Cooperative Games

Lecture 5: The nucleolus

Stéphane Airiau

ILLC - University of Amsterdam

Today

- We consider one way to compare two imputations.
- We define the Nucleolus and look at some properties.
- We prove important properties of the nucleolus, which requires some elements of analysis.

Excess of a coalition

Definition (Excess of a coalition)

Let (N, v) be a TU game, $\mathcal{C} \subseteq N$ be a coalition, and xbe a payoff distribution over N. The excess $e(\mathcal{C},x)$ of coalition \mathcal{C} at x is the quantity $e(\mathcal{C}, x) = v(\mathcal{C}) - x(\mathcal{C})$.

An example: let
$$N = \{1,2,3\}$$
, $\mathcal{C} = \{1,2\}$, $v(\{1,2\}) = 8$, $x = \langle 3,2,5 \rangle$, $e(\mathcal{C},x) = v(\{1,2\}) - (x_1 + x_2) = 8 - (3+2) = 3$.

We can interpret a positive excess $(e(\mathcal{C},x) \ge 0)$ as the amount of dissatisfaction or complaint of the members of C from the allocation x.

We can use the excess to define the core: $Core(N,v) = \{x \in \mathbb{R}^n \mid x \text{ is an imputation and } \forall \mathcal{C} \subseteq N, e(\mathcal{C},x) \leq 0\}$

This definition shows that no coalition has any complaint: each coalition's demand can be granted.

$$N = \{1,2,3\}, \ v(\{i\}) = 0 \text{ for } i \in \{1,2,3\}$$

 $v(\{1,2\}) = 5, \ v(\{1,3\}) = 6, \ v(\{2,3\}) = 6$
 $v(N) = 8$

Let us consider two payoff vectors $x = \langle 3, 3, 2 \rangle$ and $y = \langle 2, 3, 3 \rangle$. Let e(x) denote the sequence of excesses of all coalitions at x.

$x = \langle 3, 3, 2 \rangle$		
coalition C	$e(\mathcal{C},x)$	
{1}	-3	
{2}	-3	
{3}	-2	
{1,2}	-1	
{1,3}	1	
{2,3}	1	
{1.2.3}	0	

$y = \langle 2, 3, 3 \rangle$		
coalition C	$e(\mathcal{C},y)$	
{1}	-2	
{2}	- 3	
{3}	-3	
{1,2}	0	
{1,3}	1	
{2,3}	0	
{1,2,3}	0	

Which payoff should we prefer? x or y? Let us write the excess in the decreasing order (from the greatest excess to the smallest)

$$\langle 1, 1, 0, -1, -2, -3, -3 \rangle$$

$$\langle 1, 0, 0, 0, -2, -3, -3 \rangle$$

Definition (lexicographic order of $\mathbb{R}^m \geqslant_{lex}$)

Let \geq_{lex} denote the lexicographical ordering of \mathbb{R}^m , i.e., $\forall (x,y) \in \mathbb{R}^m$, $x \geqslant_{lex} y$ iff $\begin{cases} x=y \text{ or} \\ \exists t \text{ s. t. } 1 \leqslant t \leqslant m \text{ s. t. } \forall i \text{ s. t. } 1 \leqslant i \leqslant t \text{ } x_i = y_i \text{ and } x_t > y_t \end{cases}$

example: $\langle 1, 1, 0, -1, -2, -3, -3 \rangle \ge_{lex} \langle 1, 0, 0, 0, -2, -3, -3 \rangle$ Let l be a sequence of m reals. We denote by l the reordering of *l* in decreasing order.

In the example, $e(x) = \langle -3, -3, -2, -1, 1, 1, 0 \rangle$ and then $e(x)^{\triangleright} = \langle 1, 1, 0, -1, -2, -3, -3 \rangle.$

Hence, we can say that y is better than x by writing $e(x)^{\triangleright} \geqslant_{lex} e(y)^{\triangleright}$.

