Cooperative Games Lecture 6: The nucleolus and the Kernel

Stéphane Airiau

ILLC - University of Amsterdam

- We start by proving that the nucleolus has at most an element.
- We introduce the kernel, another stability concept from the bargaining set family, where the excess plays a key role.
- We consider some properties of the kernel, and we present an algorithm to compute a kernel-stable payoff distribution.

For a TU game (N, v), the $Nu(N, v) \neq \emptyset$ when $\Im mp \neq \emptyset$, which is a great property as agents will always find an agreement.

Theorem

The nucleolus has at most one element

In other words, there is **one** agreement which is stable according to the nucleolus.

To prove this, we need theorems 3 and 4.

Theorem (3)

Let *A* be a non-empty convex subset of \mathbb{R}^m Then the set $\{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leq_{lex} y^{\blacktriangleright}\}$ has at most one element.

Theorem (4)

Let (N, v) be a TU game such that $\exists mp \neq \emptyset$. (i) $\exists mp$ is a non-empty and convex subset of $\mathbb{R}^{|N|}$ (ii) $\{e(x) \mid x \in \exists mp\}$ is a non-empty convex subset of $\mathbb{R}^{2^{|N|}}$ Let *A* be a non-empty convex subset of \mathbb{R}^m , and $M^{in} = \{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leq_{lex} y^{\blacktriangleright}\}$. We now prove that $|M^{in}| \leq 1$.

Towards a contradiction, let us assume M^{in} has at least two elements x and y, $x \neq y$. By definition of M^{in} , we must have $x^{\blacktriangleright} = y^{\blacktriangleright}$.

Let $\alpha \in (0,1)$ and σ be a permutation of $\{1, ..., m\}$ such that $(\alpha x + (1 - \alpha)y)^{\blacktriangleright} = \sigma(\alpha x + (1 - \alpha)y) = \alpha \sigma(x) + (1 - \alpha)\sigma(y)$. Let us show by contradiction that $\sigma(x) = x^{\blacktriangleright}$ and $\sigma(y) = y^{\blacktriangleright}$.

Let us assume that either $\sigma(x) <_{lex} x^{\blacktriangleright}$ or $\sigma(y) <_{lex} y^{\blacktriangleright}$, it follows that $\alpha \sigma(x) + (1 - \alpha)\sigma(y) <_{lex} \alpha x^{\blacktriangleright} + (1 - \alpha)y^{\blacktriangleright} = x^{\blacktriangleright}$. Since *A* is convex, $\alpha x + (1 - \alpha)y \in A$. But this is a contradiction because by definition of M^{in} , $\alpha x + (1 - \alpha)y \in A$ cannot be strictly smaller than x^{\blacktriangleright} , y^{\blacktriangleright} in *A*. This proves $\sigma(x) = x^{\blacktriangleright}$ and $\sigma(y) = y^{\blacktriangleright}$.

Since $x^{\blacktriangleright} = y^{\blacktriangleright}$, we have $\sigma(x) = \sigma(y)$, hence x = y. This contradicts the fact that $x \neq y$. Hence, M^{in} cannot have at least two elements, and $|M^{in}| \leq 1$.

Let (N, v) be a TU game s.t. $\exists mp \neq \emptyset$ (in case $\exists mp = \emptyset$, $\exists mp$ is trivially convex). Let $(x, y) \in \mathbb{J}mp^2$, $\alpha \in [0, 1]$. Let us prove $\mathbb{J}mp$ is convex by showing that $u = \alpha x + (1 - \alpha)y \in \exists mp$, i.e., individually rational and efficient.

Individual rationality: Since x and y are individually rational, for all agents *i*, $u_i = \alpha x_i + (1 - \alpha) y_i \ge \alpha v(\{i\}) + (1 - \alpha) v(\{i\}) = v(\{i\})$. Hence u is individually rational.

Efficiency: Since *x* and *y* are efficient, we have $\sum u_i = \sum \alpha x_i + (1 - \alpha) y_i \ge \alpha \sum x_i + (1 - \alpha) \sum y_i$ $i \in N$ $i \in N$ $i \in N$ $i \in N$ $\sum u_i \ge \alpha v(N) + (1 - \alpha)v(N) = v(N)$, hence *u* is efficient. $i \in N$

Thus, $u \in \mathbb{J}mp$.

Let (N,v) be a TU game and $\exists mp$ its set of imputations. We need to show $\{e(z) \mid z \in \exists mp\}$ is a non-empty convex subset of \mathbb{R}^m . Let $(x,y) \in \exists mp^2$, $\alpha \in [0,1]$, and $\mathcal{C} \subseteq N$ and we consider the sequence $\alpha e(x) + (1-\alpha)e(y)$, and we look at the entry corresponding to coalition \mathcal{C} .

$$\begin{aligned} \left(\alpha e(x) + (1-\alpha)e(y)\right)_{\mathcal{C}} &= \alpha e(\mathcal{C}, x) + (1-\alpha)e(\mathcal{C}, y) \\ &= \alpha(v(\mathcal{C}) - x(\mathcal{C})) + (1-\alpha)(v(\mathcal{C}) - y(\mathcal{C})) \\ &= v(\mathcal{C}) - (\alpha x(\mathcal{C}) + (1-\alpha)y(\mathcal{C})) \\ &= v(\mathcal{C}) - ([\alpha x + (1-\alpha)y](\mathcal{C})) \\ &= e(\alpha x + (1-\alpha)y, \mathcal{C}) \end{aligned}$$

Since the previous equality is valid for all $C \subseteq N$, both sequences are equal: $\alpha e(x) + (1 - \alpha)e(y) = e(\alpha x + (1 - \alpha)y)$.

