On the complexity of cooperative solution concepts and Computing Shapley values, manipulating value division schemes, and checking core membership in multi-issue domains

Pål Grønås Drange, Sylvia Boicheva

University of Amsterdam, ILLC

May 17, 2010

On the complexity of cooperative solution concepts

Pål Grønås Drange

University of Amsterdam, ILLC

May 17, 2010

<ロ> <同> <同> <同> < 三> < 三>

Game representation The Game defined Motivation

- Graph Games \subseteq TU Games
- Games of this type are completely representable as a weighted graph
- The games that are representable are exactly the games that satisfy the condition that the value of a coalition is the sum of the value of each of the pairs in the coalition

イロト イポト イヨト イヨト

The game is represented as a weighted (undirected, irreflexive) fully connected graph $G = \langle N, E, W \rangle$ with

- N a set of agents
- $E \subseteq N \times N$ a set of pairs of agents
- $W: E \to \mathbb{R}$ the weight function

The players are thus represented as vertices in the graph.

Definition (The coalition value)

The value of a coalition $S \subseteq N$ is represented as

$$v(S) = \sum_{e \in E \cap S^2} W(e)$$

(cf. the exercise regarding this)

・ロト ・同ト ・ヨト ・ヨト

Game representation The Game defined Motivation

Cons:

- The games are highly restrictive on v (e.g.:)
 - The value of a coalition is the sum of the value of each of the pairs in the coalition
 - All games are super additive
 - The agents are worth nothing alone, i.e. every singleton coalition has a value of zero

Pros:

• Size: We get rid of the need for explicitly defining 2^n values for v

• We no longer have exponential input size (only $O(n^2)$)

Our goal:

• Polynomial time solution concepts?

イロト イポト イヨト イヨト

The Shapley Value The Shapley Value - Complexity The Core The Core and its emptiness Proof $1 \Leftrightarrow 3$ Proof $2 \Leftrightarrow 3$

Theorem

The Shapley value of agent i is

$$\phi(i) = \frac{1}{2} \times \sum_{i \neq j} W(i, j)$$

Proof.

Proven in assignment 3.3.

<ロ> <同> <同> < 同> < 同>

The Shapley Value The Shapley Value - Complexity The Core The Core and its emptiness Proof 1 \Leftrightarrow 3 Proof 2 \Leftrightarrow 3

Theorem

Computing the Shapley value is $O(n^2)$, where n = |N| is the number of agents.

Proof.

The Shapley value of agent i has been shown equivalent to this representation:

$$\phi(i) = \frac{1}{2} \times \sum_{i \neq j} W(i,j)$$

Computing the value of $\phi(i)$ can be done by iterating over all edges, which yields that computing ϕ is $O(n^2)$, since |E| is $O(|N|^2)$ (in fact |E| is $\Theta(\frac{n^2-n}{2})$).

<ロ> <同> <同> <同> < 三> < 三>

Introduction Solution Concepts General Complexity Polynomial time conditions $Froof 1 \Leftrightarrow 3$ Proof 2 $\Leftrightarrow 3$

The Core of v_G is defined (or can be reformulated) as the set of all imputations x such that $v(S) \le x(S)$ for all $S \subseteq N$.

Theorem

If the Core is non-empty, the Shapley value is in the Core.

But we can make an even stronger theorem

<ロ> <同> <同> <同> < 三> < 三>

The Shapley Value The Shapley Value - Complexit The Core **The Core and its emptiness** Proof $1 \Leftrightarrow 3$ Proof $2 \Leftrightarrow 3$

Theorem

The following are equivalent

- The Shapley value is in the Core
- The graph G has no negative cut
- The Core is non-empty

(日) (同) (三) (三)

The Shapley Value The Shapley Value - Complexit The Core The Core and its emptiness **Proof 1** \Leftrightarrow **3** Proof 2 \Leftrightarrow 3

Pf. The Shapley value is in the Core iff G has no negative cut.

- Let e(S,x) = v(S) x(S) be the excess of coalition S at the imputation x. It is easy to see that x is in the Core if and only if the excess of all coalitions S ⊆ N is non-positive
- Moreover, the excess of S at the Shapley value, $e(S, \phi)$ is $-\frac{1}{2}$ times the weight of the edges going from S to $N \smallsetminus S$
- The excess is thus half the weight of the $cut (S, N \setminus S)$
- Hence the Shapley value is in the Core if and only if there is no negative cut (S, N \sc S)

(日) (同) (三) (三)

 $\begin{array}{c} \mbox{The Shapley Value} \\ \mbox{Solution Concepts} \\ \mbox{General Complexity} \\ \mbox{Polynomial time conditions} \end{array} \begin{array}{c} \mbox{The Shapley Value} - \mbox{Complexity} \\ \mbox{The Core} \\ \mbox{The Core}$

Pf. The Core is nonempty iff G has no negative cut.

