Cooperative Games

Lecture 6: The nucleolus and the Kernel

Stéphane Airiau
ILLC - University of Amsterdam

Thtephane Airian (ILIC)-Copepative Cames

For a TU game (N, v), the $N u(N, v) \neq \emptyset$ when $J m p \neq \emptyset$, which is a great property as agents will always find an agreement.

Theorem

The nucleolus has at most one element

In other words, there is one agreement which is stable according to the nucleolus.

To prove this, we need theorems 3 and 4 .
Theorem (3)
Let A be a non-empty convex subset of \mathbb{R}^{m}
Then the set $\left\{x \in A \mid \forall y \in A \quad \leqslant^{\bullet} \leqslant l e x \geqslant\right.$ has at most one element.

Theorem (4)

Let (N, v) be a TU game such that $\operatorname{J} m p \neq \emptyset$.
(i) J $m p$ is a non-empty and convex subset of $\mathbb{R}^{|N|}$
(ii) $\{e(x) \mid x \in \mathcal{J} m p\}$ is a non-empty convex subset of $\mathbb{R}^{2^{2 N}}$

- We start by proving that the nucleolus has at most an element.
- We introduce the kernel, another stability concept from the bargaining set family, where the excess plays a key role.
- We consider some properties of the kernel, and we present an algorithm to compute a kernel-stable payoff distribution.

Let A be a non-emp
$M^{i n}=\left\{x \in A \mid \forall y \in A \quad x \bullet\right.$ lex $\left.y^{\triangleright}\right\}$. We now prove that $\left|M^{i n}\right| \leqslant 1$.
Towards a contradiction, let us assume $M^{i n}$ has at least two elements x and $y, x \neq y$. By definition of $M^{i n}$, we must have $x \downarrow=y$

Let $\alpha \in(0,1)$ and σ be a permutation of $\{1, \ldots, m\}$ such that $(\alpha x+(1-\alpha) y)=\sigma(\alpha x+(1-\alpha) y)=\alpha \sigma(x)+(1-\alpha) \sigma(y)$. Let us show by contradiction that $\sigma(x)=x$ and $\sigma(y)=y \downarrow$

Let us assume that either $\sigma(x)<_{l e x} x \downarrow$ or $\sigma(y)<_{l e x} y$, it follows that $\alpha \sigma(x)+(1-\alpha) \sigma(y)<_{l e x} \alpha x^{\bullet}+(1-\alpha) y^{\bullet}=x^{\bullet}$.
Since A is convex, $\alpha x+(1-\alpha) y \in A$. But this is a contradiction because by definition of $M^{i n}, \alpha x+(1-\alpha) y \in A$ cannot be strictly smaller than $x \downarrow$ in A. This proves $\sigma(x)=x \downarrow$ and $\sigma(y)=y \downarrow$.

Since $x \downarrow y^{\triangleright}$, we have $\sigma(x)=\sigma(y)$, hence $x=y$. This contradicts the fact that $x \neq y$. Hence, $M^{i n}$ cannot have at least two elements, and $\left|M^{i n}\right| \leqslant 1$.

IX Stéphane Airiau (ILLC) - Cooperative Games

Proof Theorem 4 (i)

Proof Theorem 4 (ii)

Let (N, v) be a TU game and Jmp its set of imputations. We need to show $\{e(z) \mid z \in J m p\}$ is a non-empty convex subset of \mathbb{R}^{m}.
Let $(x, y) \in J m p^{2}, \alpha \in[0,1]$, and $\mathcal{C} \subseteq N$ and we consider the sequence $\alpha e(x)+(1-\alpha) e(y)$, and we look at the entry corresponding to coalition \mathcal{C}.

