Cooperative Games Lecture 2: The core

Stéphane Airiau

ILLC - University of Amsterdam

- A problem: Imagine you can do a project alone, or with friends. Which friend to choose?
- Talented, hard working, easy to work with, etc.
- But your friends are having the same reasoning.
- A condition for a coalition to form: all agents prefer to be in it. i.e., none of the participants wishes she were in a different coalition or by herself \leadsto Stability
- Stability is a necessary but not sufficient condition, (e.g., there may be multiple stable coalitions).
- The core is a stability concepts where no agents prefer to deviate to form a different coalition.
- For simplicity, we will only consider the problem of the stability of the grand coalition:
\Rightarrow Is the grand coalition stable \Leftrightarrow Is the core non-empty

Today

- Definition of the core
- Some examples of computing the core for games with up to three agents
- Convex games and the core

Definition (valuation or characteristic function)
A valuation function v associates a real number $v(S)$ to any subset S, i.e., $v: 2^{N} \rightarrow \mathbb{R}$

Definition (TU game)

A TU game is a pair (N, v) where N is a set of agents and where v is a valuation function.

Definition (Imputation)
An imputation is a payoff distribution x that is efficient and individually rational, i.e.:

- $\sum_{i \in N} x_{i}=v(N)$ (efficiency)
- for all $i \in N, x_{i} \geqslant v(\{i\})$ (individual rationality)

Definition (Group rationality)

$$
\forall \mathbb{C} \subseteq N, \sum_{i \in \mathrm{e}} x(i) \geqslant v(\mathrm{C})
$$

The core relates to the stability of the grand coalition: No group of agents has any incentive to change coalition.

Definition (core of a game (N, v))
Let (N, v) be a TU game, and assume we form the grand coalition N.
The core of (N, v) is the set:

$$
\operatorname{Core}(N, v)=\left\{x \in \mathbb{R}^{n} \mid x \text { is a group rational imputation }\right\}
$$

Equivalently,

$$
\operatorname{Core}(N, v)=\left\{x \in \mathbb{R}^{n} \mid x(N) \leqslant v(N) \wedge x(\mathcal{C}) \geqslant v(\mathcal{C}) \forall \mathrm{C} \subseteq N\right\}
$$

Example

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$$
\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}
$$

$$
x_{2}
$$

The core may not be fair: the core only considers stability.

$$
\left.\begin{array}{c}
N=\{1,2,3\} \\
v(\{i\})=0 \\
v(\{\mathcal{P}\})=\alpha \text { for }|\mathcal{C}|=2 \\
v(N)=1
\end{array}\right\} \begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right) \in \operatorname{Core}(N, v) \Leftrightarrow\left\{\begin{array}{l}
\forall i \in N, x_{i} \geqslant 0 \\
\forall(i, j) \in N^{2} \quad i \neq j, x_{i}+x_{j} \geqslant \alpha \\
\sum_{i \in N} x_{i}=1
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
\forall i \in N 0 \leqslant x_{i} \leqslant 1-\alpha \\
\sum_{i \in N} x_{i}=1
\end{array}\right. \tag{2}
\end{aligned}
$$

$\operatorname{Core}(N, v)$ is nonempty iff $\alpha \leqslant \frac{2}{3}$
(by summing (1) for all $i \in N$ and using (2))
what happens when $\alpha>\frac{2}{3}$ and the core is empty?

Example with barycentric coordinate

$$
\begin{array}{rl}
& v(\{1\})=1 \\
v(\emptyset)=0 & v(\{1,2\})=4 \\
& v(\{3\})=0
\end{array} \quad v(\{1,3\})=3 \quad v(\{2,3\})=5 \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1)$, (1,0,7).
On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rll}
& v(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3 \\
& v(\{3\})=1 & v((\{2,3\})=5
\end{array} \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1)$, $(1,0,7)$.
On the plane: $x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{llll}
& v(\{1\})=1 & v(\{1,2\})=4 & \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3 & v(\{1,2,3\})=8 \\
& v(\{3\})=1 & v(\{2,3\})=5 &
\end{array}
$$

$$
\text { set of imputations } \mathcal{J}=\left\{\sum_{i=1}^{3} x_{i}=8, x_{1} \geqslant 1, x_{2} \geqslant 0, x_{3} \geqslant 1\right\}
$$

