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Today

o We consider one way to compare two imputations.
o We define the Nucleolus and look at some properties.

o We prove important properties of the nucleolus, which
requires some elements of analysis.
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Excess of a coalition

Definition (Excess of a coalition)
Let (N,v) be a TU game, C C N be a coalition, and x
be a payoff distribution over N. The excess ¢(C,x) of
coalition € at x is the quantity ¢(C,x) =v(C) —x(C).

An example: let N={1,2,3}, €={1,2}, v({1,2}) =8, x=(3,2,5),
e(C,x)=v({1,2}) — (x1 +x2) =8—(3+2) =3.

We can interpret a positive excess (¢(C,x) > 0) as the amount

of dissatisfaction or complaint of the members of € from
the allocation x.

We can use the excess to define the core:
Core(N,v) ={x € R" | x is an imputation and V€ C N,e(C,x) < 0}

This definition shows that no coalition has any complaint:
each coalition’s demand can be granted.
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N ={1,2,3}, v({i}) =0 for i € {1,2,3}
v({1,2}) =5, v({1,3}) =6, v({2,3}) =6
v(N)=8

Let us consider two payoff vectors x = (3,3,2) and y = (2,3,3).
Let e(x) denote the sequence of excesses of all coalitions at x.

x=(3,3,2) y=1(2,3,3)
coalition C | (G, x) coalition € | ¢(C,y)
{1} -3 {1} -2
{2} -3 {2} -3
{3} -2 {3} -3
{1,2} -1 {1,2} 0
1,3} 1 {1,3} 1
{2,3} 1 {2,3} 0
{1,2,3} 0 {1,2,3} 0

Which payoff should we prefer? x or y? Let us write the
excess in the decreasing order (from the greatest excess to
the smallest)

(1,1,0,—-1,-2,-3,-3) (1,0,0,0,—2,-3,-3)
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Definition (lexicographic order of R™ >,)
Let >}, denote the lexicographical ordering of R",

ie, V(x,y) € R™, x = y iff
X=y or
Jdts. bt I<t<ms. t. Vis. t. 1<i<txj=y; and x; > y;

example: (1,1,0,—1,—2,—3,—-3) >, (1,0,0,0,—2,-3,-3)
Let I be a sequence of m reals. We denote by I* the reorder-
ing of [ in decreasing order.

In the example, e(x) = (=3,—3,—2,—1,1,1,0) and then
e(x)> = <1/ 1/01_11_2/_3/ _3>

Hence, we can say that y is better than x by writing
6(3()' >lex e(]/)’-
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Some properties of <, and its strict version

o Vx € R™ x oy 2™
o Vx € R™ and any permutation o of {1,...,m}, o(x) <oy x™
o Vx,y,u,v € R" and « >0

O X lex Y = XX ey Y

0 X <jex Y = XX <jpx XY

o (x Slex Y N U ey v) = x+u Slex Y +0

0 (X <pr Y Nt gy ) = X+ U <ppry Y40

o x < ¥y We cannot conclude anything for the comparison

between —ax and —oy.
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Definition (Nucleolus)
Let (N,v) be a TU game.
Let Jmp be the set of all imputations.
The nucleolus Nu(N,v) is the set
Nu(N,v) = {x € Imp | Vy € Imp e(y)” Zjex e(x)” }
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An alternative definition in terms of objections and counter-objections

Let (N,v) be a TU game. Objections are made by coalitions in-
stead of individual agents. Let P C N be a coalition that expresses
an objection.

A pair (P,y), in which P C N and y is an imputation,
is an objection to x iff e(P,x) > e(P,y).

Our excess for coalition P is too large at x, payoff y reduces
it.

A coalition (Q,y) is a counter-objection to the objection (P,y)
when ¢(Q,y) > e(Q,x) and e(Q,y) > e(P,x).

Our excess under y is larger than it was under x for coalition
Q! Furthermore, our excess at y is larger than what your
excess was at x!

An imputation fails to be stable if the excess of some coalition

P can be reduced without increasing the excess of some other
coalition to a level at least as large as that of the original excess of
P.

Stéphane Airiau (ILLC) - Cooperative Games Lecture 5: The nucleolus 8



Definition (Nucleolus)
Let (N,v) be a TU game. The nucleolus is the set of im-
putations x such that for every objection (P,y), there ex-
ists a counter-objection (Q,y).

