Cooperative Games

Lecture 5: The nucleolus

Stéphane Airiau

ILLC - University of Amsterdam

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 1)

Excess of a coalition

Definition (Excess of a coalition)

Let (N,v) be a TU game, $\mathfrak{C} \subseteq N$ be a coalition, and xbe a payoff distribution over N. The excess e(C,x) of coalition \mathcal{C} at x is the quantity $e(\mathcal{C}, x) = v(\mathcal{C}) - x(\mathcal{C})$.

An example: let $N = \{1,2,3\}$, $C = \{1,2\}$, $v(\{1,2\}) = 8$, $x = \langle 3,2,5 \rangle$, $e(\mathcal{C},x) = v(\{1,2\}) - (x_1 + x_2) = 8 - (3+2) = 3.$

We can interpret a positive excess $(e(\mathcal{C},x) \ge 0)$ as the amount of $\boldsymbol{dissatisfaction}$ or $\boldsymbol{complaint}$ of the members of $\boldsymbol{\mathfrak{C}}$ from the allocation x.

We can use the excess to define the core: $Core(N, v) = \{x \in \mathbb{R}^n \mid x \text{ is an imputation and } \forall C \subseteq N, e(C, x) \leq 0\}$

This definition shows that no coalition has any complaint: each coalition's demand can be granted.

Stéphane Airiau (ILLC) - Cooperative Games

Definition (lexicographic order of $\mathbb{R}^m \geqslant_{lex}$)

Let \geq_{lex} denote the **lexicographical** ordering of \mathbb{R}^m , i.e., $\forall (x,y) \in \mathbb{R}^m$, $x \ge_{lex} y$ iff x=y or $\exists t \text{ s. t. } 1 \leqslant t \leqslant m \text{ s. t. } \forall i \text{ s. t. } 1 \leqslant i \leqslant t \text{ } x_i = y_i \text{ and } x_t > y_t$

example: $\langle 1,1,0,-1,-2,-3,-3\rangle \gg_{lex} \langle 1,0,0,0,-2,-3,-3\rangle$ Let l be a sequence of m reals. We denote by l^{\blacktriangleright} the reordering of l in decreasing order.

In the example, $e(x) = \langle -3, -3, -2, -1, 1, 1, 0 \rangle$ and then $e(x)^{\blacktriangleright} = \langle 1, 1, 0, -1, -2, -3, -3 \rangle$.

Hence, we can say that y is better than x by writing $e(x)^{\triangleright} \geqslant_{lex} e(y)^{\triangleright}$

Stéphane Airiau (ILLC) - Cooperative Games

Stéphane Airiau (ILLC) - Cooperative Games

Definition (Nucleolus)

Let (N,v) be a TU game. Let $\Im mp$ be the set of all imputations. The nucleolus Nu(N,v) is the set

 $Nu(N,v) = \{x \in \Im mp \mid \forall y \in \Im mp \ e(y)^{\triangleright} \geqslant_{lex} e(x)^{\triangleright} \}$

Today

- We consider one way to compare two imputations.
- We define the Nucleolus and look at some properties.
- We prove important properties of the nucleolus, which requires some elements of analysis.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 2

$$\begin{array}{l} N = \{1,2,3\}, \ v(\{i\}) = 0 \ \ \text{for} \ \ i \in \{1,2,3\} \\ v(\{1,2\}) = 5, \ v(\{1,3\}) = 6, \ v(\{2,3\}) = 6 \\ v(N) = 8 \end{array}$$

Let us consider two payoff vectors $x = \langle 3,3,2 \rangle$ and $y = \langle 2,3,3 \rangle$. Let e(x) denote the sequence of excesses of all coalitions at x.

$x = \langle 3, 3, 2 \rangle$	
coalition C	$e(\mathcal{C},x)$
{1}	-3
{2}	-3
{3}	-2
{1,2}	-1
{1,3}	1
{2,3}	1
{1,2,3}	0

$y = \langle 2, 3, 3 \rangle$	
coalition C	e(C,y)
{1}	-2
{2}	-3
{3}	-3
{1,2}	0
{1,3}	1
{2,3}	0
{1,2,3}	0
r or 1/2 Lot us write th	

Which payoff should we prefer? x or y? Let us write the excess in the decreasing order (from the greatest excess to the smallest)

