Java 101 - Magistere BFA

Lesson 2: Object Oriented Programming in Java

Stéphane Airiau

Université Paris-Dauphine

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Goal : Thou Shalt not re-code the same lines

public class Character {
public String name;

// default constructor
private Character () {
name = "Unknown";

}

public Character (String name) {
this.name = name;

}

How should we do this?

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Goal : Thou Shalt not re-code the same lines

public class Character {
public String name;

// default constructor
private Character () {
name = "Unknown";

}

public Character (String name) {
this.name = name;

}

How should we do this?

= Copy-Paste the class Character, change the name with Roman or
Gaul, and add the specific methods.

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Goal : Thou Shalt not re-code the same lines

public class Character {
public String name;

// default constructor
private Character () {
name = "Unknown";

}

public Character (String name) {
this.name = name;

}

How should we do this?

% We do not want to duplicate code

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Goal : Thou Shalt not re-code the same lines

public class Character {
public String name;

// default constructor
private Character () {
name = "Unknown";

}

public Character (String name) {
this.name = name;

}

How should we do this?

% We do not want to duplicate code
Java one solution : inheritance.

>~ Lesson 2: Object Oriented Programming in Java- (Stéphane Airiau) Java

Inheritance

Inheritance : a class can be a subclass of another class.

o The parent/super class is more general

= the super class has all the properties of all the subclasses.
o subclasses have more specific properties.

= We obtain a class hierarchy.

To express that a class is a subclass, we use the extends keyword in the
class declaration.

p il ‘ class <subclass name> extends <superclass name> J

In Java, a subclass may extends only one superclass.

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Example

public class Character {

private String name;

// Constructor

public Character (String name) {
this.name = name;

public String introduction () {

1

2

3

4

5

6 }
7

8

0 return "My name is ” + name;
0

1

— =

|1 | public class Gaul extends Character {
2

L2

S public String intoduction () {
L4 What should I write?

L5)

6

L7

8 public Gaul (String name) {
9 What should I write?

10 }

11

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau)

Java

Consequences

o What happens to variables?

o What happens to methods?

o How to work with constructors?

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Protected members— protected

Methods or variables of a parent class can be private or public

o public variables or methods are accessible to subclasses
(of course!)

o private variables or methods remain inaccessible, even for
subclasses!

Careful however!
Even though we do not have a direct access to those variables or
methods, they do exist, but are simply hidden.

< protected:a class and its subclasses can access a protected
method or variable.

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Method overriding

For public or protected method :

o either the behaviour is the same : we do not need to rewrite the
method in the subclass

o or the behaviour is different : we need to re-write the method
We can use an annotation @0verride to note that we are redefining
a method of a superclass.
=Java will check whether we actually override a method from the
superclass (i.e., check there is a method with the same name and the
same ordered list of arguments).

How to refer to the superclass?
o this : is a reference to the current class.
o super : is a reference to the superclass.

Of course, we can add method in a superclass that do not exist in the
superclass!

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java .

Example

' 1| public class Character {

L2 private String name;

r3 // Constructor

| 4 public Character (String name) {

5 this.name = name;

L6 }

| 7

8 public String introduction () {

9 return "My name is ” + name;

110 }

C11)

| 1 | public class Gaul extends Character {

L2

3 @Override

L4 public String introduction () {

5 return super.introduction() +” I am a Gaul”;
L6 }

| 7

L8

9

110

!

p 12 public static void main (String[] args) {
113 Gaul asterix = new Gaul ("Astérix”);
114 System.out.println(asterix.introduction());
115 }

15 |}

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Writing the constructor of a subclass

The constructor’s name and signature follows the usual rules.

For the body, there are two steps :

1 call the constructor of the superclass name : its name?
super(<arguments list>)

2 write the code that is specific to the subclass.

if you do not explicitly call the constructor of the superclass, Java will
try to call the default constructor

o if it exists, everything goes fine
o if it does not exist ¢ compilation error! Solutions :

o either you add a call to a constructor of the superclass
o or you write a default constructor of the superclass.

