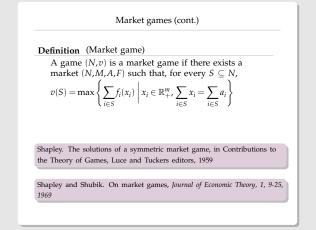


- perform a task.
- Find complementary agents to perform the tasks
 - robots have the ability to move objects in a plant, but multiple robots are required to move a heavy box.

 - transportation domain: agents are trucks, trains, airplanes, ships... a task is a good to be transported.
- Issues:
 - What coalition to form?
 - How to reward each each member when a task is completed?

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 1: Introduction 5)



	 M is a set of m continuous good 	
	• $A = (a_i)_{i \in N}$ is the initial endowment vector	
	• $F = (f_i)_{i \in N}$ is the valuation function vector	
	Assumptions of the model:	
	 The utility of agent <i>i</i> for possessing <i>x</i> ∈ ℝ^m₊ and an amount of money <i>p</i> ∈ ℝ is <i>u_i(x,p) = f_i(x) + p</i>. The money models side payments. 	
	 Initially, agents have no money. 	
	• p_i can be positive or negative (like a bank account).	
	 Agents can increase their utility by trading: after a trade among the members of S, they have an endowment (b_i)_{i∈S} and money (p_i)_{i∈S} such that 	
	$\sum_{i \in S} a_i = \sum_{i \in b} b_i$ and $\sum_{i \in S} p_i = 0$.	
har	Airiau (ILLC) - Cooperative Games Lecture I: Introduc	tion 6
	Cost allocation games	

Definition (Cost allocation game) A cost allocation game is a game (N, c) where

- $\circ~N$ represents the potential customers of a public service or a public facility.
- $\circ \ c(S)$ is the cost of serving the members of S

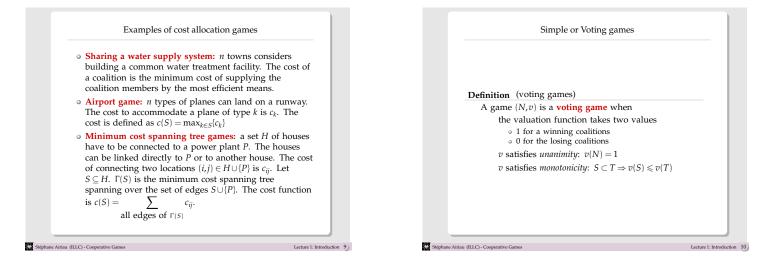
Mathematically speaking, a cost game is a game. The special status comes because of the different intuition (worth of a coalition vs. cost of a coalition).

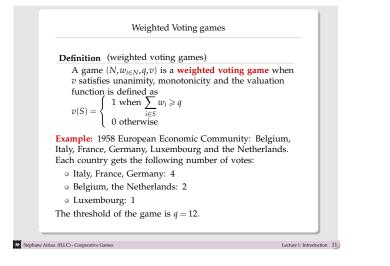
We can associate a cost game with a "traditional game" using the corresponding saving game (N, v) given by

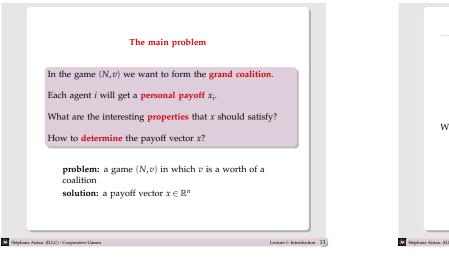
$$v(S) = \sum_{i \in S} c(\{i\}) - c(S).$$

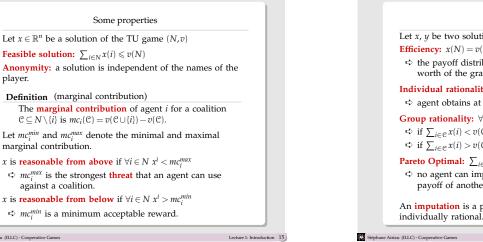
 ${\scriptstyle \odot}$ N is a set of traders

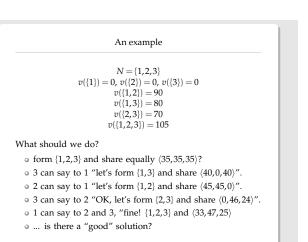
Stér











Some types of TU games

• additive (or inessential): $v(\mathcal{C}_1 \cup \mathcal{C}_2) = v(\mathcal{C}_1) + v(\mathcal{C}_2)$

• superadditive: $v(\mathcal{C}_1 \cup \mathcal{C}_2) \ge v(\mathcal{C}_1) + v(\mathcal{C}_2)$ satisfied in

many applications: it is better to form larger coalitions.