" \Leftarrow ": If G has no negative cut, the Shapley value is in the Core (by the previous proof).

" \Rightarrow ": By expanding definitions.

<ロ> <同> <同> <同> < 三> < 三>

NEGATIVE-CUT is NP-complete. We prove this by reducing WEIGHTED-MAX-CUT¹ to NEGATIVE-CUT to prove its NP-hardness. It is polynomial to test whether a candidate indeed is a solution.

Theorem

The following are NP-complete:

- Given v_G and an imputation x, is it not in the core of v_G ?
- Given v_G, is the Shapley value of v_G not in the core of v_G?
- Given v_G, is the core of v_G empty?

¹The weighted maximum cut problem is a well known NP-complete problem stated as follows: Given a graph G and an integer k, determine whether there is a cut of size at least k in G.

We can make explicit a (yet another) restriction on the set of games the gives a guarantee of non-emptiness of the Core and a very nice complexity result.

Theorem

When all weights of G are non-negative, the Shapley value is in the core of v_G , hence the Core is non-empty.

Proof.

When all edge weights are non-negative, there are no negative cuts.

<ロ> <同> <同> <同> < 三> < 三>

Non-emptiness of the Core Positive weights

Theorem

When all weights of G are non-negative, we can test in polynomial time whether an imputation x is in the core of v_G .

Proof.

By reducing the problem to NETWORK-FLOW.

(日) (同) (三) (三)

Computing Shapley values, manipulating value division schemes, and checking core membership in multi-issue domains

Sylvia Boicheva

University of Amsterdam, ILLC

May 17, 2010

Computing the Shapley Value Manipulating Marginal Contribution Checking Core Membership Questions

Multi-issue Valuation Functions Simple Results

Multi-issue Valuation Functions

Definition (Multi-issue valuation functions)

A decomposition over T issues of a valuation function $v : 2^A \to \mathbb{R}$ is a vector $(v_1, v_2 \dots v_T)$ of valuation functions $v_i : 2^N \to \mathbb{R}$ such that:

$$v(S) = \sum_{i=1}^{T} v_i(S)$$
 for all $S \subseteq N$

(日) (同) (三) (三)

Computing the Shapley Value Manipulating Marginal Contribution Checking Core Membership Questions

Multi-issue Valuation Functions Simple Results

Motivation

Often the task that the coalition undertakes consists of independent subtasks — issues — that require specific competences. Every agent has certain skills and can only address issues that match them. Each issue has its own valuation function.

伺 ト イ ヨ ト イ ヨ ト

Computing the Shapley Value Manipulating Marginal Contribution Checking Core Membership Questions

Simple Results

Multi-issue Valuation Functions Simple Results

If v = ∑_{i=1}^T v_i is a decomposition of v and each v_i is monotonic (increasing), than v is monotonic.
If v = ∑_{i=1}^T v_i is a decomposition of v and each v_i is superadditive, than v is superadditive.

・ 同 ト ・ ヨ ト ・ ヨ ト

Computing the Shapley Value Manipulating Marginal Contribution Checking Core Membership Questions

Multi-issue Valuation Functions Simple Results

- The decomposition can lead to a more concise representation if the individual v_i are concisely representable.
- May decrease the computational complexity in some cases.

- 4 周 ト 4 月 ト 4 月

Computing the Shapley Value Manipulating Marginal Contribution Checking Core Membership Questions

Multi-issue Valuation Functions Simple Results

Concerned Agents

Definition (Agents concerned with a given issue)

We say that v_i concerns only $C_i \subseteq N$ if:

$$v_i(S_1) = v_i(S_2)$$
 whenever $S_1 \cap C_i = S_2 \cap C_i$

(or equivalently $v_i(S) = v_i(S \cup \{i\})$ for all $S \subseteq N$ and $i \notin C_i$)

(日)

Computing the Shapley Value Manipulating Marginal Contribution Checking Core Membership Questions

Multi-issue Valuation Functions Simple Results

Concerned Agents

Definition (Agents concerned with a given issue)