Some properties of \leq_{lex} and its strict version

- $\bullet \ \forall x \in \mathbb{R}^m \ x \leqslant_{lex} x^{\blacktriangleright}$
- $\forall x \in \mathbb{R}^m$ and any permutation σ of $\{1, ..., m\}$, $\sigma(x) \leq_{lex} x^{\blacktriangleright}$
- $\bullet \ \forall x, y, u, v \in \mathbb{R}^m \text{ and } \alpha > 0$
 - $x \leq_{lex} y \Rightarrow \alpha x \leq_{lex} \alpha y$
 - $x <_{lex} y \Rightarrow \alpha x <_{lex} \alpha y$
 - $(x \leq_{ler} y \land u \leq_{ler} v) \Rightarrow x + u \leq_{ler} y + v$
 - $(x <_{lex} y \land u \leq_{lex} v) \Rightarrow x + u <_{lex} y + v$
 - $x \leq_{lex} y$ we cannot conclude anything for the comparison between $-\alpha x$ and $-\alpha y$.

Definition (Nucleolus)

Let (N,v) be a TU game.

Let Jmp be the set of all imputations.

The **nucleolus** Nu(N, v) is the set

$$Nu(N,v) = \{x \in \Im mp \mid \forall y \in \Im mp \ e(y)^{\triangleright} \geqslant_{lex} e(x)^{\triangleright} \}$$

An alternative definition in terms of objections and counter-objections

Let (N,v) be a TU game. Objections are made by coalitions instead of individual agents. Let $P \subseteq N$ be a coalition that expresses an objection.

A pair (P, y), in which $P \subseteq N$ and y is an imputation, is an **objection** to x iff e(P,x) > e(P,y).

Our excess for coalition P is too large at x, payoff y reduces it.

A coalition (Q, y) is a **counter-objection** to the objection (P, y)when e(Q,y) > e(Q,x) and $e(Q,y) \ge e(P,x)$.

Our excess under y is larger than it was under x for coalition Q! Furthermore, our excess at y is larger than what your excess was at x!

An imputation fails to be stable if the excess of some coalition P can be reduced without increasing the excess of some other coalition to a level at least as large as that of the original excess of Р.

Definition (Nucleolus)

Let (N,v) be a TU game. The **nucleolus** is the set of imputations x such that for every objection (P,y), there exists a counter-objection (Q, y).

M.J. Osborne and A. Rubinstein. A course in game theory, MIT Press, 1994, Section 14.3.3.

Theorem

Let (N,v) be a TU game with a non-empty core. Then $Nu(N,v) \subseteq Core(N,v)$

Proof

This will be part of homework 2

Theorem

Let (N,v) be a superadditive game and $\Im mp$ be its set of imputations. Then, $\Im mp \neq \emptyset$.

Proof

Let (N,v) be a superadditive game.

Let x be a payoff distribution defined as follows:

$$x_i = v(\{i\}) + \frac{1}{|N|} \left(v(N) - \sum_{j \in N} v(\{j\}) \right).$$

- $v(N) \sum_{j \in N} v(\{j\}) > 0$ since (N, v) is superadditive.
- It is clear *x* is individually rational ✓
- It is clear x is efficient \checkmark

Hence, $x \in Jmp$.

Theorem (Non-emptyness of the nucleolus)

Let (N, v) be a TU game, if $\Im mp \neq \emptyset$, then the nucleolus Nu(N,v) is **non-empty**.

Element of Analysis

Let $E = \mathbb{R}^m$ and $X \subseteq E$. ||.|| denote a distance in E, e.g., the euclidean distance.

We consider functions of the form $u: \mathbb{N} \to \mathbb{R}^m$. Another viewpoint on u is an infinite **sequence** of elements indexed by natural numbers $(u_0, u_1, ..., u_k, ...)$ where $u_i \in X$.

- **convergent sequence:** A sequence (u_t) converges to $l \in \mathbb{R}^m$ iff for all $\epsilon > 0$, $\exists T \in \mathbb{N}$ s.t. $\forall t \geq T$, $||u_t - l|| \leq \epsilon$.
- extracted sequence: Let (u_t) be an infinite sequence and $f: \mathbb{N} \to \mathbb{N}$ be a monotonically increasing function. The sequence v is extracted from u iff $v = u \circ f$, i.e., $v_t = u_{f(t)}$.
- **closed set:** a set *X* is closed if and only if it contains all of its limit points.
 - i.e. for all converging sequences $(x_0, x_1...)$ of elements in X, the limit of the sequence has to be in X as well.
 - An example: if $X = (0,1], (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots)$ is a converging sequence. However, 0 is not in *X*, and hence, *X* is not closed.
 - "A closed set contains its borders".