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Example

. 1| public class Character {

2 private String name;

i3 // Constructor

4 public Character (String name) {

5 this.name = name;

6 }

L7

.8 public String introduction () {

0 return "My name is ” + name;

110 }

11|y

.1 | public class Gaul extends Character {

L2

|

3 public Gaul (String name) {

4 super (name) ;

5 }

6

7 public String introduction () {

L8 return super.introduction() +” I ama Gaul”;
L9 }

110

11 public static void main(String[] args) {
L12 Gaul asterix = new Gaul ("Astérix”);

L 13 System.out.println(asterix.introduction());
114 }

15|}

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Operator instanceof

We can check whether an instance is a member of a class.
(sometimes, we may not know the precise type of a variable)

1 ‘ public class Character { ... } J
gl ‘ public class Gaul extends Character { ... } J
1 ‘ public class IndomitableGaul extends Gaul { ... } J

public class Roman extends Character { ... }

1
L2 ..
b 5 public static void main(String[] args) {

.6 IndomitableGaul asterix = new IndomitableGaul () ;
L7 System.out.println(asterix instanceof Character);
"8 System.out.println(asterix instanceof Gaul);

"9 System.out.println(asterix instanceof Roman) ;

Astérix is a character, a Gaul, and even an indomitable Gaul. Of course, he is not
a Roman!

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Operator instanceof

We can check whether an instance is a member of a class.
(sometimes, we may not know the precise type of a variable)

1 ‘ public class Character { ... } J
gl ‘ public class Gaul extends Character { ... } J
1 ‘ public class IndomitableGaul extends Gaul { ... } J

public class Roman extends Character { ... }

1
L2 ..
b 5 public static void main(String[] args) {

.6 IndomitableGaul asterix = new IndomitableGaul () ;

L7 System.out.println(asterix instanceof Character); v/
"8 System.out.println(asterix instanceof Gaul);

"9 System.out.println(asterix instanceof Roman) ;

Astérix is a character, a Gaul, and even an indomitable Gaul. Of course, he is not
a Roman!

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Operator instanceof

We can check whether an instance is a member of a class.
(sometimes, we may not know the precise type of a variable)

1 ‘ public class Character { ... } J
gl ‘ public class Gaul extends Character { ... } J
1 ‘ public class IndomitableGaul extends Gaul { ... } J

public class Roman extends Character { ... }

1
L2 ..
b 5 public static void main(String[] args) {

.6 IndomitableGaul asterix = new IndomitableGaul () ;

L7 System.out.println(asterix instanceof Character); v/
"8 System.out.println(asterix instanceof Gaul); ¢

"9 System.out.println(asterix instanceof Roman) ;

Astérix is a character, a Gaul, and even an indomitable Gaul. Of course, he is not
a Roman!

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Operator instanceof

We can check whether an instance is a member of a class.
(sometimes, we may not know the precise type of a variable)

1 ‘ public class Character { ... } J
gl ‘ public class Gaul extends Character { ... } J
1 ‘ public class IndomitableGaul extends Gaul { ... } J

public class Roman extends Character { ... }

1
L2 ..
b 5 public static void main(String[] args) {

.6 IndomitableGaul asterix = new IndomitableGaul () ;

L7 System.out.println(asterix instanceof Character); v/
"8 System.out.println(asterix instanceof Gaul); ¢

"9 System.out.println(asterix instanceof Roman); X

Astérix is a character, a Gaul, and even an indomitable Gaul. Of course, he is not
a Roman!

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Polymorphism

From the previous example, it seems Astérix has many types : this is what
is called polymorphism : the fact that a variable may have several types.

This allows the manipulation of objects that all share the same superclass!

! 1 | Gaul obelix = new Gaul ("Obélix”);

! 2 | Gaul asterix = new IndomitableGaul ("Astérix”);

! 3 | Character cleopatre = new Character ("Cléopatre”) ;
. 3 | Character[] distribution= new Character[3];

\ 4 | distribution[0]= asterix;

. 5 | distribution[1l]= obelix;

| 6 | distribution[2]= cleopatre;

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Polymorphism

1 ‘ Character asterix = new Gaul ("Astérix”);

In this example asterix is declared as a Character, even though the
real object stored in memory is a Gaul.

As the variable is declared as a Character, we can only call methods
from the class Character and not specific method of a subclass such as
Gaul.

For example :
asterix.isAffraidOfTheSkyFallingOnHisHead (); is not allo-
wed !

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Late binding

The three classes have an
introduction () method
Java chooses the appropriate

public String introduction () {
return "my name is "+name;

method at execution time.
= dynamic binding.

At compilation time, Java checks
whether the method is from the
Character class or one of its su-

public class Gaul extends Character {
public Gaul (String name) { super (name);}
@Override
public String introduction () {
return super.introduction() + "I ama Gaul”;

perclass

= If an objecto est declared of
type T, we call only call methods

NG W e

public class Roman extends Character {
public Roman (String name) { super (name) ;}
@Override
public String introduction () {
return super.introduction() + " romanus sum.”;

from class T or its superclasses
on object o!