We say that v_i concerns only $C_i \subseteq N$ if:

$$v_i(S_1) = v_i(S_2)$$
 whenever $S_1 \cap C_i = S_2 \cap C_i$

(or equivalently $v_i(S) = v_i(S \cup \{i\})$ for all $S \subseteq N$ and $i \notin C_i$)

• We only need to specify
$$\sum_{i=1}^{T} 2^{|C_i|}$$
 values

(日)

Computing the Shapley Value Manipulating Marginal Contribution Checking Core Membership Questions

Multi-issue Valuation Functions Simple Results

Concerned Agents

Definition (Agents concerned with a given issue)

We say that v_i concerns only $C_i \subseteq N$ if:

$$v_i(S_1) = v_i(S_2)$$
 whenever $S_1 \cap C_i = S_2 \cap C_i$

(or equivalently $v_i(S) = v_i(S \cup \{i\})$ for all $S \subseteq N$ and $i \notin C_i$)

• We only need to specify
$$\sum_{i=1}^{T} 2^{|C_i|}$$
 values

• Shapley value is easier to compute

・ロン ・部 と ・ ヨ と ・ ヨ と …

Observations Theorem

Observations

• If
$$v = \sum_{i=1}^{T} v_i$$
 is a decomposition of v , than
 $Sh_a(N, v) = \sum_{i=1}^{T} Sh_a(N, v_i)$ for any agent a .
• $Sh_a(N, v) = \frac{1}{|N|!} \sum_{\pi \in \prod(N)} mc_a(\pi) = \sum_{S \subseteq N \setminus \{a\}} \frac{|S|!(|N| - |S| - 1)!}{|N|!} (v(S \cup \{a\}) - v(S))$

• Computable in $O(2^{|N|})$

イロト イポト イヨト イヨト

Observations Theorem

Lemma

Lemma

 $Sh_a(N, v_i) = Sh_a(C_i, v_i)$ for any agent $a \in C_i$ and $Sh_a(N, v_i) = 0$ for any agent $a \notin C_i$

Proof.

$$Sh_{a}(N, v_{i}) = \frac{1}{|N|!} \sum_{\pi} mc_{a}(\pi) = \frac{1}{|N|!} \sum_{\pi_{C_{i}}} \sum_{\pi \Rightarrow \pi_{C_{i}}} mc_{a}(\pi_{C_{i}}) = \frac{1}{|N|!} \sum_{\pi_{C_{i}}} \frac{|N|!}{|C_{i}|!} mc_{a}(\pi_{C_{i}}) = \frac{1}{|C_{i}|!} \sum_{\pi_{C_{i}}} mc_{a}(\pi_{C_{i}}) = Sh_{a}(C_{i}, v_{i}) \square$$

(日) (同) (三) (三)

Observations Theorem

Theorem

Theorem

Let
$$v = \sum_{i=1}^{T} v_i$$
 be a decomposition of v .
Assuming that the factorials are precomputed and table look-ups
for $v_i(S)$ take constant time we can compute the Shapley value for
a given agent in $O(\sum_{i=1}^{T} 2^{|C_i|})$ or less precisely $O(T \cdot 2^{\max|C_i|})$

<ロ> <同> <同> < 同> < 同>

MAX-MARGINAL-CONTRIBUTION

MAX-MARGINAL-CONTRIBUTION

Let $v = \sum_{i=1}^{T} v_i$ be a decomposition of v and C_i be a set of agents such that for each $i v_i$ concerns only C_i .

For a given agent $a \in N$ and $k \in \mathbb{R}$ is there a coalition $S \subseteq N \setminus \{a\}$ such that $v(S \cup \{a\}) - v(S) \ge k$?

伺 ト イ ヨ ト イ ヨ ト

MAX-MARGINAL-CONTRIBUTION

MAX-MARGINAL-CONTRIBUTION is NP-complete

- Obviously NP given a coalition we can easily compute the marginal contribution of a
- NP-complete we reduce an arbitrary MAX-2-SAT ¹ instance to MAX-MARGINAL-CONTRIBUTION with |C_i| = 3 and Rng(v_i) = {0,1,2}

¹MAX-2-SAT is the following NP-hard problem: Given a number $r \in \mathbb{N}$ and a formula in conjunctive normal form such that each conjunct has exactly two literals (variable or negation of variable), is there an assignment for the variables that makes at least r clauses true?