$$
\begin{aligned}
(\alpha e(x)+(1-\alpha) e(y))_{\mathcal{C}} & =\alpha \mathcal{C}(\mathcal{C}, x)+(1-\alpha) e(\mathcal{C}, y) \\
& =\alpha(v(\mathcal{C})-x(\mathcal{C}))+(1-\alpha)(v(\mathcal{C})-y(\mathcal{C})) \\
& =v(\mathcal{C})-(\alpha x(\mathcal{C})+(1-\alpha) y(\mathcal{C})) \\
& =v(\mathcal{C})-([\alpha x+(1-\alpha) y](\mathcal{C})) \\
& =e(\alpha x+(1-\alpha) y, \mathcal{C})
\end{aligned}
$$

Since the previous equality is valid for all $\mathcal{E} \subseteq N$, both sequences are equal: $\alpha e(x)+(1-\alpha) e(y)=e(\alpha x+(1-\alpha) y)$.

Since J $m p$ is convex, $\alpha x+(1-\alpha) y \in \operatorname{J} m p$, it follows that $e(\alpha x+(1-\alpha) y) \in\{e(z) \mid z \in \mathcal{J} m p\}$. Hence, $\{e(z) \mid z \in \operatorname{J} m p\}$ is convex.

Let (N, v) be a TU game, and J $m p$ its set of imputations.
Theorem 4(ii): $\left\{e(x) \mid x \in J_{m p}\right\}$ is a non-empty convex subset of $\mathbb{R}^{2^{|N|}}$.
Theorem 3: If A is a non-empty convex subset of \mathbb{R}^{m}, then the set $\left\{x \in A \mid \forall y \in A \quad x>\leqslant_{\text {lex }} y>\right\}$ has at most one element.

Applying theorem 3 with $A=\{e(x) \mid x \in \mathcal{J} m p\}$ we obtain
$B=\left\{e(x) \mid x \in \operatorname{Imp} \wedge \forall y \in \operatorname{Imp} \quad e(x)^{\triangleright} \leqslant l e x e(y)\right\}$ has at most one element.
B is the image of the nucleolus under the function e. We need to make sure that an $e(x)$ corresponds to at most one element in J $m p$. This is true since for $(x, y) \in J m p^{2}$, we have $x \neq y \Rightarrow e(x) \neq e(y)$.

Hence $N u(N, v)=\left\{x \mid x \in \operatorname{Jmp} \wedge \forall y \in \operatorname{Jmp} e(x) \leqslant_{l e x} e(y) \quad\right\}$ has at most one element!

One last stability concept from the bargaining set family:
The kernel.
M. Davis. and M. Maschler, The kernel of a cooperative game. Naval Research Logistics Quarterly, 1965.

Let (N, v) be a TU game, $S \in \mathscr{S}_{N}$ a coalition structure and x a payoff distribution. Objections and counter-objections are exchanged between members of the same coalition in \mathcal{S}. Objections and counter-objections take the form of coalitions, i.e., they do not propose another payoff distribution.

Let $\mathcal{C} \in \mathcal{S}, k \in \mathcal{C}, l \in \mathcal{C}$.
Objection: A coalition $P \subseteq N$ is an objection of
k against l to x iff $k \in P, l \notin P$ and $x_{l}>v(\{l\})$.
" P is a coalition that contains k, excludes l and which sacrifices too much (or gains too little)."

Counter-objection: A coalition $Q \subseteq N$ is a counter-objection to the objection P of k against l at x iff $l \in Q, k \notin Q$ and $e(Q, x) \geqslant e(P, x)$.
" k 's demand is not justified: Q is a coalition that contains l and excludes k and that sacrifices even more (or gains even less)."

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to $(P, y) . \boldsymbol{\downarrow}$
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, S)$ we have
$s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$.
Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$.
We have $v(Q)-x(Q) \geqslant y(P)-x(P)$. Then, we have
$v(Q) \geqslant y(P)+x(Q)-x(P)$
$\geqslant y(P \cap Q)+y(P \backslash Q)+x(Q \backslash P)-x(P \backslash Q)$
$>y(P \cap Q)+x(Q \backslash P)$ since $i \in P \backslash Q, y(P \backslash Q)>x(P \backslash Q)$

Let us define z as follows $\left\{\begin{array}{l}x_{k} \text { if } k \in Q \backslash P \\ y_{k} \text { if } k \in Q \cap P\end{array}\right.$
(Q, z) is a counter-objection to $(P, y) . \downarrow$
Finally $x \in B S(N, v, \mathcal{S})$.