Element of Analysis

- **bounded set:** A subset $X \subseteq \mathbb{R}^m$ is **bounded** if it is contained in a ball of finite radius, i.e. $\exists c \in \mathbb{R}^m$ and $\exists r \in \mathbb{R}^+ \text{ s.t. } \forall x \in X ||x - c|| \leq r.$
- **compact set:** A subset $X \subseteq \mathbb{R}^m$ is a **compact** set iff from all sequences in X, we can extract a convergent sequence in *X*.
- \Rightarrow A set is **compact** set of \mathbb{R}^m iff it is **closed** and **bounded**.
- **convex set:** A set *X* is convex iff $\forall (x,y) \in X^2$, $\forall \alpha \in [0,1]$, $\alpha x + (1 - \alpha)y \in X$ (i.e. all points in a line from x to y is contained in X).
- continuous function: Let $X \subseteq \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^m$. f is continuous at $x_0 \in X$ iff $\forall \epsilon \in \mathbb{R}, \ \epsilon > 0, \ \exists \delta \in \mathbb{R}, \ \delta > 0$ s.t. $\forall x \in X$ s.t. $||x-x_0|| < \delta$, we have $||f(x)-f(x_0)|| < \epsilon$, i.e. $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ \|x - x_0\| < \delta \Rightarrow \|f(x) - f(x_0)\| < \epsilon.$

Element of Analysis

Let $X \subseteq \mathbb{R}^n$.

- **Thm** A_1 If $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $X \subseteq E$ is a non-empty compact subset of \mathbb{R}^n , then f(X) is a non-empty compact subset of \mathbb{R}^m .
- **Thm** A_2 Extreme value theorem: Let X be a non-empty compact subset of \mathbb{R}^n , $f: X \to \mathbb{R}$ a **continuous** function. Then *f* is bounded and it reaches its supremum.
- **Thm A**₃ Let *X* be a non-empty compact subset of \mathbb{R}^n . $f: X \to \mathbb{R}$ is continuous iff for every closed subset $B \subseteq \mathbb{R}$, the set $f^{-1}(B)$ is compact.

Proof of non-emptyness of the nucleolus

Assume we have the following theorems 1 and 2 (we will prove them in the next slide).

Theorem (1)

Let A be a non-empty compact subset of \mathbb{R}^m . $\{x \in A \mid \forall y \in A \ x \leq_{lex} y\}$ is non-empty.

Theorem (2)

Assume we have a TU game (N, v), and consider its set $\Im mp$. If $\Im mp \neq \emptyset$, then set $B = \{e(x)^{\triangleright} \mid x \in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$

Let us take a TU game (N,v) and let us assume $\Im mp \neq \emptyset$. Then B in theorem 2 is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$. Now let Ain theorem 1 be B in theorem 2. So $\{e(x)^{\blacktriangleright} \mid (x \in \Im mp) \land (\forall y \in \Im mp \ e(x)^{\blacktriangleright} \leqslant_{lex} e(y)^{\blacktriangleright})\}$ is non-empty. From this, it follows that: $Nu(N,v) = \{x \in \exists mp \mid \forall y \in \exists mp \ e(y)^{\triangleright} \geqslant_{lex} e(x)^{\triangleright} \} \neq \emptyset.$

Let (N,v) be a TU game and consider its set Imp. Let us assume that $\Im mp \neq \emptyset$ to prove that $B = \{e(x)^{\triangleright} \mid x \in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$.

First, let us prove that $\Im mp$ is a non-empty compact subset of $\mathbb{R}^{|N|}$.

- Imp non-empty by assumption.
- To see that Imp is bounded, we need to show that for all i, x_i is bounded by some constant (independent of x). We have $v(\{i\}) \leq x_i$ (ind. rational) and x(N) = v(N) (efficient). Then $x_i + \sum_{i=1, i \neq i}^{n} v(\{j\}) \le v(N)$, hence $x_i \le v(N) - \sum_{i=1, i \neq i}^{n} v(\{j\})$.
- Imp is closed (the boundaries of Imp are members of Imp). This proves that $\Im mp$ is a non-empty compact subset of $\mathbb{R}^{|N|}$.

Thm A₁ If $f: E \to \mathbb{R}^m$ is continuous, $X \subseteq E$ is a non-empty compact subset of \mathbb{R}^n , then f(X) is a non-empty compact subset of \mathbb{R}^m .

e() is a continuous function and $\Im mp$ is a non-empty and compact subset of $\mathbb{R}^{2^{|N|}}$. Using thm A₁, $e(\Im mp)^{\triangleright} = \{e(x)^{\triangleright} | x \in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$.