M.J. Osborne and A. Rubinstein. A course in game theory, MIT Press,
1994, Section 14.3.3.
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Theorem

Let (N,v) be a TU game with a non-empty core. Then
Nu(N,v) C Core(N,v)

Proof
This will be part of homework 2 O
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Theorem
Let (N,v) be a superadditive game and Jmp be its set of
imputations. Then, Jmp # 0.

Proof
Let (N,v) be a superadditive game.
Let x be a payoff distribution defined as follows:

xi = o({i) + gy (0(N) = Zjen 01 ).
o ov(N) ijeNv({j}) >0 since (N,v) is superadditive.
0 It is clear x is individually rational ¢/

o It is clear x is efficient v/

Hence, x € Jmp. O

Theorem (Non-emptyness of the nucleolus)

Let (N,v) be a TU game, if Jmp # 0,
then the nucleolus Nu(N,v) is non-empty.
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Element of Analysis

Let E=R" and X C E. ||| denote a distance in E, e.g., the
euclidean distance.

We consider functions of the form u:N — R™. Another view-
point on u is an infinite sequence of elements indexed by
natural numbers (ug,u1,...,U,...) where u; € X.

o convergent sequence: A sequence (u;) converges to
leR™iff forall e >0, 3T eNs.t. Vi>T, ||[uy—I|| <e.

o extracted sequence: Let (1) be an infinite sequence and
f:N — N be a monotonically increasing function. The
sequence v is extracted from u iff v =uof, ie., v; = Ug(4)-

o closed set: a set X is closed if and only if it contains all
of its limit points.
i.e. for all converging sequences (xg,x;...) of elements in X,
the limit of the sequence has to be in X as well.
An example: if X =(0,1], (1,%,%,%,...,%,...) is a converging
sequence. However, 0 is not in X, and hence, X is not closed.
“A closed set contains its borders”.
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Element of Analysis

o bounded set: A subset X C R" is bounded if it is
contained in a ball of finite radius, i.e. Ic € R and
FreRT st. VxeX |lx—cl| <.

o compact set: A subset X CR™ is a compact set iff from
all sequences in X, we can extract a convergent
sequence in X.

A set is compact set of R™ iff it is closed and bounded.

o convex set: A set X is convex iff V(x,y) € X2, Y €[0,1],
ax+(l—a)y € X (i.e. all points in a line from x to y is
contained in X).

o continuous function: Let X CR", f: R" — R™.

f is continuous at xp € X iff Ve € R, € >0, IR, 6 >0
st. Vx € X s.t. [lx—xpll <8, we have [[f(x) —f(x,)|l <¢, i.e.
Ve>0 36>0 Vxe X |lx—xoll<d=If(x)—f(xo)ll <e.
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Element of Analysis

Let X CR"™.

Thm A; If f: R" — R™ is continuous and X C E is a non-empty
compact subset of R",
then f(X) is a non-empty compact subset of R™.

Thm A, Extreme value theorem: Let X be a non-empty compact
subset of R”, f: X — R a continuous function.
Then f is bounded and it reaches its supremum.

Thm Az Let X be a non-empty compact subset of R"”. f: X — R is
continuous iff for every closed subset B C R, the set
f~1(B) is compact.
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Proof of non-emptyness of the nucleolus

Assume we have the following theorems 1
and 2 (we will prove them in the next slide).
Theorem (1)
Let A be a non-empty compact subset of R™.
{x e A| Yy € A x <y y} is non-empty.
Theorem (2)
Assume we have a TU game (N,v), and consider its set Jmp.
If Jmp # (0, then set B={e(x)” | x € Jmp} is a non-empty compact
subset of R2"

Let us take a TU game (N,v) and let us assume Jmp # (). Then B
in theorem 2 is a non-empty compact subset of R2™ . Now let A
in theorem 1 be B in theorem 2. So

{e(x)™ | (x € Imp) A (Vy € Imp e(x)® <per e(y)® )} is

non-empty. From this, it follows that:

Nu(N,v) = {x € Imp |Vy € Imp e(y)> >pr e(x)> } #0. ¢
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Proof of theorem 2

Let (N,v) be a TU game and consider its set Jmp. Let us assume
that Jmp # () to prove that B = {e(x)” | x € Jmp} is a non-empty

compact subset of R? "
First, let us prove that Jmp is a non-empty compact subset of RIN!.

