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Graph Games ⊆ TU Games

Games of this type are completely representable as a weighted
graph

The games that are representable are exactly the games that
satisfy the condition that the value of a coalition is the sum of
the value of each of the pairs in the coalition
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The Game defined
Motivation

The game is represented as a weighted (undirected, irreflexive)
fully connected graph G = 〈N,E ,W 〉 with

N a set of agents

E ⊆ N × N a set of pairs of agents

W : E → R the weight function

The players are thus represented as vertices in the graph.

Definition (The coalition value)

The value of a coalition S ⊆ N is represented as

v(S) =
∑

e∈E∩S2

W (e)

(cf. the exercise regarding this)
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Cons:

The games are highly restrictive on v (e.g.:)

The value of a coalition is the sum of the value of each of the
pairs in the coalition
All games are super additive
The agents are worth nothing alone, i.e. every singleton
coalition has a value of zero

Pros:

Size: We get rid of the need for explicitly defining 2n values
for v

We no longer have exponential input size (only O(n2))

Our goal:

Polynomial time solution concepts?
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The Shapley Value
The Shapley Value - Complexity
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The Core and its emptiness
Proof 1 ⇔ 3
Proof 2 ⇔ 3

Theorem

The Shapley value of agent i is

φ(i) =
1

2
×

∑

i 6=j

W (i , j)

Proof.

Proven in assignment 3.3.
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The Shapley Value
The Shapley Value - Complexity
The Core
The Core and its emptiness
Proof 1 ⇔ 3
Proof 2 ⇔ 3

Theorem

Computing the Shapley value is O(n2), where n = |N| is the

number of agents.

Proof.

The Shapley value of agent i has been shown equivalent to this
representation:

φ(i) =
1

2
×

∑

i 6=j

W (i , j)

Computing the value of φ(i) can be done by iterating over all
edges, which yields that computing φ is O(n2), since |E | is
O(|N|2) (in fact |E | is Θ( n2

−n
2

)).
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The Shapley Value
The Shapley Value - Complexity
The Core
The Core and its emptiness
Proof 1 ⇔ 3
Proof 2 ⇔ 3

The Core of vG is defined (or can be reformulated) as the set of all
imputations x such that v(S) ≤ x(S) for all S ⊆ N.

Theorem

If the Core is non-empty, the Shapley value is in the Core.

But we can make an even stronger theorem
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The Shapley Value
The Shapley Value - Complexity
The Core
The Core and its emptiness
Proof 1 ⇔ 3
Proof 2 ⇔ 3

Theorem

The following are equivalent

The Shapley value is in the Core

The graph G has no negative cut

The Core is non-empty
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The Shapley Value
The Shapley Value - Complexity
The Core
The Core and its emptiness
Proof 1 ⇔ 3
Proof 2 ⇔ 3

Pf. The Shapley value is in the Core iff G has no negative cut.

Let e(S , x) = v(S) − x(S) be the excess of coalition S at the
imputation x . It is easy to see that x is in the Core if and only
if the excess of all coalitions S ⊆ N is non-positive

Moreover, the excess of S at the Shapley value, e(S , φ) is −1
2

times the weight of the edges going from S to N r S

The excess is thus half the weight of the cut (S , N r S)

Hence the Shapley value is in the Core if and only if there is
no negative cut (S ,N r S)
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The Shapley Value
The Shapley Value - Complexity
The Core
The Core and its emptiness
Proof 1 ⇔ 3
Proof 2 ⇔ 3

Pf. The Core is nonempty iff G has no negative cut.

“⇐”: If G has no negative cut, the Shapley value is in the Core
(by the previous proof).
“⇒”: By expanding definitions.
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NP-completeness of NEGATIVE-CUT

NEGATIVE-CUT is NP-complete. We prove this by reducing
WEIGHTED-MAX-CUT

1 to NEGATIVE-CUT to prove its NP-hardness.
It is polynomial to test whether a candidate indeed is a solution.

Theorem

The following are NP-complete:

Given vG and an imputation x, is it not in the core of vG?

Given vG , is the Shapley value of vG not in the core of vG?

Given vG , is the core of vG empty?

1The weighted maximum cut problem is a well known NP-complete problem

stated as follows: Given a graph G and an integer k, determine whether there is

a cut of size at least k in G.
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Non-emptiness of the Core
Positive weights

We can make explicit a (yet another) restriction on the set of
games the gives a guarantee of non-emptiness of the Core and a
very nice complexity result.

