Deriving cooperative games from non-cooperative ones

Krzysztof R. Apt

April 20, 2010

Consider a set $N = \{1, ..., n\}$ of players with n > 1. A strategic game (or **non-cooperative game**) for n players consists of

- a non-empty finite set C_i of *strategies*,
- a payoff function $p_i: C_1 \times \ldots \times C_n \to \mathbb{R}$

for each player i.

We write then a strategic game as a sequence

 $(C_1,\ldots,C_n,p_1,\ldots,p_n).$

The idea is that the players simultaneously choose a strategy and subsequently each player receives a payoff from the resulting joint strategy.

Given $s \in C_1 \times \ldots \times C_n$ we denote the *i*th element of *s* by s_i and given a subset $I := \{i_1, \ldots, i_m\}$ of *N* we abbreviate the sequence $(s_{i_1}, \ldots, s_{i_m})$ to s_I and $C_{i_1} \times \ldots \times C_{i_m}$ to C_I . Occasionally we write then $(s_I, s_N \setminus I)$ instead of *s*.

As an example of a strategic game consider the well-known game called Scissors, Stone and Paper. In this game, often played by children, two players simultaneously make a sign with a hand that identifies one of these three objects. If both players make the same sign, the game is a draw. Otherwise one player wins 1 Euro from the other player according to the following rules:

- scissors defeat (cut) the paper,
- the paper defeats (wraps) the stone,

• the stone defeats (breaks) scissors.

This game is represented by the following payoff bimatrix:

		T	WO	
		Stone	Paper	Scissors
	Stone	0, 0	-1, 1	1, -1
One	Paper	1, -1	0, 0	-1, 1
	Scissors	-1, 1	1, -1	0, 0

So $p_{\text{One}}(\text{Stone}, \text{Paper}) = -1$, $p_{\text{Two}}(\text{Stone}, \text{Paper}) = 1$, etc.

Fix now a strategic game $G := (C_1, \ldots, C_n, p_1, \ldots, p_n)$. We first explain two natural ways that a TU-game can be derived from a strategic game. To start with, given a joint strategy s and a coalition $S \subseteq N = \{1, \ldots, n\}$ we define

$$p_S(s) := \sum_{i \in S} p_i(s).$$

So $p_S(s)$ is the aggregate payoff coalition S gets when players $1, \ldots, n$ respectively choose strategies s_1, \ldots, s_n .

Suppose now that the players in the coalition S chose the collective strategy s_S . Then the coalition S is guaranteed the aggregate payoff

$$\min_{s_{N\setminus S}\in C_{N\setminus S}} p_S(s_S, s_{N\setminus S}).$$

Having this in mind we define a TU-game (N, v^{α}) by putting for a coalition S:

$$v^{\alpha}(S) := \max_{s_S \in C_S} \min_{s_N \setminus S \in C_{N \setminus S}} p_S(s_S, s_{N \setminus S}).$$

Intuitively this means that if the players in the coalition S are allowed to choose their collective strategy first, then the coalition is guaranteed to achieve together $v^{\alpha}(S)$. Note that this definition adopts a pessimistic approach in that it is assumed that the coalition $N \setminus S$ will always try to choose a joint strategy that minimizes the collective payoff to coalition S.

Suppose now that given the coalition S, the players in the coalition $N \setminus S$ chose the collective strategy $s_{N \setminus S}$. Then the coalition S is guaranteed the

aggregate payoff $\max_{s_S \in C_S} p_S(s_S, s_{N \setminus S})$. Having this in mind we define a TU-game (N, v^β) by putting for a coalition S:

$$v^{\beta}(S) := \min_{s_{N\setminus S} \in C_{N\setminus S}} \max_{s_S \in C_S} p_S(s_S, s_{N\setminus S}).$$

Intuitively this means that if the players in the coalition $N \setminus S$ are allowed to choose their collective strategy first, then the coalition S is guaranteed to achieve together $v^{\beta}(S)$.

Note that

$$v^{\alpha}(N) = v^{\beta}(N) = \max_{s \in C_N} p_N(s).$$

To compare these two definitions note first the following general result.