J is a triangle with vertices: $(7,0,1),(1,6,1)$, (1,0,7).
On the plane: $x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rll}
& v(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3 \\
& v(\{3\})=1 & v(\{2,3\})=5
\end{array} \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1)$, $(1,0,7)$.
On the plane: $x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{llll}
& v(\{1\})=1 & v(\{1,2\})=4 & \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3 & v(\{1,2,3\})=8 \\
& v(\{3\})=1 & v(\{2,3\})=5 &
\end{array}
$$

$$
\text { set of imputations } \mathcal{J}=\left\{\sum_{i=1}^{3} x_{i}=8, x_{1} \geqslant 1, x_{2} \geqslant 0, x_{3} \geqslant 1\right\}
$$

J is a triangle with vertices: $(7,0,1),(1,6,1)$, (1,0,7).
On the plane: $x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rll}
& v(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3 \\
& v(\{3\})=1 & v(\{2,3\})=5
\end{array} \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1)$, (1,0,7).
On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{aligned}
& v(\{1\})=1 \quad v(\{1,2\})=4 \\
& v(\emptyset)=0 \quad v(\{2\})=0 \quad v(\{1,3\})=3 \quad v(\{1,2,3\})=8 \\
& v(\{3\})=1 \quad v(\{2,3\})=5 \\
& \text { set of imputations } \mathcal{J}=\left\{\sum_{i=1}^{3} x_{i}=8, x_{1} \geqslant 1, x_{2} \geqslant 0, x_{3} \geqslant 1\right\}
\end{aligned}
$$

J is a triangle with vertices: $(7,0,1),(1,6,1)$, (1,0,7).
On the plane: $x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rll}
& v(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0 & v((\{1,3\})=3 \\
& v(\{3\})=1 & v((\{2,3\})=5
\end{array} \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1)$, (1,0,7).
On the plane: $x_{1}+x_{2}+x_{3}=8$

Issues with the core

- The core may not always be non-empty
- When the core is not empty, it may not be 'fair'
- It may not be easy to compute
\Rightarrow Are there classes of games that have a non-empty core?
\Rightarrow Is it possible to characterize the games with non-empty core?

Definition (Convex games)

A game (N, v) is convex iff
$\forall \mathrm{C} \subseteq \mathcal{T}$ and $i \notin \mathcal{T}, v(\mathcal{C} \cup\{i\})-v(\mathcal{C}) \leqslant v(\mathcal{T} \cup\{i\})-v(\mathcal{T})$.
TU-game is convex if the marginal contribution of each player increases with the size of the coalition he joins.

Bankruptcy game $(E, c) E \geqslant 0$ is the estate, there are n claimants and $c \in \mathbb{R}_{+}^{n}$ is the claim vector (c_{i} is the claim of the $i^{\text {th }}$ claimant). $v(\mathcal{C})=\max \left\{0, E-\sum_{i \in N \backslash \complement} c_{i}\right\}$
Theorem
Each bankruptcy game is convex

Theorem

A TU game (N, v) is convex iff for all coalition S and T $v(S)+v(T) \leqslant v(S \cup T)+v(S \cap T)$

Theorem

A convex game has a non-empty core

Proof for convexity of a bankruptcy market

Proof for characterization of a convex game

Proof for non-emptyness of the core for convex games

Summary

- We introduced the core: a stability solution concept.
- We looked at some examples.
- We saw that the core can be empty.
- We proved that convex games have a non-empty core.

Coming next

- Characterization of games with non-empty core (Bondareva Shapley theorem), informal introduction to linear programming.
- Application of Bondareva-Shapley to market games.
- Other games with non-empty core.
- Computational complexity of the core.