0 Jmp non-empty by assumption.

0 To see that Jmp is bounded, we need to show that for all i, x;
is bounded by some constant (independent of x). We have
v({i}) < x; (ind. rational) and x(N) =v(N) (efficient). Then
xi+ 2 200} <o(N), hence x; <o(N)— 3 iy i 0({j}).

0 Jmp is closed (the boundaries of Jmp are members of Jmp).

This proves that Jmp is a non-empty compact subset of R/N!.

Thm A; If f: E—R™ is continuous, X C E is a non-empty compact subset
of R", then f(X) is a non-empty compact subset of R".

e()* is a continuous function and Jmp is a non-empty and com-
pact subset of R2™ Using thm A7 , e(Jmp)® = {e(x)™|x € Tmp} is a

non-empty compact subset of r2",
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Proof of theorem 1

For a non-empty compact subset A of R™, we need to prove that
the set {x € A|Vy € A x <j y} is non-empty.

First, let 7r; : R™ — R the projection function s.t. m;(xq,..., ) =x;.

Then, let us define the following sets:
L] AQ = A
o Ay =argmin,c4 7 (x) is the set of
elements in A with the smallest first
Ag=A entry in the'sequence.
Aj4q = argminT;, q (x) e Ay =argminyca, m(x) composed of
XEA; the elements that have the smallest
i€{0,1,...,m—1; second entry among the elements with
the smallest first entry
L[]

e Apn={x€AlVyeA x <py y}

We want to prove by induction that each A; is non-empty compact
subset of R™ for i €{1,...,m} to prove that A, is non-empty.

Stéphane Airiau (ILLC) - Cooperative Games Lecture 5: The nucleolus 17



Proof of theorem 1

0 Ap=A is non-empty compact of R” by hypothesis .

0 Let us assume that A; is a non-empty compact subset of R™
and let us prove that A; 1 is a non-empty compact subset of
R™. 71 is a continuous function and A; is a non-empty
compact subset of R".

Thm A;: Extreme value theorem: Let X be a non-empty compact
subset of R", f: X — R a continuous function.

Using the extreme value theorem, minyc4, 71 1(x) exists and
it is reached in A;, hence argmin,c4, 71;;1(x) is non-empty.
Now, we need to show it is compact.

We note by 711._1 :R — R™ the inverse of 7;. Let x € R, 711._1(0()
is the set of all vectors (x1,...,X;_1,0,%Xj1,...,Xm) S.t. xj € R,
jed{l,...,m}, j#i. We can rewrite A;,q as:

—1
A1 =m0 (rreun T (x > ﬂA
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Proof of theorem 1

Thm Ajz: Let X be a non-empty compact subset of R".
f:X — R is continuous iff for every closed subset B C R, the set f~1(B) is

compact.
A= L min 7t; 1 (x A;
i+1 i+1 YEA i1(x) ﬂ i
| —
closed

According to Thm Ag, it is a compact subset of R™

is a compact subset of R” since
the intersection of two closed sets is closed and in R™,
and a closed subset of a compact subset of R™
is a compact subset of R" v/

Hence A; ;1 is a non-empty compact subset of R and the proof is
complete. O
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For a TU game (N, v) the nucleolus Nu(N,v) is non-empty
when Jmp # (), which is a great property as agents will al-
ways find an agreement. But there is more!

Theorem
The nucleolus has at most one element

In other words, there is one agreement which is stable ac-
cording to the nucleolus.

proof in the next lecture
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Summary

o We defined the excess of a coalition at a payoff
distribution, which can model the complaints of the
members in a coalition.

o We used the ordered sequence of excesses over all
coalitions and the lexicographic ordering to compare
any two imputations.

o We defined the nucleolus for a TU game.
pros: o If the set of imputations is non-empty, the nucleolus is
non-empty.
o The nucleolus contains at most one element.
o When the core is non-empty, the nucleolus is contained in
the core.
cons: Difficult to compute.
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Coming next

o The kernel, also a member of the bargaining set family,
also based on the excess.

Stéphane Airiau (ILLC) - Cooperative Games Lecture 5: The nucleolus 22



