Dauphine

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 1

Goal : Thou Shalt not re-code the same lines

1 public class Character {
2 public String name;
3
4 // default constructor
5 public Character(){
6 nom = ”Unknown";
7 }
8
9 public Character(String name){

10 this.name = name;
11 }
12 }

We want to create classes for representing Gauls et Romans with their
specificities.

How should we do this ?

6 We do not want to duplicate code
Java one solution : inheritance.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 2

Goal : Thou Shalt not re-code the same lines

1 public class Character {
2 public String name;
3
4 // default constructor
5 public Character(){
6 nom = ”Unknown";
7 }
8
9 public Character(String name){

10 this.name = name;
11 }
12 }

We want to create classes for representing Gauls et Romans with their
specificities.

How should we do this ?
ë Copy-Paste the class Character, change the name with Roman or
Gaul, and add the specific methods.

6 We do not want to duplicate code
Java one solution : inheritance.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 3

Goal : Thou Shalt not re-code the same lines

1 public class Character {
2 public String name;
3
4 // default constructor
5 public Character(){
6 nom = ”Unknown";
7 }
8
9 public Character(String name){

10 this.name = name;
11 }
12 }

We want to create classes for representing Gauls et Romans with their
specificities.

How should we do this ?
ë Copy-Paste the class Character, change the name with Roman or
Gaul, and add the specific methods
6 We do not want to duplicate code

Java one solution : inheritance.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 4

Goal : Thou Shalt not re-code the same lines

1 public class Character {
2 public String name;
3
4 // default constructor
5 public Character(){
6 nom = ”Unknown";
7 }
8
9 public Character(String name){

10 this.name = name;
11 }
12 }

We want to create classes for representing Gauls et Romans with their
specificities.

How should we do this ?
ë Copy-Paste the class Character, change the name with Roman or
Gaul, and add the specific methods
6 We do not want to duplicate code
Java one solution : inheritance.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 5

Inheritance

Inheritance : a class can be a subclass of another class.
The parent/super class is more general

ë the super class has all the properties of all the subclasses.
subclasses have more specific properties.

ë We obtain a class hierarchy.

To express that a class is a subclass, we use the extends keyword in the
class declaration.

1 class <subclass name> extends <superclass name>

In Java, a sublass may extends only one superclass.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 6

Example

1 public class Character {
2 private String name;
3 // Constructor
4 public Character(String name){
5 this.name = name;
6 }
7
8 public String introduction(){
0 return ”My name is ” + name;

10 }
11 }

1 public class Gaul extends Character {
2
2
3 public String intoduction(){
4 What should I write ?
5 }
6
7
8 public Gaul(String name){
9 What should I write ?

10 }
11 }

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 7

Consequences

What happens to variables ?
What happens to methods ?
How to work with constructors

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 8

Protected members– protected

Methods or variable could be private or public
public variables or methods are accessible to subclasses

(of course !)
private variables or methods remain inaccessible, even for
subclasses !

Careful however !
Even though we do not have a direct access to those variables or
methods, they do exist, but are simply hidden.

ë protected : a class and its subclasses can access a protected
method or variable.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 9

Method overriding

For public or protected method :
either the behaviour is the same : we do not need to rewrite the
method in the subclass
or the behaviour is different : we need to re-write the method
We can use an annotation @Override to note that we are redefining
a method of a superclass.
ëJava will check whether we actually override a method from the
superclass.

How to refer to the superclass ?
this : is a reference to the current class.
super : is a reference to the superclass.

Of course, we can add method in a superclass that do not exist in the
superclass !

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 10

Example

1 public class Character {
2 private String name;
3 // Constructor
4 public Character(String name){
5 this.name = name;
6 }
7
8 public String introduction(){
9 return ”My name is ” + name;

10 }
11 }

1 public class Gaul extends Character {
2
3 @Override
4 public String introduction(){
5 return super.introduction() + ” I am a Gaul”;
6 }
7
8
9

10
11
12 public static void main(String[] args){
13 Gaul asterix = new Gaul(”Astérix”);
14 System.out.println(asterix.introduction());
15 }
15 }

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 11

Writing the constructor of a subclass

The constructors name and signature follows the usual rules.
For the body, there are two steps :

1 call the constructor of the superclass name : its name ?
super(<arguments list>)

2 write the code that is specific to the subclass.

if you do not explicitly call the constructor of the superclass, Java will
try to call the default constructor

if it exists, everything goes fine
if it does not exist ë compilation error ! Solutions :

either you add a call to a constructor of the superclass
or you write a default constructor of the superclass.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 12

Example

1 public class Character {
2 private String name;
3 // Constructor
4 public Character(String name){
5 this.name = name;
6 }
7
8 public String introduction(){
0 return ”My name is ” + name;