MAX-MARGINAL-CONTRIBUTION

The Reduction

- Take an agent a_v for each variable in the formula
- Take an agent a whose marginal contribution we will maximize
- For each clause we have an issue and C_i consists of the two agents for the variables in the clause and a
- Let for each *i* P_i be the set of agents for positive variables in clause *i* and N_i be the set for negated variables

伺 ト イ ヨ ト イ ヨ ト

MAX-MARGINAL-CONTRIBUTION

The Reduction 2

$$v_i(S) = \begin{cases} 0 & \exists n \in N_i (n \notin S) \& a \notin S \\ 1 & \exists n \in N_i (n \notin S) \& a \in S \\ 1 & N_i \subseteq S \land \neg \exists p \in P_i (p \in S) \\ 1 & N_i \subseteq S \land \exists p \in P_i (p \in S) \land a \notin S \\ 2 & N_i \subseteq S \land \exists p \in P_i (p \in S) \land a \in S \end{cases}$$

<ロ> <同> <同> < 同> < 同>

MAX-MARGINAL-CONTRIBUTION

Notes

- In case of a convex valuation function it is obvious that the agent would want to be last! So the problem in this case is not NP-hard!
- Heuristics can help approximate it.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

CHECK-IF-BLOCKED

CHECK-IF-BLOCKED

Let $v = \sum_{i=1}^{T} v_i$ be a decomposition of v, C_i be a set of agents such that for each $i v_i$ concerns only C_i and x be a payoff vector.

Is there a blocking coalition $S \subseteq N$? (That is $v(S) > \sum_{a \in S} x(a)$)

伺 ト く ヨ ト く ヨ ト

CHECK-IF-BLOCKED

CHECK-IF-BLOCKED is NP-complete

- Obviously NP given a coalition we can easily check if it is blocking
- NP-complete we reduce an arbitrary VERTEX-COVER² instance to CHECK-IF-BLOCKED with |C_i| = 3 and Rng(v_i) = {0,1}

²VERTEX-COVER is the following NP-hard problem: Given a number $r \in \mathbb{N}$ and a graph G = (V, E) is there a set of vetrices W such that |W| < r and W covers all the edges in E?

CHECK-IF-BLOCKED

The Reduction

- For every vertex $v \in V$ we introduce an agent a_v
- We introduce one additional agent *a*₀
- For every edge $e \in E$ we have an issue
- *C_e* for a given edge *e* consists of *a*₀ and the agents for the two ends of the edge
- v_e(S) = 1 if a₀ ∈ S and at least one of the agents for the ends of the edge e is in S and v_e(S) = 0 otherwise

•
$$x(a_0) = T - \frac{1}{2}$$
 and $x(a_v) = \frac{1}{2(r + \frac{1}{2})}$

伺 ト イ ヨ ト イ ヨ ト

CHECK-IF-BLOCKED

The Reduction 2

Let W be a solution to the VERTEX-COVER and
$$S = \{a_0\} \cup \{a_v | v \in W\}$$
, then $v_e(S) = 1$ for every issue e.

So
$$\sum_{a \in S} x(a) = T - \frac{1}{2} + |W| \cdot \frac{1}{2(r + \frac{1}{2})} \le T - \frac{1}{2} + r \cdot \frac{1}{2(r + \frac{1}{2})} < T - \frac{1}{2} + r\frac{1}{2r} = T = v(S)$$
, so S is blocking.

<ロ> <同> <同> < 同> < 同>

CHECK-IF-BLOCKED

The Reduction 3

Now let *S* be a blocking coalition, then $a_0 \in S$. Let $W = \{v | a_v \in S\}$. $\sum_{a \in S} x(a) = T - \frac{1}{2} + |W| \cdot \frac{1}{2(r + \frac{1}{2})}$ and $T \ge v(S) > \sum_{a \in S} x(a)$. Since |W| is an integer, $|W| \le r$. Additionally we have $v(S) > x(a_0) = T$, so for every issue *e* we have $v_e(S) = 1$ and therefore *W* is a solution to the VERTEX-COVER problem.

伺 ト イ ヨ ト イ ヨ ト

CHECK-IF-BLOCKED

Notes

This result implies that the core is maybe an unnecessary strong stability concept — if nobody can find a coalition that would benefit from breaking away, because it is computationally too difficult, then the grand coalition is still stable in practice. Of course computational complexity is not a significant barrier if the instances are small enough.

伺 ト イ ヨ ト イ ヨ ト

Questions?

・ロト ・回ト ・ヨト ・ヨト

æ

Thank you!

<ロ> (四) (四) (三) (三)

æ