But the executed method is the
one of the class o was construc-
ted from

O N U WN =

public static void main(String[] args) {
Random generator = new Random () ;
Character mystere;
if (generator.nextBoolean())
mystere = new Gaul ("Astérix”);
else
mystere = new Roman ("Jules”) ;
System.out.println(mystere.introduction());

I

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau)

Java

final keyword

o used for a class : this class cannot have a subclass
< security
o example : class String
o for a method : this method cannot be overriden in a subclass
= we force that the method of the superclass is the only possible
behaviour

o for a variable : it will not be modified once the execution of the
constructor is over

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Object is the superclass of all objects

Modifier and Type
protected Object

boolean

protected void

Class<?>

int

String

Method Description

clone ()
Creates and returns a copy of this object.

equals (Object obj)
Indicates whether some other object is "equal
to" this one.

finalize ()

Called by the garbage collector on an ob-
ject when garbage collection determines that
there are no more references to the object.

getClass ()
Returns the runtime class of this Object.

hashCode ()
Returns a hash code value for the object.

toString ()
Returns a string reintroduction of the object.

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java .

Object is the superclass of all objects : consequence

if you do not redefine a method of Object, it is the implementation of
the method in the Object class that is executed.

0 toString () : The toString method for class Object

returns a string consisting of the name of the class of
which the object is an instance, the at-sign character
‘@”, and the unsigned hexadecimal representation of the
hash code of the object. In other words, this method
returns a string equal to the value of:
getClass () .getName () + '@ +

Integer.toHexString (hashCode ())

clone () :this method creates a new instance of the
class of this object and initializes all its fields
with exactly the contents of the corresponding fields
of this object, as if by assignment; the contents of
the fields are not themselves cloned. Thus, this method
performs a "shallow copy" of this object, not a "deep
copy" operation.

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Object is the superclass of all objects : consequence

equals () The equals method for class Object implements
the most discriminating possible equivalence relation on
objects; that is, for any non-null reference values x and
y, this method returns true if and only if x and y refer to
the same object (x == y has the value true).

= it is your job to write the appropriate code for equality! How do you
consider two instances of a class are equal.

warning : boolean equals (Object obj)
Note that the argument obj is of type Object.

If you want to redefine correctly the method equals, you must use this
signature.

o you can first check if obj has the right type

o if so, the cast is safe and you can check whether the properties of
obj match the ones of the current object.

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Let’s apply

Do exercise 1.

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Abstract methods and abstract classes

>~ Lesson 2: Object Oriented Programming in Java- (Stéphane Airiau) Java

Abstract methods and abstract classes

Solution : We use the keyword abstract
o An abstract method

o never has a body
o must be implemented in a subclass

o an abstract class

o has at least an abstact method
o can not be instantiated !

>~ Lesson 2: Object Oriented Programming in Java- (Stéphane Airiau) Java

Example

public abstract class Character {
String name;
public Character (String name) ;

// to be defined in subclasses
public abstract void introduction () ;

// shared by all subclasses
public void myNameIs () {
System.out.println(” my name is ” + name) ;

}

N.B. even though Character is abstact, it can have a constructor

o this is useful if one wants to initialise some variables before using the object

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Interfaces

In Java, a class can inherit from a single class
It woud be useful to inherit from multiple entities. In Java, interfaces are

the way to go!
We can view an interface as a norm : to follow a norm

o a class must implement the method declared in the interface
= we say a class implements an interface.
o aclass may implement multiple interfaces.

. 1| [public] interface <interface name>

L2 [extends <interface name 1> <interface name 2> ...] {
p 3 // declaration of methods

L4 // we can have static methods or variables }

NN

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

Interfaces

o a method without body in an interface is implicitly abstract (i.e.no
need to add the keywor abstract)

0 Any variableis static and final.

public interface Fighter {
public void attack (Character p) ;
public void defend (Fighter c);

}

public class IndomitableGaul implements Fighter {

public void attack (Character p) {
magicPotion.drink () ;
while (p.isStanding())
punch (p) ;
}

1
2
3
4
5
6
7
8
9

public void defend (Fighter c) {
dodge () ;
attack (c);

}

>~ Lesson 2: Object Oriented Programming in Java— (Stéphane Airiau) Java

