Cooperative Games

Lecture 6: The nucleolus and the Kernel

Stéphane Airiau

ILLC - University of Amsterdam

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 1

For a TU game (N,v), the $Nu(N,v) \neq \emptyset$ when $\Im mp \neq \emptyset$, which is a great property as agents will always find an agreement.

Theorem

The nucleolus has at most one element

In other words, there is one agreement which is stable according to the nucleolus.

To prove this, we need theorems 3 and 4.

Theorem (3)

Let *A* be a non-empty convex subset of \mathbb{R}^m Then the set $\{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leqslant_{lex} y^{\blacktriangleright}\}$ has at most one element.

Theorem (4)

Let (N,v) be a TU game such that $\Im mp \neq \emptyset$.

- (i) $\Im \textit{mp}$ is a non-empty and convex subset of $\mathbb{R}^{|N|}$
- (ii) $\{e(x) \mid x \in \Im mp\}$ is a non-empty convex subset of $\mathbb{R}^{2^{|N|}}$

Stéphane Airiau (ILLC) - Cooperative Games

Proof Theorem 4 (i)

Let (N,v) be a TU game s.t. $\mathit{Imp} \neq \emptyset$ (in case $\mathit{Imp} = \emptyset$, Imp is trivially convex). Let $(x,y) \in \mathit{Imp}^2$, $\alpha \in [0,1]$. Let us prove Imp is convex by showing that $u = \alpha x + (1-\alpha)y \in \mathit{Imp}$, i.e., individually ratio nal and efficient.

Individual rationality: Since x and y are individually rational, for all agents i,

 $u_i = \alpha x_i + (1 - \alpha)y_i \geqslant \alpha v(\{i\}) + (1 - \alpha)v(\{i\}) = v(\{i\})$. Hence u is individually rational.

Efficiency: Since x and y are efficient, we have

$$\begin{split} &\sum_{i \in N} u_i = \sum_{i \in N} \alpha x_i + (1-\alpha)y_i \geqslant \alpha \sum_{i \in N} x_i + (1-\alpha) \sum_{i \in N} y_i \\ &\sum_{i \in N} u_i \geqslant \alpha v(N) + (1-\alpha)v(N) = v(N), \text{ hence } u \text{ is efficient.} \end{split}$$

Thus, $u \in \Im mp$.

éphane Airiau (ILLC) - Cooperative Ga

Stéphane Airiau (ILLC) - Cooperative Games

Proof that the nucleolus has at most one element

Let (N,v) be a TU game, and $\Im mp$ its set of imputations. **Theorem 4(ii):** $\{e(x) \mid x \in \Im mp\}$ is a non-empty convex subset of

Theorem 3: If A is a non-empty convex subset of \mathbb{R}^m , then the set $\{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leq_{lex} y^{\blacktriangleright}\}$ has at most one element.

Applying theorem 3 with $A = \{e(x) \mid x \in Jmp\}$ we obtain $B = \{e(x) \mid x \in Jmp \land \forall y \in Jmp \ e(x)^{\blacktriangleright} \leq_{lex} e(y)^{\blacktriangleright}\}$ has at most one element.

B is the image of the nucleolus under the function e. We need to make sure that an e(x) corresponds to at most one element in $\Im mp$. This is true since for $(x,y)\in \Im mp^2$, we have $x\neq y\Rightarrow e(x)\neq e(y)$.

Hence $Nu(N,v) = \{x \mid x \in \Im mp \land \forall y \in \Im mp \ e(x)^{\blacktriangleright} \leqslant_{lex} e(y)^{\blacktriangleright} \}$ has at most one element!

Today

- We start by proving that the nucleolus has at most an element.
- We introduce the kernel, another stability concept from the bargaining set family, where the excess plays a key
- We consider some properties of the kernel, and we present an algorithm to compute a kernel-stable payoff distribution.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 2

Proof of Theorem 3

Let A be a non-empty convex subset of \mathbb{R}^m , and $M^{in} = \{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leqslant_{lex} y^{\blacktriangleright}\}$. We now prove that $|M^{in}| \leqslant 1$.