Theorem

When all weights of G are non-negative, the Shapley value is in the

core of vG , hence the Core is non-empty.

Proof.

When all edge weights are non-negative, there are no negative
cuts.
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Non-emptiness of the Core
Positive weights

Theorem

When all weights of G are non-negative, we can test in polynomial

time whether an imputation x is in the core of vG .

Proof.

By reducing the problem to NETWORK-FLOW.
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Multi-issue Valuation Functions

Definition (Multi-issue valuation functions)

A decomposition over T issues of a valuation function v : 2A → R

is a vector (v1, v2 . . . vT ) of valuation functions vi : 2N → R such
that:

v(S) =
T

∑

i=1

vi (S) for all S ⊆ N
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Questions

Multi-issue Valuation Functions
Simple Results

Motivation

Often the task that the coalition undertakes consists of
independent subtasks — issues — that require specific
competences. Every agent has certain skills and can only address
issues that match them.
Each issue has its own valuation function.
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Simple Results

If v =

T
∑

i=1

vi is a decomposition of v and each vi is monotonic

(increasing), than v is monotonic.

If v =

T
∑

i=1

vi is a decomposition of v and each vi is

superadditive, than v is superadditive.

Sylvia Boicheva Computational Complexity in Multi-issue Domains



Multi-issue Valuation Functions
Computing the Shapley Value

Manipulating Marginal Contribution
Checking Core Membership

Questions

Multi-issue Valuation Functions
Simple Results

Advantages

The decomposition can lead to a more concise representation
if the individual vi are concisely representable.

May decrease the computational complexity in some cases.
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Multi-issue Valuation Functions
Simple Results

Concerned Agents

Definition (Agents concerned with a given issue)

We say that vi concerns only Ci ⊆ N if:

vi (S1) = vi (S2) whenever S1 ∩ Ci = S2 ∩ Ci

(or equivalently vi (S) = vi (S ∪ {i}) for all S ⊆ N and i 6∈ Ci )
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Questions

Multi-issue Valuation Functions
Simple Results

Concerned Agents

Definition (Agents concerned with a given issue)

We say that vi concerns only Ci ⊆ N if:

vi (S1) = vi (S2) whenever S1 ∩ Ci = S2 ∩ Ci

(or equivalently vi (S) = vi (S ∪ {i}) for all S ⊆ N and i 6∈ Ci )

We only need to specify

T
∑

i=1

2|Ci | values
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Questions

Multi-issue Valuation Functions
Simple Results

Concerned Agents

Definition (Agents concerned with a given issue)

We say that vi concerns only Ci ⊆ N if:

vi (S1) = vi (S2) whenever S1 ∩ Ci = S2 ∩ Ci

(or equivalently vi (S) = vi (S ∪ {i}) for all S ⊆ N and i 6∈ Ci )

We only need to specify

T
∑

i=1

2|Ci | values

Shapley value is easier to compute
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Questions

Observations
Theorem

Observations

If v =

T
∑

i=1

vi is a decomposition of v , than

Sha(N, v) =
T

∑

i=1

Sha(N, vi ) for any agent a.

Sha(N, v) =
1

|N|!

∑

π∈
Q

(N)

mca(π) =

∑

S⊆N\{a}

|S |!(|N| − |S | − 1)!

|N|!
(v(S ∪ {a}) − v(S))

Computable in O(2|N|)
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Observations
Theorem

Lemma

Lemma

Sha(N, vi ) = Sha(Ci , vi ) for any agent a ∈ Ci and Sha(N, vi ) = 0
for any agent a 6∈ Ci

Proof.

Sha(N, vi ) =
1

|N|!

∑

π

mca(π) =
1

|N|!

∑

πCi

∑

π⇒πCi

mca(πCi
) =

1

|N|!

∑

πCi

|N|!

|Ci |!
mca(πCi

) =
1

|Ci |!

∑

πCi

mca(πCi
) = Sha(Ci , vi )
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Observations
Theorem

Theorem

Theorem

Let v =
T

∑

i=1

vi be a decomposition of v .

Assuming that the factorials are precomputed and table look-ups
for vi (S) take constant time we can compute the Shapley value for

a given agent in O(

T
∑

i=1

2|Ci |) or less precisely O(T · 2max |Ci |)
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MAX-MARGINAL-CONTRIBUTION

Let v =
T

∑

i=1

vi be a decomposition of v and Ci be a set of agents

such that for each i vi concerns only Ci .