P1 Stephane Airiau (ILLC)-Cooperative Games Lecture 6 : The nucleolus and the Kermel 17

Computing a kernel-stable payoff distribution

- There is a transfer scheme converging to an element in the kernel.
- It may require an infinite number of small steps.
- We can consider the ϵ-kernel where the inequality are defined up to an arbitrary small constant ϵ.
R. E. Stearns. Convergent transfer schemes for \mathbf{n}-person games. Transactions of the American Mathematical Society, 1968.

悃 Stephane Airiau (ILLC) - Cooperative Games

Wixis Stephane Airiau (ILLC) - Cooperative Games Lecture 6: The nucleolus and the Kermel 19)

- The complexity for one side-payment is $O\left(n \cdot 2^{n}\right)$.
- Upper bound for the number of iterations for converging to an element of the ϵ-kernel: $n \cdot \log _{2}\left(\frac{\delta_{0}}{\epsilon \cdot v(S)}\right)$, where δ_{0} is the maximum surplus difference in the initial payoff distribution.
- To derive a polynomial algorithm, the number of coalitions must be bounded. For example, only consider coalitions which size is bounded in $\left[K_{1}, K_{2}\right]$. The complexity of the truncated algorithm is $O\left(n^{2} \cdot n_{\text {coalitions }}\right)$ where $n_{\text {coalitions }}$ is the number of coalitions with size $\mathrm{in}\left[K_{1}, K_{2}\right]$, which is a polynomial of order K_{2}.
- M. Klusch and O. Shehory. A polynomial kernel-oriented coalition algorithm for rational information agents. In Proceedings of the Second International Conference on Multi-Agent Systems, 1996.
- O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous agents in non-superadditve environments. Computational Intelligence, 1999.

Computing a kernel-stable payoff distribution
Algorithm 1: Transfer scheme converging to a ϵ-Kernel-
stable payoff distribution for the CS S
compute- ϵ-Kernel-Stable(N, v, S, ϵ)
for
for e alition $C \in S$ do
共
$s_{i j} \leftarrow \max _{R \subseteq N(i \in R, j \notin R)} v(R)-x(R)$
$\delta \leftarrow \max _{(i, j) \in \mathrm{C}^{2}, \mathrm{e} \in \mathcal{S}} s_{i j}-s_{j i}$;
$\left(i^{\star}, j^{\star}\right) \leftarrow \operatorname{argmax}_{(i, j) \in N^{2}}\left(s_{i j}-s_{j i}\right)$;
if $\begin{gathered}\left(x_{j \star}-v(\{j\})<\frac{\delta}{2}\right) \text { then } \\ d \leftarrow x_{j \star}-v\left(\left\{j^{*}\right\}\right) ;\end{gathered}$
$L d \leftarrow x_{j^{\star}}-v\left(\left\{j^{\star}\right\}\right)$;
else
$L d \leftarrow \frac{\delta}{2}$;
$x_{i^{\star}} \leftarrow x_{i^{\star}}+d ;$
until $\frac{\delta}{v(S)} \leqslant \epsilon$;

- We saw another way to use the excess to make objections and counter-objections.
- We defined the kernel.
- We proved that both the kernel and the bargaining set are non-empty if the set of imputations is non-empty.
pros: - If the set of imputations is non-empty, the nucleolus,
kernel, bargaining set are non-empty.
- There is an algorithm to compute a payoff in the kernel.
cons: The algorithm is not polynomial
- The Shapley value.

It is not a stability concept, but it tries to guarantee fairness. We will see it can be defined axiomatically or using the concept of marginal contributions.