Lemma 1 Consider a function $f : X \times Y \to \mathbb{R}$, where X and Y are finite sets. Then

$$\max_{x \in X} \min_{y \in Y} f(x, y) \le \min_{y \in Y} \max_{x \in X} f(x, y).$$

Proof. We have for all $x' \in X, y' \in Y$

$$\min_{y \in Y} f(x', y) \le f(x', y') \le \max_{x \in X} f(x, y').$$

So for all $y' \in Y$

$$\max_{x \in X} \min_{y \in Y} f(x, y) \le \max_{x \in X} f(x, y')$$

and consequently

$$\max_{x \in X} \min_{y \in Y} f(x, y) \le \min_{y \in Y} \max_{x \in X} f(x, y).$$

Г			1
			I
 _	_	_	

Theorem 2 For all coalitions S we have $v^{\alpha}(S) \leq v^{\beta}(S)$.

Proof. By Lemma 1.

To see that the (N, v^{α}) and (N, v^{β}) TU-games can differ consider the following simple example.

Example 1 Take the following 2-persons game:

L R T 1,0 0,1 B 0,1 1,0

Let us focus first on the singleton coalition consisting of player 1. If he moves first, he can guarantee at most payoff 0 to himself. Indeed, if he chooses T, then player 2 can choose R and if he chooses B, then player 2 can choose L. In both cases player 1 gets only 0. So $v^{\alpha}(\{1\}) = 0$. Analogously $v^{\alpha}(\{2\}) = 0$. Also $v^{\alpha}(\{1,2\}) = 1$.

On the other hand, if player 2 moves first, then player 1 can always guarantee payoff 1 to himself, by choosing T in response to L and B in response to R. So $v^{\beta}(\{1\}) = 1$. Analogously $v^{\beta}(\{2\}) = 1$ and $v^{\beta}(\{1,2\}) = 1$.

The following general result will be useful in a moment.

Lemma 3 Consider a function $f : X_1 \times X_2 \times X_3 \to \mathbb{R}$, where X_1, X_2 and X_3 are finite sets. Then

$$\max_{x_1 \in X_1} \min_{(x_2, x_3) \in X_2 \times X_3} f(x_1, x_2, x_3) \le \max_{(x_1, x_2) \in X_1 \times X_2} \min_{x_3 \in X_3} f(x_1, x_2, x_3).$$

Proof. Straightforward and omitted.

Theorem 4 The (N, v^{α}) TU-game is superadditive.

Proof. By Lemma 3.

In contrast, the (N, v^{β}) TU-game is not superadditive. Indeed, it suffices to take the v^{β} game from the above example.

Next, we discuss two analogous ways that an NTU-game can be derived from a strategic game.

We begin by repeating the choices made when modelling TU-games as NTU-games. So as the set of outcomes X we take the set of all allocations \mathbb{R}^n and put for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$\mathbf{x} \succeq_i \mathbf{y} \text{ iff } \mathbf{x}_i \geq \mathbf{y}_i.$$

Consider now a coalition S of players. We say that $\mathbf{x} \in \mathbb{R}^n$ is **assurable** for S in the strategic game G if

$$\exists s_S \in C_S \; \forall s_{N \setminus S} \in C_{N \setminus S} \; \forall i \in S \; p_i(s_S, s_{N \setminus S}) \ge \mathbf{x}_i.$$

Intuitively this means that if the players in S are allowed to choose their strategies first, then they can always achieve in G the payoff at least as large as in the allocation \mathbf{x} .

Then we put

$$V^{\alpha}(S) := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \text{ is assurable for } S \text{ in } G \}.$$

 So

$$V^{\alpha}(S) = \bigcup_{s_{S} \in C_{S}} \bigcap_{s_{N \setminus S} \in C_{N \setminus S}} \{ \mathbf{x} \in \mathbb{R}^{n} \mid \forall i \in S \ p_{i}(s_{S}, s_{N \setminus S}) \ge \mathbf{x}_{i} \}.$$

Next, we say that $\mathbf{x} \in \mathbb{R}^n$ is **unpreventable** for S in G if

$$\forall s_{N\setminus S} \in C_{N\setminus S} \ \exists s_S \in C_S \ \forall i \in S \ p_i(s_S, s_{N\setminus S}) \ge \mathbf{x}_i.$$

Intuitively it means that if the players in $N \setminus S$ are allowed to choose their strategies first, then players in S can achieve in G the payoff at least as large as those in the allocation \mathbf{x} .