Towards a contradiction, let us assume M^{in} has at least two elements x and y, $x \neq y$. By definition of M^{in} , we must have $x^{\blacktriangleright} = y^{\blacktriangleright}$.

Let $\alpha \in (0,1)$ and σ be a permutation of $\{1,\ldots,m\}$ such that $(\alpha x + (1-\alpha)y)^{\blacktriangleright} = \sigma(\alpha x + (1-\alpha)y) = \alpha \sigma(x) + (1-\alpha)\sigma(y)$. Let us show by contradiction that $\sigma(x) = x^{\blacktriangleright}$ and $\sigma(y) = y^{\blacktriangleright}$.

Let us assume that either $\sigma(x)<_{lex}x^{\blacktriangleright}$ or $\sigma(y)<_{lex}y^{\blacktriangleright}$, it follows that $\alpha\sigma(x)+(1-\alpha)\sigma(y)<_{lex}\alpha x^{\blacktriangleright}+(1-\alpha)y^{\blacktriangleright}=x^{\blacktriangleright}$. Since A is convex, $\alpha x+(1-\alpha)y\in A$. But this is a contradiction because by definition of M^{in} , $\alpha x+(1-\alpha)y\in A$ cannot be strictly smaller than x^{\blacktriangleright} , y^{\blacktriangleright} in A. This proves $\sigma(x)=x^{\blacktriangleright}$ and $\sigma(y)=y^{\blacktriangleright}$.

Since $x^{\blacktriangleright}=y^{\blacktriangleright}$, we have $\sigma(x)=\sigma(y)$, hence x=y. This contradicts the fact that $x\neq y$. Hence, M^{in} cannot have at least two elements, and $|M^{in}| \leq 1$.

Stéphane Airiau (ILLC) - Cooperative Games

Proof Theorem 4 (ii)

Let (N,v) be a TU game and $\Im mp$ its set of imputations. We need to show $\{e(z) \mid z \in \Im mp\}$ is a non-empty convex subset of \mathbb{R}^m . Let $(x,y) \in \Im mp^2$, $\alpha \in [0,1]$, and $\mathfrak{C} \subseteq N$ and we consider the sequence $\alpha e(x) + (1-\alpha)e(y)$, and we look at the entry corresponding to coalition C.

$$\begin{array}{lcl} \left(\alpha e(x) + (1-\alpha)e(y)\right)_{\mathfrak{S}} &=& \alpha e(\mathfrak{S},x) + (1-\alpha)e(\mathfrak{S},y) \\ &=& \alpha (v(\mathfrak{S}) - x(\mathfrak{S})) + (1-\alpha)(v(\mathfrak{S}) - y(\mathfrak{S})) \\ &=& v(\mathfrak{S}) - (\alpha x(\mathfrak{S}) + (1-\alpha)y(\mathfrak{S})) \\ &=& v(\mathfrak{S}) - ([\alpha x + (1-\alpha)y](\mathfrak{S})) \\ &=& e(\alpha x + (1-\alpha)y,\mathfrak{S}) \end{array}$$

Since the previous equality is valid for all $\mathfrak{C} \subseteq N$, both sequences are equal: $\alpha e(x) + (1-\alpha)e(y) = e(\alpha x + (1-\alpha)y)$.

Since $\Im mp$ is convex, $\alpha x + (1 - \alpha)y \in \Im mp$, it follows that $e(\alpha x + (1 - \alpha)y) \in \{e(z) \mid z \in \Im mp\}$. Hence, $\{e(z) \mid z \in \Im mp\}$ is convex.

One last stability concept from the bargaining set family:

The kernel.

M. Davis. and M. Maschler, The kernel of a cooperative game. Naval Research Logistics Quarterly, 1965.

Lecture 6: The nucleolus and the Kernel 7

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 8

Excess

Definition (Excess)

For a TU game (N,v), the excess of coalition $\mathcal C$ for a payoff distribution x is defined as e(C, x) = v(C) - x(C).

We saw that a positive excess can be interpreted as an amount of complaint for a coalition.