10 }
11 }

1 public class Gaul extends Character {
2
3 public Gaul(String name){
4 super(name);
5 }
6
7 public String introduction(){
8 return super.introduction() + ” I am a Gaul”;
9 }

10
11 public static void main(String[] args){
12 Gaul asterix = new Gaul(”Astérix”);
13 System.out.println(asterix.introduction());
14 }
15 }

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 13

Operator instanceof

We can check whether an instance is a member of a class.
(sometimes, we may not know the precise type of a variable)

1 public class Character { . . . }

1 public class Gaul extends Character { . . . }

1 public class IndomitableGaul extends Gaul { . . . }

1 public class Roman extends Character { . . . }
2 . . .
5 public static void main(String[] args){
6 IndomitableGaul asterix = new IndomitableGaul();
7 System.out.println(asterix instanceof Character);
8 System.out.println(asterix instanceof Gaul);
9 System.out.println(asterix instanceof Roman);

Astérix is a character, a Gaul, and even an indomitable Gaul. Of course, he is not
a Roman !

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 14

Operator instanceof

We can check whether an instance is a member of a class.
(sometimes, we may not know the precise type of a variable)

1 public class Character { . . . }

1 public class Gaul extends Character { . . . }

1 public class IndomitableGaul extends Gaul { . . . }

1 public class Roman extends Character { . . . }
2 . . .
5 public static void main(String[] args){
6 IndomitableGaul asterix = new IndomitableGaul();
7 System.out.println(asterix instanceof Character); 4
8 System.out.println(asterix instanceof Gaul);
9 System.out.println(asterix instanceof Roman);

Astérix is a character, a Gaul, and even an indomitable Gaul. Of course, he is not
a Roman !

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 15

Operator instanceof

We can check whether an instance is a member of a class.
(sometimes, we may not know the precise type of a variable)

1 public class Character { . . . }

1 public class Gaul extends Character { . . . }

1 public class IndomitableGaul extends Gaul { . . . }

1 public class Roman extends Character { . . . }
2 . . .
5 public static void main(String[] args){
6 IndomitableGaul asterix = new IndomitableGaul();
7 System.out.println(asterix instanceof Character); 4
8 System.out.println(asterix instanceof Gaul); 4
9 System.out.println(asterix instanceof Roman);

Astérix is a character, a Gaul, and even an indomitable Gaul. Of course, he is not
a Roman !

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 16

Operator instanceof

We can check whether an instance is a member of a class.
(sometimes, we may not know the precise type of a variable)

1 public class Character { . . . }

1 public class Gaul extends Character { . . . }

1 public class IndomitableGaul extends Gaul { . . . }

1 public class Roman extends Character { . . . }
2 . . .
5 public static void main(String[] args){
6 IndomitableGaul asterix = new IndomitableGaul();
7 System.out.println(asterix instanceof Character); 4
8 System.out.println(asterix instanceof Gaul); 4
9 System.out.println(asterix instanceof Roman); 8

Astérix is a character, a Gaul, and even an indomitable Gaul. Of course, he is not
a Roman !

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 17

Polymorphism

From the previous example, it seems Astérix has many types : this is what
is called polymorphism : the fact that a variable may have several types.

This allows the manipulation of objects that all share the same superclass !

1 Character asterix = new Gaul(”Astérix”);

1 Gaul obelix = new Gaul(”Obélix”);
2 Gaul asterix = new Gaul(”Astérix”);
3 Character cleopatre = new Character(”Cléopâtre”) ;
3 Character[] distribution= new Character[3];
4 distribution[0]= asterix;
5 distribution[1]= obelix;
6 distribution[2]= cleopatre;

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 18

Polymorphism

1 Character asterix = new Gaul(”Astérix”);

In this example asterix is declared as a Character, even though the
real object stored in memory is a Gaul.

As the variable is declared as a Character, we can only call methods
from the class Character and not specific method of a subclass such as
Gaul.

For example :
asterix.isAffraidOfTheSkyFallingOnHisHead(); is not allo-
wed !

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 19

Late binding

The three classes have an
introduction() method
Java chooses the appropriate
method at execution time.
ë dynamic binding.

At compilation time, Java checks
whether the method is from the
Character class or one of its su-
perclass

ë If an objecto est declared of
type T, we call only call methods
from class T or its superclasses
on object o !