Then we put

$$V^{\beta}(S) := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \text{ is unpreventable for } S \text{ in } G \}.$$

 So

$$V^{\beta}(S) = \bigcap_{s_{N\setminus S} \in C_{N\setminus S}} \bigcup_{s_{S} \in C_{S}} \{ \mathbf{x} \in \mathbb{R}^{n} \mid \forall i \in S \ p_{i}(s_{S}, s_{N\setminus S}) \ge \mathbf{x}_{i} \}.$$

Note 5 For all coalitions $S, V^{\alpha}(S) \subseteq V^{\beta}(S)$.

Proof. By the fact that for each formula ϕ the implication

$$\exists x \forall y \ \phi(x, y) \to \forall y \exists x \ \phi(x, y)$$

holds.

The (N, V^{α}) and (N, V^{β}) NTU-games can differ.

Example 2 Reconsider the 2-persons game from Example 1:

L R T 1,0 0,1 B 0,1 1,0

We noticed already that if player 1 moves first, then he can guarantee at most payoff 0 to himself. So if $(x_1, x_2) \in V^{\alpha}(\{1\})$, then $x_1 \leq 0$. On the other hand, if player 2 moves first, then player 1 can always guarantee payoff 1 to himself, so $(1,0) \in V^{\beta}(\{1\})$.

To analyze so defined NTU-games we introduce the following adaptation of the notion of superadditivity to NTU-games.

We say that an NTU-game $(N, X, V, (\succeq_i)_{i \in N})$ is **superadditive** if for all disjoint coalitions S, T

$$V(S) \cap V(T) \subseteq V(S \cup T).$$

The following observation shows that this notion indeed generalizes it from the class of TU-games to NTU-games.

Note 6 Consider a TU-game (N, v) and the corresponding NTU-game $(N, X, V, (\succeq_i)_{i \in N})$. Then (N, v) is superadditive iff $(N, X, V, (\succeq_i)_{i \in N})$ is superadditive.

Proof.

 (\Rightarrow) Suppose (N, v) is superadditive. Take two disjoint coalitions S, T and $\mathbf{x} \in V(S) \cap V(T)$. Then $\sum_{i \in S} \mathbf{x}_i \leq v(S)$ and $\sum_{i \in T} \mathbf{x}_i \leq v(T)$, so $\sum_{i \in S \cup T} \mathbf{x}_i \leq v(S) + v(T)$. But by superadditivity $v(S) + v(T) \leq v(S \cup T)$. Hence $\mathbf{x} \in V(S \cup T)$.

 (\Leftarrow) Suppose $(N, X, V, (\succeq_i)_{i \in N})$ is superadditive. Take two disjoint coalitions S, T and $\mathbf{x} \in \mathbb{R}^n$ such that $\sum_{i \in S} \mathbf{x}_i = v(S)$ and $\sum_{i \in T} \mathbf{x}_i = v(T)$. Then $\mathbf{x} \in V(S) \cap V(T)$, so by superadditivity $\mathbf{x} \in V(S \cup T)$. So by definition $\sum_{i \in S \cup T} \mathbf{x}_i \leq v(S \cup T)$, i.e. $v(S) + v(T) \leq v(S \cup T)$.

The following result then clarifies the status of the (N, V^{α}) NTU-game.

Theorem 7 The NTU-game $(N, X, V^{\alpha}, (\succeq_i)_{i \in N})$ is superadditive.

Proof. Given a coalition U and $\mathbf{x} \in \mathbb{R}^n$ we say that $s_U \in C_U$ assures \mathbf{x} if

$$\forall s_{N\setminus U} \in C_{N\setminus U} \ \forall i \in U \ p_i(s_U, s_{N\setminus U}) \ge \mathbf{x}_i.$$

Consider two disjoint coalitions S, T and $\mathbf{x} \in V(S) \cap V(T)$. Choose $s_S \in C_S$ that assures \mathbf{x} and $s_T \in C_T$ that assures \mathbf{x} . Then, since S and T are disjoint, $s_{S\cup T} \in C_{S\cup T}$ and $s_{S\cup T}$ assures \mathbf{x} as well, so $\mathbf{x} \in V(S \cup T)$. \Box

Analogous result for the V^{β} NTU-game holds only for specific strategic games. We do not discuss the details here.