We can also interpret the excess as a potential to generate more utility.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 9

A first definition

Remember that the set of feasible payoff vectors for (N, v, S)is $X_{(N,v,S)} = \{x \in \mathbb{R}^n \mid \text{ for every } \mathcal{C} \in \mathcal{S} : x(\mathcal{C}) \leqslant v(\mathcal{C})\}.$

Definition (Kernel)

Let (N, v, S) be a TU game in coalition structure. The **kernel** is the set of imputations $x \in X_{(N,v,\$)}$ s.t. for any coalition $\mathfrak{C} \in \$$, for each objection P of an agent $k \in \mathfrak{C}$ over any other member $l \in \mathcal{C}$ to x, there is a counterobjection of l to P.

Stéphane Airiau (ILLC) - Cooperative Games

Properties

Theorem

Let (N, v, S) a game with coalition structure, and let $\Im mp \neq \emptyset$. Then we have:

- \circ (i) $Nu(N,v,S) \subseteq K(N,v,S)$
- \circ (ii) $K(N, v, S) \subseteq BS(N, v, S)$

Theorem

Let (N, v, S) a game with coalition structure, and let $\Im mp \neq \emptyset$. The kernel K(N,v,\$) and the bargaining set BS(N, v, S) of the game are non-empty.

Proof

Since the Nucleolus is non-empty when $\Im mp \neq \emptyset$, the proof is immediate using the theorem above.

Stéphane Airiau (ILLC) - Cooperative Games

Stéphane Airiau (ILLC) - Cooperative Games

Proof of (i)

Let $\{B_1(x), \dots, B_M(x)\}$ a partition of the set of all coalitions s.t.

- \circ $(S,T) \in B_i(x)$ iff e(S,x) = e(T,x). We denote by $e_i(x)$ the common value of the excess in $B_i(x)$, i.e. $e_i(x) = e(S,x)$ for all $S \in B_i(x)$.
- $e_1(x) > e_2(x) > \cdots > e_M(x)$

In other words, $e(x)^{\blacktriangleright} = \langle e_1(x), \dots, e_1(x), \dots, e_M(x), \dots, e_M(x) \rangle$.

 $|B_1(x)|$ times

Let i^* be the minimal value of $i \in \{1, ..., M\}$ such that there is $\mathcal{C} \in B_{i^*}(x)$ with $e(\mathcal{C}, x) \neq e(\mathcal{C}, y)$.

For all $i < i^*$, we have $B_i(x) = B_i(y)$ and $e_i(x) = e_i(y)$.

Let (N,v) be a TU game, $S \in \mathscr{S}_N$ a coalition structure and x a payoff distribution. Objections and counter-objections are exchanged between members of the same coalition in 8. Objections and counter-objections take the form of **coalitions**, i.e., they do not propose another payoff distribution.

Let $C \in S$, $k \in C$, $l \in C$.

Objection: A coalition $P \subseteq N$ is an objection of *k* against *l* to *x* iff $k \in P$, $l \notin P$ and $x_l > v(\{l\})$.

"P is a coalition that contains k, excludes l and which sacrifices too much (or gains too little).

Counter-objection: A coalition $Q \subseteq N$ is a counter-objection to the objection \overline{P} of k against l at x iff $l \in Q$, $k \notin Q$ and $e(Q,x) \geqslant e(P,x)$.

"k's demand is not justified: Q is a coalition that contains l and excludes k and that sacrifices even more (or gains even less)."

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 10

Another definition

Definition (Maximum surplus)

For a TU game (N,v), the **maximum surplus** $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that in**cludes** *k* but does **exclude** *l*, i.e., $s_{k,l}(x) = \max_{\mathfrak{C} \subseteq N \mid k \in \mathfrak{C}, l \notin \mathfrak{C}} e(\mathfrak{C}, x).$

Definition (Kernel)

Let (N, v, S) be a TU game with coalition structure. The **kernel** is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $C \in CS$, if $(k,l) \in C^2$, $k \neq l$, then we have either $s_{kl}(x) \geqslant s_{lk}(x)$ or $x_k = v(\{k\})$.