But the executed method is the
one of the class o was construc-
ted from

1 public class Character {
2 . . .
3 public String introduction(){
4 return ”my name is ”+name;
5 }
6 }

1 public class Gaul extends Character {
2 public Gaul(String name){ super(name);}
3 @Override
4 public String introduction(){
5 return super.introduction() + ”I am a Gaul”;
6 }
7 }

1 public class Roman extends Character {
2 public Roman(String name){ super(name);}
3 @Override
4 public String introduction(){
5 return super.introduction() + ” romanus sum.”;
6 }
7 }

1 public static void main(String[] args){
2 Random generator = new Random();
3 Character mystere;
4 if (generator.nextBoolean())
5 mystere = new Gaul(”Astérix”);
6 else
7 mystere = new Roman(”Jules”);
8 System.out.println(mystere.introduction());
9 } }

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 20

final keyword

used for a class : this class cannot have a subclass
ë security

example : class String

for a method : this method cannot be overriden in a subclass
ë we force that the method of the superclass is the only possible
behaviour
for a variable : it will not be modified once the execution of the
constructor is over

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 21

Object is the superclass of all objects

Modifier and Type Method Description

protected Object clone()
Creates and returns a copy of this object.

boolean equals(Object obj)
Indicates whether some other object is "equal
to" this one.

protected void finalize()
Called by the garbage collector on an ob-
ject when garbage collection determines that
there are no more references to the object.

Class<?> getClass()
Returns the runtime class of this Object.

int hashCode()
Returns a hash code value for the object.

String toString()
Returns a string reintroduction of the object.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 22

Object is the superclass of all objects : consequence

if you do not redefine a method of Object, it is the implementation of
the method in the Object class that is executed.

toString() : The toString method for class Object
returns a string consisting of the name of the class of
which the object is an instance, the at-sign character
‘@’, and the unsigned hexadecimal representation of the
hash code of the object. In other words, this method
returns a string equal to the value of:

getClass().getName() + ’@’ +

Integer.toHexString(hashCode())

clone() : this method creates a new instance of the

class of this object and initializes all its fields

with exactly the contents of the corresponding fields

of this object, as if by assignment; the contents of

the fields are not themselves cloned. Thus, this method

performs a "shallow copy" of this object, not a "deep

copy" operation.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 23

Object is the superclass of all objects : consequence

equals() The equals method for class Object implements

the most discriminating possible equivalence relation on

objects; that is, for any non-null reference values x and

y, this method returns true if and only if x and y refer to

the same object (x == y has the value true).

ë it is your job to write the appropriate code for equality ! How do you
consider two instances of a class are equal.

warning : boolean equals(Object obj)
Note that the argument obj is of type Object.

If you want to redefine correctly the method equals, you must use this
signature.

you can first check if obj has the right type
if so, the cast is safe and you can check whether the properties of
obj match the ones of the current object.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 24

Let’s apply

Do exercise 1.

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 25

Abstract methods and abstract classes

Context : If we give some thoughts, the Character will never be instantia-
ted as we will always use a subclass (e.g. Roman, Gaul, Animals, etc).

For some methods, we will always use the method of the subclass : there is
no need to have an implementation!
But having the declaration may be very useful!

Declaring without implementing the method will force the implementation in
a subclass (maybe not the direct subclass)

Solution : We use the keyword abstract

An abstract method
never has a body
must be implemented in a subclass

an abstract class
has at least an abstact method
can not be instantiated !

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 26

Abstract methods and abstract classes

Context : If we give some thoughts, the Character will never be instantia-
ted as we will always use a subclass (e.g. Roman, Gaul, Animals, etc).

For some methods, we will always use the method of the subclass : there is
no need to have an implementation!
But having the declaration may be very useful!

Declaring without implementing the method will force the implementation in
a subclass (maybe not the direct subclass)

Solution : We use the keyword abstract

An abstract method
never has a body
must be implemented in a subclass

an abstract class
has at least an abstact method
can not be instantiated !

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 27

Example

1 public abstract class Character {
2
3 String name;
4
5 public Character(String name);
6
7 // to be defined in subclasses
8 public abstract void introduction();
9

10 // shared by all subclasses
11 public void myNameIs(){
12 System.out.println(” my name is ” + name);
13 }
14 }

N.B. even though Character is abstact, it can have a constructor

this is useful if one wants to initialise some variables before using the object

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 28

Interfaces

In Java, a class can inherit from a single class
It woud be useful to inherit from multiple entities. In Java, interfaces are
the way to go !
We can view an interface as a norm : to follow a norm

a class must implement the method declared in the interface
ë we say a class implements an interface.

a class may implement multiple interfaces.

1 [public] interface <interface name>
2 [extends <interface name 1> <interface name 2> . . .] {
3 // declaration of methods
4 // we can have static methods or variables }
4 }

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 29

Interfaces

a method without body in an interface is implicitly abstract (i.e.no
need to add the keywor abstract)

Any variable is static and final.

1 public interface Fighter {
2 public void attack(Character p);
3 public void defend(Fighter c);
4 }

1 public class IndomitableGaul implements Fighter {
2 . . .
3 public void attack(Character p){
4 magicPotion.drink();
5 while(p.isStanding())
6 punch(p);
7 }
8
9 public void defend(Fighter c){

10 dodge();
11 attack(c);
12 }
13 }

Lesson 2: Object Oriented Programming in Java– (Stéphane Airiau) Java 30

