Deriving cooperative games from non-cooperative ones

Krzysztof R. Apt

April 20, 2010

Consider a set $N=\{1, \ldots, n\}$ of players with $n>1$. A strategic game (or non-cooperative game) for n players consists of

- a non-empty finite set C_{i} of strategies,
- a payoff function $p_{i}: C_{1} \times \ldots \times C_{n} \rightarrow \mathbb{R}$
for each player i.
We write then a strategic game as a sequence

$$
\left(C_{1}, \ldots, C_{n}, p_{1}, \ldots, p_{n}\right) .
$$

The idea is that the players simultaneously choose a strategy and subsequently each player receives a payoff from the resulting joint strategy.

Given $s \in C_{1} \times \ldots \times C_{n}$ we denote the i th element of s by s_{i} and given a subset $I:=\left\{i_{1}, \ldots, i_{m}\right\}$ of N we abbreviate the sequence $\left(s_{i_{1}}, \ldots, s_{i_{m}}\right)$ to s_{I} and $C_{i_{1}} \times \ldots \times C_{i_{m}}$ to C_{I}. Occasionally we write then ($s_{I}, s_{N \backslash I}$) instead of s.

As an example of a strategic game consider the well-known game called Scissors, Stone and Paper. In this game, often played by children, two players simultaneously make a sign with a hand that identifies one of these three objects. If both players make the same sign, the game is a draw. Otherwise one player wins 1 Euro from the other player according to the following rules:

- scissors defeat (cut) the paper,
- the paper defeats (wraps) the stone,
- the stone defeats (breaks) scissors.

This game is represented by the following payoff bimatrix:

		Two		Scissors
		Stone	Paper	
	Stone	0, 0	-1, 1	1, -1
One	Paper	1, -1	0, 0	-1, 1
	issors	-1, 1	1, -1	0,0

So $p_{\text {One }}($ Stone, Paper $)=-1, p_{\text {Two }}($ Stone, Paper $)=1$, etc.
Fix now a strategic game $G:=\left(C_{1}, \ldots, C_{n}, p_{1}, \ldots, p_{n}\right)$. We first explain two natural ways that a TU-game can be derived from a strategic game. To start with, given a joint strategy s and a coalition $S \subseteq N=\{1, \ldots, n\}$ we define

$$
p_{S}(s):=\sum_{i \in S} p_{i}(s)
$$

So $p_{S}(s)$ is the aggregate payoff coalition S gets when players $1, \ldots, n$ respectively choose strategies s_{1}, \ldots, s_{n}.

Suppose now that the players in the coalition S chose the collective strategy s_{S}. Then the coalition S is guaranteed the aggregate payoff

$$
\min _{s_{N \backslash S} \in C_{N \backslash S}} p_{S}\left(s_{S}, s_{N \backslash S}\right) .
$$

Having this in mind we define a TU-game (N, v^{α}) by putting for a coalition S :

$$
v^{\alpha}(S):=\max _{s_{S} \in C_{S}} \min _{s_{N \backslash S} \in C_{N \backslash S}} p_{S}\left(s_{S}, s_{N \backslash S}\right) .
$$

Intuitively this means that if the players in the coalition S are allowed to choose their collective strategy first, then the coalition is guaranteed to achieve together $v^{\alpha}(S)$. Note that this definition adopts a pessimistic approach in that it is assumed that the coalition $N \backslash S$ will always try to choose a joint strategy that minimizes the collective payoff to coalition S.

Suppose now that given the coalition S, the players in the coalition $N \backslash S$ chose the collective strategy $s_{N \backslash S}$. Then the coalition S is guaranteed the
aggregate payoff $\max _{s_{S} \in C_{S}} p_{S}\left(s_{S}, s_{N \backslash S}\right)$. Having this in mind we define a TU-game (N, v^{β}) by putting for a coalition S :

$$
v^{\beta}(S):=\min _{s_{N \backslash S} \in C_{N \backslash S}} \max _{s_{S} \in C_{S}} p_{S}\left(s_{S}, s_{N \backslash S}\right) .
$$

Intuitively this means that if the players in the coalition $N \backslash S$ are allowed to choose their collective strategy first, then the coalition S is guaranteed to achieve together $v^{\beta}(S)$.