 $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.

Proof of (i)

Let $x \notin K(N, v, S)$, we want to show that $x \notin Nu(N, v, S)$.

 $x \notin K(N, v, S)$, hence, there exists $C \in CS$ and $(k, l) \in C^2$ such that $s_{lk}(x)>s_{kl}(x)$ and $x_k>v(\{k\})$. Let y be a payoff distribution corresponding to a transfer of utility

$$\epsilon > 0 \text{ from } k \text{ to } l \text{: } y_i = \left\{ \begin{array}{l} x_i \text{ if } i \neq k \text{ and } i \neq l \\ x_k - \epsilon \text{ if } i = k \\ x_l + \epsilon \text{ if } i = l \end{array} \right.$$

Since $x_k > v(\{k\})$ and $s_{lk}(x) > s_{kl}(x)$, we can choose $\epsilon > 0$ small enough s.t.

- $\ \, \circ \ \, x_k \epsilon > v(\{k\})$
- $\quad \circ \ \, s_{lk}(y) > s_{kl}(y)$

We need to show that $e(y)^{\blacktriangleright} \leq_{lex} e(x)^{\blacktriangleright}$.

Note that for any coalition $S \subseteq N$ s.t. $e(S,x) \neq e(S,y)$ we have either o $k \in S$ and $l \notin S$ (e(S,x) > e(S,y) since $e(S,y) = e(S,x) + \epsilon > e(S,x))$ • $k \notin S$ and $l \in S$ (e(S,x) < e(S,y) since $e(S,y) = e(S,x) - \epsilon < e(S,x)$)

Stéphane Airiau (ILLC) - Cooperative Games

Proof of (i)

Since $s_{lk}(x) > s_{kl}(x) B_{i*}$ contains

- \odot at least one coalition S that contains l but not k, for such coalition, we must have e(S,x) > e(S,y)
- no coalition that contains k but not l.

If B: contains either

- coalitions that contain both k and l
- \circ or coalitions that do not contain both k and l

Then. for any such coalitions S, we have e(S,x) = e(S,y), and it follows that $B_{i^*}(y) \subset B_{i^*}(x)$.

Otherwise, we have $e_{i^*}(y) < e_{i^*}(x)$.

In both cases, we have e(y) is lexicographically less than e(x), and hence y is not in the nucleolus of the game (N, v, S).

Lecture 6: The nucleolus and the Kernel 15

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 16

Proof of (ii)

Let (N, v, S) a TU game with coalition structure. Let $x \in K(N, v, S)$. We want to prove that $x \in BS(N, v, S)$. To do so, we need to show that for any objection (P, y) from any player i against any player j at x, there is a counter objection (Q, z) to (P, y). For the bargaining set, An objection of i against j is a pair (P,y) where

- \circ *P* ⊆ *N* is a coalition such that *i* ∈ *P* and *j* ∉ *P*.
- \circ $y \in \mathbb{R}^p$ where p is the size of P
- $\ \, {\it g}(P)\leqslant v(P) \ \, \mbox{(y is a feasible payoff for members of P)}$
- $\forall k \in P, y_k \geqslant x_k \text{ and } y_i > x_i$

An counter-objection to (P,y) is a pair (Q,z) where

- $Q \subseteq N$ is a coalition such that $j \in Q$ and $i \notin Q$.
- \circ $z \in \mathbb{R}^q$ where q is the size of Q
- $\circ z(Q) \leqslant v(Q)$ (z is a feasible payoff for members of Q)
- $\circ \ \forall k \in Q, \, z_k \geqslant x_k$
- $\quad \ \ \, \forall k \in Q \cap P \ z_k \geqslant y_k \\$

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 17

Computing a kernel-stable payoff distribution

- There is a transfer scheme converging to an element in the kernel.
- It may require an infinite number of small steps.
- defined up to an arbitrary small constant ϵ .