For a non-empty compact subset A of \mathbb{R}^m , we need to prove that the set $\{x \in A \mid \forall y \in A \ x \leq_{lex} y\}$ is non-empty.

First, let $\pi_i : \mathbb{R}^m \to \mathbb{R}$ the projection function s.t. $\pi_i(x_1, ..., x_m) = x_i$.

Then, let us define the following sets:

$$\begin{cases} A_0 = A \\ A_{i+1} = \underset{x \in A_i}{\operatorname{argmin}} \pi_{i+1}(x) \\ i \in \{0, 1, \dots, m-1\} \end{cases}$$

- \bullet $A_0 = A$
- $A_1 = \operatorname{argmin}_{x \in A} \pi_1(x)$ is the set of elements in A with the smallest first entry in the sequence.
- $A_2 = \operatorname{argmin}_{x \in A_1} \pi_2(x)$ composed of the elements that have the smallest second entry among the elements with the smallest first entry
- $A_m = \{x \in A \mid \forall y \in A \ x \leq_{lex} y\}$

We want to prove by induction that each A_i is non-empty compact subset of \mathbb{R}^m for $i \in \{1, ..., m\}$ to prove that A_m is non-empty.

- $A_0 = A$ is non-empty compact of \mathbb{R}^m by hypothesis \checkmark .
- Let us assume that A_i is a non-empty compact subset of \mathbb{R}^m and let us prove that A_{i+1} is a non-empty compact subset of \mathbb{R}^m . π_{i+1} is a continuous function and A_i is a non-empty compact subset of \mathbb{R}^m .

Thm A_2 : Extreme value theorem: Let X be a non-empty compact subset of \mathbb{R}^m , $f: X \to \mathbb{R}$ a **continuous** function.

Using the extreme value theorem, $\min_{x \in A_i} \pi_{i+1}(x)$ exists and it is reached in A_i , hence $\operatorname{argmin}_{x \in A_i} \pi_{i+1}(x)$ is non-empty. Now, we need to show it is compact.

We note by $\pi_i^{-1}: \mathbb{R} \to \mathbb{R}^m$ the inverse of π_i . Let $\alpha \in \mathbb{R}$, $\pi_i^{-1}(\alpha)$ is the set of all vectors $\langle x_1, \dots, x_{i-1}, \alpha, x_{i+1}, \dots, x_m \rangle$ s.t. $x_i \in \mathbb{R}$, $j \in \{1, ..., m\}, j \neq i$. We can rewrite A_{i+1} as:

$$A_{i+1} = \pi_{i+1}^{-1} \left(\min_{x \in A_i} \pi_{i+1}(x) \right) \bigcap A_i$$

Thm A_3 : Let X be a non-empty compact subset of \mathbb{R}^n . $f: X \to \mathbb{R}$ is continuous iff for every closed subset $B \subseteq \mathbb{R}$, the set $f^{-1}(B)$ is compact.

$$A_{i+1} = \underbrace{\pi_{i+1}^{-1} \left\{ \underbrace{\min_{x \in A_i} \pi_{i+1}(x)}_{\text{closed}} \right\} \right)}_{}$$

According to Thm A₃, it is a compact subset of \mathbb{R}^m

is a compact subset of \mathbb{R}^m since the intersection of two closed sets is closed and in \mathbb{R}^m , and a closed subset of a compact subset of \mathbb{R}^m is a compact subset of $\mathbb{R}^m \checkmark$

Hence A_{i+1} is a non-empty compact subset of \mathbb{R}^m and the proof is complete.

For a TU game (N,v) the nucleolus Nu(N,v) is non-empty when $\Im mp \neq \emptyset$, which is a great property as agents will always find an agreement. But there is more!

Theorem

The nucleolus has at most one element

In other words, there is **one** agreement which is stable according to the nucleolus.

proof in the next lecture

Summary

- We defined the excess of a coalition at a payoff distribution, which can model the complaints of the members in a coalition.
- We used the ordered sequence of excesses over all coalitions and the lexicographic ordering to compare any two imputations.
- We defined the nucleolus for a TU game.

pros:

- If the set of imputations is non-empty, the nucleolus is non-empty.
- The nucleolus contains at most one element.
- When the core is non-empty, the nucleolus is contained in the core.

cons: Difficult to compute.

Coming next

• The kernel, also a member of the bargaining set family, also based on the excess.