Note that

$$
v^{\alpha}(N)=v^{\beta}(N)=\max _{s \in C_{N}} p_{N}(s)
$$

To compare these two definitions note first the following general result.
Lemma 1 Consider a function $f: X \times Y \rightarrow \mathbb{R}$, where X and Y are finite sets. Then

$$
\max _{x \in X} \min _{y \in Y} f(x, y) \leq \min _{y \in Y} \max _{x \in X} f(x, y) .
$$

Proof. We have for all $x^{\prime} \in X, y^{\prime} \in Y$

$$
\min _{y \in Y} f\left(x^{\prime}, y\right) \leq f\left(x^{\prime}, y^{\prime}\right) \leq \max _{x \in X} f\left(x, y^{\prime}\right)
$$

So for all $y^{\prime} \in Y$

$$
\max _{x \in X} \min _{y \in Y} f(x, y) \leq \max _{x \in X} f\left(x, y^{\prime}\right)
$$

and consequently

$$
\max _{x \in X} \min _{y \in Y} f(x, y) \leq \min _{y \in Y} \max _{x \in X} f(x, y) .
$$

Theorem 2 For all coalitions S we have $v^{\alpha}(S) \leq v^{\beta}(S)$.
Proof. By Lemma 1.
To see that the $\left(N, v^{\alpha}\right)$ and $\left(N, v^{\beta}\right)$ TU-games can differ consider the following simple example.

Example 1 Take the following 2-persons game:

```
    L R
T 1,0 0,1
B 0,1 1,0
```

Let us focus first on the singleton coalition consisting of player 1 . If he moves first, he can guarantee at most payoff 0 to himself. Indeed, if he chooses T, then player 2 can choose R and if he chooses B, then player 2 can choose L. In both cases player 1 gets only 0 . So $v^{\alpha}(\{1\})=0$. Analogously $v^{\alpha}(\{2\})=0$. Also $v^{\alpha}(\{1,2\})=1$.

On the other hand, if player 2 moves first, then player 1 can always guarantee payoff 1 to himself, by choosing T in response to L and B in response to R. So $v^{\beta}(\{1\})=1$. Analogously $v^{\beta}(\{2\})=1$ and $v^{\beta}(\{1,2\})=1$.

The following general result will be useful in a moment.
Lemma 3 Consider a function $f: X_{1} \times X_{2} \times X_{3} \rightarrow \mathbb{R}$, where X_{1}, X_{2} and X_{3} are finite sets. Then

$$
\max _{x_{1} \in X_{1}} \min _{\left(x_{2}, x_{3}\right) \in X_{2} \times X_{3}} f\left(x_{1}, x_{2}, x_{3}\right) \leq \max _{\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}} \min _{x_{3} \in X_{3}} f\left(x_{1}, x_{2}, x_{3}\right) .
$$

Proof. Straightforward and omitted.
Theorem 4 The $\left(N, v^{\alpha}\right)$ TU-game is superadditive.
Proof. By Lemma 3.
In contrast, the $\left(N, v^{\beta}\right)$ TU-game is not superadditive. Indeed, it suffices to take the v^{β} game from the above example.

Next, we discuss two analogous ways that an NTU-game can be derived from a strategic game.

We begin by repeating the choices made when modelling TU-games as NTU-games. So as the set of outcomes X we take the set of all allocations \mathbb{R}^{n} and put for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$

$$
\mathbf{x} \succeq_{i} \mathbf{y} \text { iff } \mathbf{x}_{i} \geq \mathbf{y}_{i} .
$$

Consider now a coalition S of players. We say that $\mathbf{x} \in \mathbb{R}^{n}$ is assurable for S in the strategic game G if

$$
\exists s_{S} \in C_{S} \forall s_{N \backslash S} \in C_{N \backslash S} \forall i \in S p_{i}\left(s_{S}, s_{N \backslash S}\right) \geq \mathbf{x}_{i} .
$$

Intuitively this means that if the players in S are allowed to choose their strategies first, then they can always achieve in G the payoff at least as large as in the allocation \mathbf{x}.

Then we put

$$
V^{\alpha}(S):=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \text { is assurable for } S \text { in } G\right\} .
$$

So

$$
V^{\alpha}(S)=\bigcup_{s_{S} \in C_{S}} \bigcap_{s_{N \backslash S} \in C_{N \backslash S}}\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \forall i \in S p_{i}\left(s_{S}, s_{N \backslash S}\right) \geq \mathbf{x}_{i}\right\} .
$$

Next, we say that $\mathbf{x} \in \mathbb{R}^{n}$ is unpreventable for S in G if

$$
\forall s_{N \backslash S} \in C_{N \backslash S} \exists s_{S} \in C_{S} \forall i \in S p_{i}\left(s_{S}, s_{N \backslash S}\right) \geq \mathbf{x}_{i} .
$$

Intuitively it means that if the players in $N \backslash S$ are allowed to choose their strategies first, then players in S can achieve in G the payoff at least as large as those in the allocation \mathbf{x}.