R. E. Stearns. Convergent transfer schemes for n-person games. Transactions of the American Mathematical Society, 1968.

Stéphane Airiau (ILLC) - Cooperative Games

- The complexity for one side-payment is $O(n \cdot 2^n)$.
- Upper bound for the number of iterations for converging to an element of the ϵ -kernel: $n \cdot log_2(\frac{\delta_0}{\epsilon \cdot v(S)})$, where δ_0 is the maximum surplus difference in the initial payoff distribution.
- To derive a polynomial algorithm, the number of coalitions must be bounded. For example, only consider coalitions which size is bounded in $[K_1, K_2]$. The complexity of the truncated algorithm is $O(n^2 \cdot n_{coalitions})$ where $n_{coalitions}$ is the number of coalitions with size in[K_1, K_2], which is a polynomial of order K_2 .
- M. Klusch and O. Shehory. A polynomial kernel-oriented coalition algorithm for rational information agents. In Proceedings of the Second International Conference on Multi-Agent Systems, 1996.
- . O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous agents in non-superadditve environments. Computational Intel-

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 21

Coming next

• The Shapley value.

It is not a stability concept, but it tries to guarantee fairness. We will see it can be defined axiomatically or using the concept of marginal contributions.

Proof of (ii)

Let (P,y) be an objection of player i against player j to x. $i \in P$, $j \notin P$, $y(P) \leqslant v(P)$ and y(P) > x(P).We choose y(P) = v(P).

- $x_i = v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_j > v(\{j\})$: Since $x \in K(N, v, S)$ we have

 $s_{ji}(x) \geqslant s_{ij}(x) \geqslant v(P) - x(P) \geqslant y(P) - x(P)$ since $i \in P, j \notin P$. Let $Q \subseteq N$ such that $j \in Q$, $i \notin Q$ and $s_{ji}(x) = v(Q) - x(Q)$. We have $v(Q) - x(Q) \geqslant y(P) - x(P)$. Then, we have

 $v(Q) \geqslant y(P) + x(Q) - x(P)$ $\geqslant y(P \cap Q) + y(P \setminus Q) + x(Q \setminus P) - x(P \setminus Q)$ $y(P \cap Q) + x(Q \setminus P)$ since $i \in P \setminus Q$, $y(P \setminus Q) > x(P \setminus Q)$

Let us define z as follows $\left\{ \begin{array}{l} x_k \text{ if } k \in Q \setminus P \\ y_k \text{ if } k \in Q \cap P \end{array} \right.$ (Q,z) is a counter-objection to (P,y).

Finally $x \in BS(N, v, S)$.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 18

Computing a kernel-stable payoff distribution

Algorithm 1: Transfer scheme converging to a ϵ -Kernelstable payoff distribution for the CS S

```
compute-\epsilon-Kernel-Stable(N, v, \delta, \epsilon)
          for each coalition C \in S do
                       // compute the maximum surplus
          \begin{array}{l} \mathbb{L} & \text{for } \max_{(i,j) \in \mathbb{C}^2, \mathbb{C} \in \mathbb{S}} s_{ij} - s_{ji}; \\ (i^*,j^*) \leftarrow \underset{\text{argmax}}{\operatorname{argmax}} (i,j) \in \mathbb{N}^2 (s_{ij} - s_{ji}); \\ \text{if } (x_{j^*} - v(\{j\}) < \frac{\delta}{2}) \text{ then} \\ \mathbb{L} & d \leftarrow x_{j^*} - v(\{j^*\}); \end{array}
          else d \leftarrow \frac{\delta}{2};
          x_{i^*} \leftarrow x_{i^*} + d;

x_{j^*} \leftarrow x_{j^*} - d;
until \frac{\delta}{v(S)} \leqslant \epsilon;
```

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 20

Summary

- We saw another way to use the excess to make objections and counter-objections.
- We defined the kernel.
- We proved that both the kernel and the bargaining set are non-empty if the set of imputations is non-empty.
- If the set of imputations is non-empty, the nucleolus, kernel, bargaining set are non-empty.
 There is an algorithm to compute a payoff in the kernel.

cons: The algorithm is not polynomial

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 6: The nucleolus and the Kernel 22