 $\langle 1, 1, 0, -1, -2, -3, -3 \rangle$

 $\langle 1, 0, 0, 0, -2, -3, -3 \rangle$

Stéphane Airiau (ILLC) - Cooperative Games

Some properties of \leq_{lex} and its strict version

- $\quad \ \ \, \forall x \in \mathbb{R}^m \ \, x \leqslant_{lex} x^{\blacktriangleright}$
- $\circ \ \forall x \in \mathbb{R}^m$ and any permutation σ of $\{1, ..., m\}$, $\sigma(x) \leqslant_{lex} x^{\blacktriangleright}$
- - (a) $x \le |_{\text{ex}} y \Rightarrow \alpha x \le |_{\text{ex}} \alpha y$ (b) $x \le |_{\text{ex}} y \Rightarrow \alpha x \le |_{\text{ex}} \alpha y$ (c) $x \le |_{\text{ex}} y \land u \le |_{\text{ex}} x 0$ (c) $x \le |_{\text{ex}} y \land u \le |_{\text{ex}} x 0$ (d) $x \le |_{\text{ex}} y \land u \le |_{\text{ex}} x 0$ (e) $x \le |_{\text{ex}} y \land u \le |_{\text{ex}} x 0$ (f) $x \le |_{\text{ex}} y \land u \le |_{\text{ex}} x 0$ (f) $x \le |_{\text{ex}} y \lor u \lor |_{\text{ex}} x \lor u \lor |_{\text{ex}} x \lor |_{\text{$

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 6)

An alternative definition in terms of objections and counter-objections

Let (N,v) be a TU game. Objections are made by coalitions instead of individual agents. Let $P \subseteq N$ be a coalition that expresses

A pair (P,y), in which $P \subseteq N$ and y is an imputation, is an **objection** to x iff e(P,x) > e(P,y).

Our excess for coalition P is too large at x, payoff y reduces

A coalition (Q,y) is a **counter-objection** to the objection (P,y)when e(Q,y) > e(Q,x) and $e(Q,y) \ge e(P,x)$.

Our excess under y is larger than it was under x for coalition Q! Furthermore, our excess at y is larger than what your

An imputation fails to be stable if the excess of some coalition P can be reduced without increasing the excess of some other coalition to a level at least as large as that of the original excess of

Stéphane Airiau (ILLC) - Cooperative Games

Definition (Nucleolus)

Let (N,v) be a TU game. The **nucleolus** is the set of imputations x such that for every objection (P,y), there exists a counter-objection (Q, y).

M.J. Osborne and A. Rubinstein. A course in game theory, MIT Press,

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 9)

Theorem

Let (N,v) be a superadditive game and $\Im mp$ be its set of imputations. Then, $\Im mp \neq \emptyset$.

Proof

Let (N, v) be a superadditive game. Let x be a payoff distribution defined as follows:

 $x_i = v(\{i\}) + \frac{1}{|N|} \left(v(N) - \sum_{j \in N} v(\{j\}) \right).$

- $\circ \ v(N) \textstyle \sum_{j \in N} v(\{j\}) > 0 \ \text{since} \ (N,v) \ \text{is superadditive}.$
- \odot It is clear x is individually rational \checkmark
- It is clear x is efficient

Hence, $x \in \Im mp$.

Theorem (Non-emptyness of the nucleolus)

Let (N,v) be a TU game, if $\Im mp \neq \emptyset$, then the nucleolus Nu(N,v) is **non-empty**.

Stéphane Airiau (ILLC) - Cooperative Games

Element of Analysis

- **bounded set:** A subset $X \subseteq \mathbb{R}^m$ is **bounded** if it is contained in a ball of finite radius, i.e. $\exists c \in \mathbb{R}^m$ and $\exists r \in \mathbb{R}^+ \text{ s.t. } \forall x \in X ||x - c|| \leq r.$
- **compact set:** A subset $X \subseteq \mathbb{R}^m$ is a **compact** set iff from all sequences in X, we can extract a convergent sequence in X.
- A set is **compact** set of \mathbb{R}^m iff it is **closed** and **bounded**.
- **convex set:** A set *X* is convex iff $\forall (x,y) \in X^2$, $\forall \alpha \in [0,1]$, $\alpha x + (1 - \alpha)y \in X$ (i.e. all points in a line from x to y is contained in X).
- **continuous function:** Let $X \subseteq \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}^m$. $\begin{array}{l} f \text{ is } \mathbf{continuous } \ \mathbf{at} \ x_0 \in X \ \text{iff} \ \forall \epsilon \in \mathbb{R}, \ \epsilon > 0, \ \exists \delta \in \mathbb{R}, \ \delta > 0 \\ \text{s.t.} \ \forall x \in X \ \text{s.t.} \ \|x - x_0\| < \delta, \ \text{we have} \ \|f(x) - f(x_0)\| < \epsilon, \ \text{i.e.} \\ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ \|x - x_0\| < \delta \Rightarrow \|f(x) - f(x_0)\| < \epsilon. \end{array}$

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 15

Proof of non-emptyness of the nucleolus

Assume we have the following theorems 1 and 2 (we will prove them in the next slide).