Then we put

$$
V^{\beta}(S):=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \text { is unpreventable for } S \text { in } G\right\} .
$$

So

$$
V^{\beta}(S)=\bigcap_{s_{N \backslash S} \in C_{N \backslash S}} \bigcup_{s_{S} \in C_{S}}\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \forall i \in S p_{i}\left(s_{S}, s_{N \backslash S}\right) \geq \mathbf{x}_{i}\right\} .
$$

Note 5 For all coalitions $S, V^{\alpha}(S) \subseteq V^{\beta}(S)$.
Proof. By the fact that for each formula ϕ the implication

$$
\exists x \forall y \phi(x, y) \rightarrow \forall y \exists x \phi(x, y)
$$

holds.
The $\left(N, V^{\alpha}\right)$ and $\left(N, V^{\beta}\right)$ NTU-games can differ.
Example 2 Reconsider the 2-persons game from Example 1:

```
            L R
T 1,0 0,1
B 0,1 1,0
```

We noticed already that if player 1 moves first, then he can guarantee at most payoff 0 to himself. So if $\left(x_{1}, x_{2}\right) \in V^{\alpha}(\{1\})$, then $x_{1} \leq 0$. On the other hand, if player 2 moves first, then player 1 can always guarantee payoff 1 to himself, so $(1,0) \in V^{\beta}(\{1\})$.

To analyze so defined NTU-games we introduce the following adaptation of the notion of superadditivity to NTU-games.

We say that an NTU-game $\left(N, X, V,\left(\succeq_{i}\right)_{i \in N}\right)$ is superadditive if for all disjoint coalitions S, T

$$
V(S) \cap V(T) \subseteq V(S \cup T)
$$

The following observation shows that this notion indeed generalizes it from the class of TU-games to NTU-games.

Note 6 Consider a TU-game (N, v) and the corresponding NTU-game $\left(N, X, V,\left(\succeq_{i}\right)_{i \in N}\right)$. Then (N, v) is superadditive iff $\left(N, X, V,\left(\succeq_{i}\right)_{i \in N}\right)$ is superadditive.

Proof.

(\Rightarrow) Suppose (N, v) is superadditive. Take two disjoint coalitions S, T and $\mathbf{x} \in V(S) \cap V(T)$. Then $\sum_{i \in S} \mathbf{x}_{i} \leq v(S)$ and $\sum_{i \in T} \mathbf{x}_{i} \leq v(T)$, so $\sum_{i \in S \cup T} \mathbf{x}_{i} \leq$ $v(S)+v(T)$. But by superadditivity $v(S)+v(T) \leq v(S \cup T)$. Hence $\mathbf{x} \in$ $V(S \cup T)$.
(\Leftarrow) Suppose $\left(N, X, V,\left(\succeq_{i}\right)_{i \in N}\right)$ is superadditive. Take two disjoint coalitions S, T and $\mathbf{x} \in \mathbb{R}^{n}$ such that $\sum_{i \in S} \mathbf{x}_{i}=v(S)$ and $\sum_{i \in T} \mathbf{x}_{i}=v(T)$. Then $\mathbf{x} \in V(S) \cap V(T)$, so by superadditivity $\mathbf{x} \in V(S \cup T)$. So by definition $\sum_{i \in S \cup T} \mathbf{x}_{i} \leq v(S \cup T)$, i.e. $v(S)+v(T) \leq v(S \cup T)$.

The following result then clarifies the status of the $\left(N, V^{\alpha}\right)$ NTU-game.
Theorem 7 The NTU-game $\left(N, X, V^{\alpha},\left(\succeq_{i}\right)_{i \in N}\right)$ is superadditive.

Proof. Given a coalition U and $\mathbf{x} \in \mathbb{R}^{n}$ we say that $s_{U} \in C_{U}$ assures \mathbf{x} if

$$
\forall s_{N \backslash U} \in C_{N \backslash U} \forall i \in U p_{i}\left(s_{U}, s_{N \backslash U}\right) \geq \mathbf{x}_{i} .
$$

Consider two disjoint coalitions S, T and $\mathbf{x} \in V(S) \cap V(T)$. Choose $s_{S} \in C_{S}$ that assures \mathbf{x} and $s_{T} \in C_{T}$ that assures \mathbf{x}. Then, since S and T are disjoint, $s_{S \cup T} \in C_{S \cup T}$ and $s_{S \cup T}$ assures \mathbf{x} as well, so $\mathbf{x} \in V(S \cup T)$.

Analogous result for the V^{β} NTU-game holds only for specific strategic games. We do not discuss the details here.