Convex game appears in some applications in game

trivial from the game theoretic point of view

• weakly superadditive: $v(\mathcal{C}_1 \cup \{i\}) \ge v(\mathcal{C}_1) + v(\{i\})$

• subadditive: $v(\mathcal{C}_1 \cup \mathcal{C}_2) \leqslant v(\mathcal{C}_1) + v(\mathcal{C}_2)$

theory and have nice properties.

• **monotonic:** $\forall \mathcal{C} \subseteq \mathcal{T} \subseteq N \ v(\mathcal{C}) \leq v(\mathcal{T}).$

 $\forall \mathbb{C}_1, \mathbb{C}_2 \subseteq N \mid \mathbb{C}_1 \cap \mathbb{C}_2 = \emptyset, \, i \in N, \, i \notin \mathbb{C}_1$

• **convex:** $\forall \mathcal{C} \subseteq \mathcal{T}$ and $i \notin \mathcal{T}$, $v(\mathcal{C} \cup \{i\}) - v(\mathcal{C}) \leqslant v(\mathcal{T} \cup \{i\}) - v(\mathcal{T}).$

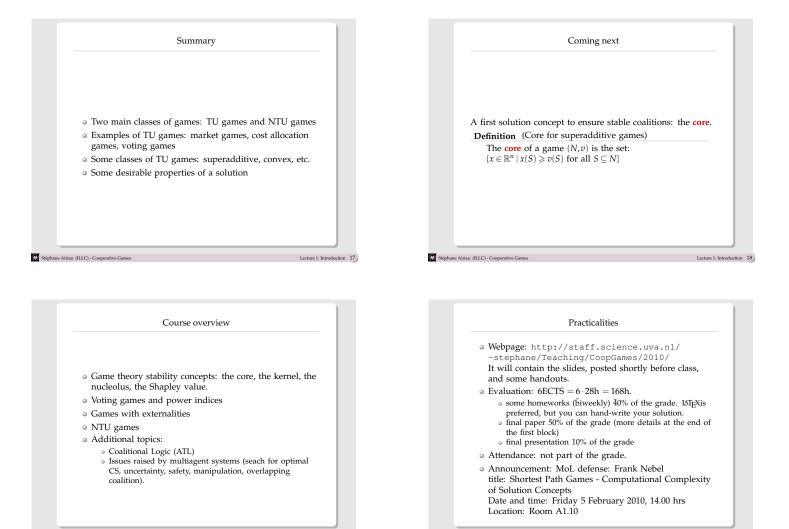
Stéphane Airiau (ILLC) - Cooperative Games

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 1: Introduction 14

Lecture 1: Introduction 12)

Let	x, y be two solutions of a TU-game (N, v) .
Effi	ciency: x(N) = v(N)
¢	the payoff distribution is an allocation of the entire worth of the grand coalition to all agents.
Ind	ividual rationality: $\forall i \in N, x(i) \ge v(\{i\})$
¢	agent obtains at least its self-value as payoff.
Gro	oup rationality: $\forall C \subseteq N$, $\sum_{i \in C} x(i) = v(C)$
¢	if $\sum_{i \in \mathcal{C}} x(i) < v(\mathcal{C})$ some utility is lost
¢	if $\sum_{i \in \mathcal{C}} x(i) > v(\mathcal{C})$ is not possible
Par	eto Optimal: $\sum_{i \in N} x(i) = v(N)$
¢	no agent can improve its payoff without lowering the payoff of another agent.



Stéphane Airiau (ILLC) - Cooperative Games

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 1: Introduction 19

Lecture 1: Introduction 20