For a given agent a ∈ N and k ∈ R is there a coalition
S ⊆ N \ {a} such that v(S ∪ {a}) − v(S) ≥ k?
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Questions

MAX-MARGINAL-CONTRIBUTION

MAX-MARGINAL-CONTRIBUTION is NP-complete

Obviously NP — given a coalition we can easily compute the
marginal contribution of a

NP-complete — we reduce an arbitrary MAX-2-SAT 1

instance to MAX-MARGINAL-CONTRIBUTION with |Ci | = 3
and Rng(vi ) = {0, 1, 2}

1MAX-2-SAT is the following NP-hard problem: Given a number r ∈ N and
a formula in conjunctive normal form such that each conjunct has exactly two
literals (variable or negation of variable), is there an assignment for the
variables that makes at least r clauses true?
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MAX-MARGINAL-CONTRIBUTION

The Reduction

Take an agent av for each variable in the formula

Take an agent a whose marginal contribution we will maximize

For each clause we have an issue and Ci consists of the two
agents for the variables in the clause and a

Let for each i Pi be the set of agents for positive variables in
clause i and Ni be the set for negated variables

k = r
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MAX-MARGINAL-CONTRIBUTION

The Reduction 2

vi (S) =























0 ∃n ∈ Ni (n 6∈ S)&a 6∈ S
1 ∃n ∈ Ni (n 6∈ S)&a ∈ S
1 Ni ⊆ S ∧ ¬∃p ∈ Pi (p ∈ S)
1 Ni ⊆ S ∧ ∃p ∈ Pi (p ∈ S) ∧ a 6∈ S
2 Ni ⊆ S ∧ ∃p ∈ Pi (p ∈ S) ∧ a ∈ S
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MAX-MARGINAL-CONTRIBUTION

Notes

In case of a convex valuation function it is obvious that the
agent would want to be last! So the problem in this case is
not NP-hard!

Heuristics can help approximate it.
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CHECK-IF-BLOCKED

Let v =
T

∑

i=1

vi be a decomposition of v , Ci be a set of agents such

that for each i vi concerns only Ci and x be a payoff vector.

Is there a blocking coalition S ⊆ N?

(That is v(S) >

∑

a∈S

x(a))
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Questions

CHECK-IF-BLOCKED

CHECK-IF-BLOCKED is NP-complete

Obviously NP — given a coalition we can easily check if it is
blocking

NP-complete — we reduce an arbitrary VERTEX-COVER 2

instance to CHECK-IF-BLOCKED with |Ci | = 3 and
Rng(vi ) = {0, 1}

2VERTEX-COVER is the following NP-hard problem: Given a number
r ∈ N and a graph G = (V , E) is there a set of vetrices W such that |W | < r

and W covers all the edges in E?
Sylvia Boicheva Computational Complexity in Multi-issue Domains
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CHECK-IF-BLOCKED

The Reduction

For every vertex v ∈ V we introduce an agent av

We introduce one additional agent a0

For every edge e ∈ E we have an issue

Ce for a given edge e consists of a0 and the agents for the two
ends of the edge

ve(S) = 1 if a0 ∈ S and at least one of the agents for the
ends of the edge e is in S
and ve(S) = 0 otherwise

x(a0) = T − 1
2 and x(av ) =

1

2(r + 1
2)
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CHECK-IF-BLOCKED

The Reduction 2

Let W be a solution to the VERTEX-COVER and
S = {a0} ∪ {av |v ∈ W }, then ve(S) = 1 for every issue e.

So
∑

a∈S

x(a) = T −
1

2
+ |W | ·

1

2(r + 1
2)

≤ T −
1

2
+ r ·

1

2(r + 1
2)

<

T −
1

2
+ r

1

2r
= T = v(S), so S is blocking.
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CHECK-IF-BLOCKED

The Reduction 3

Now let S be a blocking coalition, then a0 ∈ S . Let

W = {v |av ∈ S}.
∑

a∈S

x(a) = T −
1

2
+ |W | ·

1

2(r + 1
2)

and

T ≥ v(S) >

∑

a∈S

x(a). Since |W | is an integer, |W | ≤ r .

Additionally we have v(S) > x(a0) = T , so for every issue e we
have ve(S) = 1 and therefore W is a solution to the
VERTEX-COVER problem.
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CHECK-IF-BLOCKED

Notes

This result implies that the core is maybe an unnecessary strong
stability concept — if nobody can find a coalition that would
benefit from breaking away, because it is computationally too
difficult, then the grand coalition is still stable in practice.
Of course computational complexity is not a significant barrier if
the instances are small enough.
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Thank you!
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