Theorem (1)

Let A be a non-empty compact subset of \mathbb{R}^m . $\{x \in A \mid \forall y \in A \ x \leqslant_{lex} y\}$ is non-empty.

Theorem (2)

Stéphane Airiau (ILLC) - Cooperative Games

Assume we have a TU game (N,v), and consider its set $\Im mp$. If $\Im mp \neq \emptyset$, then set $B = \{e(x)^{\blacktriangleright} \mid x \in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$

Let us take a TU game (N,v) and let us assume $\Im mp \neq \emptyset$. Then B in theorem 2 is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$. Now let A in theorem 1 be B in theorem 2. So $\{e(x)^{\blacktriangleright} \mid (x \in \Im mp) \land (\forall y \in \Im mp \, e(x)^{\blacktriangleright} \leq_{lex} e(y)^{\blacktriangleright})\}$ is non-empty. From this, it follows that:

 $Nu(N,v) = \{x \in \Im mp \mid \forall y \in \Im mp \ e(y)^{\triangleright} \geqslant_{lex} e(x)^{\triangleright} \} \neq \emptyset.$

Theorem

Let (N,v) be a TU game with a non-empty core. Then $Nu(N,v) \subseteq Core(N,v)$

This will be part of homework 2

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 10

П

Element of Analysis

Let $E = \mathbb{R}^m$ and $X \subseteq E$. $\|.\|$ denote a distance in E, e.g., the euclidean distance.

We consider functions of the form $u: \mathbb{N} \to \mathbb{R}^m$. Another viewpoint on u is an infinite sequence of elements indexed by natural numbers $(u_0, u_1, ..., u_k, ...)$ where $u_i \in X$.

- **convergent sequence:** A sequence (u_t) converges to $l \in \mathbb{R}^m$ iff for all $\epsilon > 0$, $\exists T \in \mathbb{N}$ s.t. $\forall t \geqslant T$, $||u_t l|| \leqslant \epsilon$.
- \circ extracted sequence: Let (u_t) be an infinite sequence and $f: \mathbb{N} \to \mathbb{N}$ be a monotonically increasing function. The sequence v is extracted from u iff $v = u \circ f$, i.e., $v_t = u_{f(t)}$.
- **closed set:** a set *X* is closed if and only if it contains all of its limit points.

of its limit points. i.e. for all converging sequences $(x_0, x_1, ...)$ of elements in X, the limit of the sequence has to be in X as well. An example: if $X = (0, 1], (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ..., \frac{1}{n}, ...)$ is a converging sequence. However, 0 is not in X, and hence, X is not closed. "A closed set contains its borders".

Stéphane Airiau (ILLC) - Cooperative Games

Element of Analysis

Let $X \subseteq \mathbb{R}^n$.

Thm A₁ If $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $X \subseteq E$ is a non-empty compact subset of \mathbb{R}^n , then f(X) is a non-empty compact subset of \mathbb{R}^m .

Thm A_2 Extreme value theorem: Let X be a non-empty compact subset of \mathbb{R}^n , $f: X \to \mathbb{R}$ a **continuous** function. Then f is bounded and it reaches its supremum.

Thm A₃ Let *X* be a non-empty compact subset of \mathbb{R}^n . $f: X \to \mathbb{R}$ is continuous iff for every closed subset $B \subseteq \mathbb{R}$, the set $f^{-1}(B)$ is compact.

Stéphane Airiau (ILLC) - Cooperative Game

Lecture 5: The nucleolus 14

Proof of theorem 2

Let (N,v) be a TU game and consider its set $\Im mp$. Let us assume that $\Im mp \neq \emptyset$ to prove that $B = \{e(x)^{\triangleright} \mid x \in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|\Lambda}}$

First, let us prove that $\Im mp$ is a non-empty compact subset of $\mathbb{R}^{|N|}$. Jmp non-empty by assumption.

- \odot To see that $\Im mp$ is bounded, we need to show that for all i, x_i is bounded by some constant (independent of x). We have $v(\{i\}) \leqslant x_i$ (ind. rational) and x(N) = v(N) (efficient). Then $x_i + \sum_{j=1, j \neq i}^n v(\{j\}) \leqslant v(N)$, hence $x_i \leqslant v(N) - \sum_{j=1, j \neq i}^n v(\{j\})$.
- Imp is closed (the boundaries of Imp are members of Imp). This proves that $\Im mp$ is a non-empty compact subset of $\mathbb{R}^{|N|}$

Thm A₁ If $f: E \to \mathbb{R}^m$ is continuous, $X \subseteq E$ is a non-empty compact subset of \mathbb{R}^n , then f(X) is a non-empty compact subset of \mathbb{R}^m

 $e()^{\blacktriangleright}$ is a continuous function and $\Im mp$ is a non-empty and compact subset of $\mathbb{R}^{2^{|N|}}$. Using thm A_1 , $e(\Im mp)^{\blacktriangleright} = \{e(x)^{\blacktriangleright} | x \in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$.

Stéphane Airiau (ILLC) - Cooperative Games

Proof of theorem 1

For a non-empty compact subset A of \mathbb{R}^m , we need to prove that the set $\{x \in A \mid \forall y \in A \ x \leqslant_{lex} y\}$ is non-empty.

First, let $\pi_i : \mathbb{R}^m \to \mathbb{R}$ the projection function s.t. $\pi_i(x_1, \dots, x_m) = x_i$.

Then, let us define the following sets:

 $A_{i+1} = \operatorname*{argmin}_{x \in A_i} \pi_{i+1}(x)$

 $i \in \{0,1,\ldots,m-1\}$

- \bullet $A_0 = A$
- $A_1 = \operatorname{argmin}_{x \in A} \pi_1(x)$ is the set of elements in A with the smallest first entry in the sequence.
- $A_2 = \operatorname{argmin}_{x \in A_1} \pi_2(x)$ composed of the elements that have the smallest second entry among the elements with the smallest first entry
- $\bullet \ A_m = \{x \in A \mid \forall y \in A \ x \leqslant_{lex} y\}$

We want to prove by induction that each A_i is non-empty compact subset of \mathbb{R}^m for $i \in \{1, ..., m\}$ to prove that A_m is non-empty.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 17

Proof of theorem 1

Thm A₃: Let X be a non-empty compact subset of \mathbb{R}^n . $f:X \to \mathbb{R}$ is continuous iff for every closed subset $B \subseteq \mathbb{R}$, the set $f^{-1}(B)$ is compact.

$$A_{i+1} =$$

$$\underbrace{\pi_{i+1}^{-1} \left\{ \underbrace{\left\{ \min_{x \in A_i} \pi_{i+1}(x) \atop \text{closed} \right\} \right\}}$$

According to Thm A₃, it is a compact subset of \mathbb{R}^m

is a compact subset of \mathbb{R}^m since the intersection of two closed sets is closed and in \mathbb{R}^m , and a closed subset of a compact subset of \mathbb{R}^m is a compact subset of \mathbb{R}^m

Hence A_{i+1} is a non-empty compact subset of \mathbb{R}^m and the proof is complete.

Stéphane Airiau (ILLC) - Cooperative Games

- We defined the excess of a coalition at a payoff distribution, which can model the complaints of the members in a coalition.
- We used the ordered sequence of excesses over all coalitions and the lexicographic ordering to compare any two imputations.
- We defined the nucleolus for a TU game.
 - o If the set of imputations is non-empty, the nucleolus is

 - non-empty.

 The nucleolus contains at most one element.
 - When the core is non-empty, the nucleolus is contained in

cons: Difficult to compute.

Stéphane Airiau (ILLC) - Cooperative Gam

Proof of theorem 1

- \circ $A_0 = A$ is non-empty compact of \mathbb{R}^m by hypothesis \checkmark .
- \circ Let us assume that A_i is a non-empty compact subset of \mathbb{R}^m and let us prove that A_{i+1} is a non-empty compact subset of \mathbb{R}^m . π_{i+1} is a continuous function and A_i is a non-empty compact subset of \mathbb{R}^m

Thm A2: Extreme value theorem: Let X be a non-empty compact subset of \mathbb{R}^m , $f: X \to \mathbb{R}$ a **continuous** function.

Using the extreme value theorem, $\min_{x \in A_i} \pi_{i+1}(x)$ exists and it is reached in A_i , hence $\operatorname{argmin}_{x \in A_i} \pi_{i+1}(x)$ is non-empty. Now, we need to show it is compact.

We note by $\pi_i^{-1}: \mathbb{R} \to \mathbb{R}^m$ the inverse of π_i . Let $\alpha \in \mathbb{R}$, $\pi_i^{-1}(\alpha)$ is the set of all vectors $\langle x_1, ..., x_{i-1}, \alpha, x_{i+1}, ..., x_m \rangle$ s.t. $x_j \in \mathbb{R}$, $j \in \{1, ..., m\}$, $j \neq i$. We can rewrite A_{i+1} as:

$$A_{i+1} = \pi_{i+1}^{-1} \left(\min_{x \in A_i} \pi_{i+1}(x) \right) \bigcap A_i$$

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 18

For a TU game (N,v) the nucleolus Nu(N,v) is non-empty when $\Im mp \neq \emptyset$, which is a great property as agents will always find an agreement. But there is more!

Theorem

The nucleolus has at most one element

In other words, there is one agreement which is stable according to the nucleolus.

proof in the next lecture

Stéphane Airiau (ILLC) - Cooperative Games

Coming next

• The kernel, also a member of the bargaining set family, also based on the excess.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 22