Since $\exists mp$ is convex, $\alpha x + (1 - \alpha)y \in \exists mp$, it follows that $e(\alpha x + (1 - \alpha)y) \in \{e(z) \mid z \in \exists mp\}$. Hence, $\{e(z) \mid z \in \exists mp\}$ is convex.

Let (N, v) be a TU game, and $\exists mp$ its set of imputations. **Theorem 4(ii):** $\{e(x) \mid x \in \exists mp\}$ is a non-empty convex subset of $\mathbb{R}^{2^{|N|}}$

Theorem 3: If *A* is a non-empty convex subset of \mathbb{R}^m , then the set $\{x \in A \mid \forall y \in A \ x^{\triangleright} \leq_{ler} y^{\triangleright}\}$ has at most one element.

Applying theorem 3 with $A = \{e(x) \mid x \in \exists mp\}$ we obtain $B = \{e(x) \mid x \in \exists mp \land \forall y \in \exists mp \ e(x)^{\blacktriangleright} \leq_{lex} e(y)^{\blacktriangleright}\}$ has at most one element.

B is the image of the nucleolus under the function *e*. We need to make sure that an e(x) corresponds to at most one element in $\exists mp$. This is true since for $(x, y) \in Jmp^2$, we have $x \neq y \Rightarrow e(x) \neq e(y)$.

Hence $Nu(N, v) = \{x \mid x \in \exists mp \land \forall y \in \exists mp \ e(x)^{\blacktriangleright} \leq_{lex} e(y)^{\blacktriangleright}\}$ has at most one element!

One last stability concept from the bargaining set family:

The kernel.

M. Davis. and M. Maschler, The kernel of a cooperative game. Naval Research Logistics Quarterly, 1965.

Definition (Excess)

For a TU game (N, v), the excess of coalition \mathcal{C} for a payoff distribution *x* is defined as $e(\mathcal{C}, x) = v(\mathcal{C}) - x(\mathcal{C})$.

We saw that a positive excess can be interpreted as an amount of complaint for a coalition. We can also interpret the excess as a potential to generate more utility.

Let (N, v) be a TU game, $S \in \mathscr{S}_N$ a coalition structure and x a payoff distribution. Objections and counter-objections are exchanged between **members of the same coalition** in S. Objections and counter-objections take the form of **coalitions**, i.e., they do not propose another payoff distribution.

Let $\mathcal{C} \in \mathcal{S}$, $k \in \mathcal{C}$, $l \in \mathcal{C}$.

Objection: A coalition $P \subseteq N$ is an objection of k against l to x iff $k \in P$, $l \notin P$ and $x_l > v(\{l\})$.

"*P* is a coalition that contains k, excludes l and which sacrifices too much (or gains too little)."

Counter-objection: A coalition $Q \subseteq N$ is a counter-objection to the objection *P* of *k* against *l* at *x* iff $l \in Q$, $k \notin Q$ and $e(Q,x) \ge e(P,x)$.

"k's demand is not justified: *Q* is a coalition that contains *l* and excludes *k* and that sacrifices even more (or gains even less)."

Remember that the set of feasible payoff vectors for (N, v, S)is $X_{(N,v,\mathbb{S})} = \{x \in \mathbb{R}^n \mid \text{for every } \mathbb{C} \in \mathbb{S} : x(\mathbb{C}) \leq v(\mathbb{C})\}.$

Definition (Kernel)

Let (N, v, S) be a TU game in coalition structure. The **kernel** is the set of imputations $x \in X_{(N,v,S)}$ s.t. for any coalition $\mathcal{C} \in S$, for each objection *P* of an agent $k \in \mathcal{C}$ over any other member $l \in \mathcal{C}$ to *x*, there is a counterobjection of *l* to *P*.

Definition (Maximum surplus)

For a TU game (N, v), the maximum surplus $s_{k,l}(x)$ of **agent** k **over agent** l with respect to a payoff distribution x is the **maximum excess** from a coalition that **includes** k but does **exclude** l, i.e., $s_{k,l}(x) = \max_{\mathcal{C} \subseteq N \mid k \in \mathcal{C}} \max_{l \notin \mathcal{C}} e(\mathcal{C}, x).$

Definition (Kernel)

Let (N, v, S) be a TU game with coalition structure. The **kernel** is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $\mathcal{C} \in CS$, if $(k, l) \in \mathcal{C}^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$.

 $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.

Theorem

Let (N, v, S) a game with coalition structure, and let $\Im mp \neq \emptyset$. Then we have:

- (i) $Nu(N,v,S) \subseteq K(N,v,S)$
- (ii) $K(N,v,S) \subset BS(N,v,S)$

Theorem

Let (N, v, S) a game with coalition structure, and let $\exists mp \neq \emptyset$. The kernel K(N, v, S) and the bargaining set BS(N,v,S) of the game are non-empty.

Proof

Since the Nucleolus is non-empty when $\Im mp \neq \emptyset$, the proof is immediate using the theorem above.

Proof of (i)

Let $x \notin K(N, v, S)$, we want to show that $x \notin Nu(N, v, S)$.

 $x \notin K(N, v, \delta)$, hence, there exists $\mathcal{C} \in CS$ and $(k, l) \in \mathcal{C}^2$ such that $s_{lk}(x) > s_{kl}(x)$ and $x_k > v(\{k\})$.

Let y be a payoff distribution corresponding to a transfer of utility

$$\epsilon > 0$$
 from k to l: $y_i = \begin{cases} x_i \text{ if } i \neq k \text{ and } i \neq l \\ x_k - \epsilon \text{ if } i = k \\ x_l + \epsilon \text{ if } i = l \end{cases}$

Since $x_k > v(\{k\})$ and $s_{lk}(x) > s_{kl}(x)$, we can choose $\epsilon > 0$ small enough s.t.

• $x_k - \epsilon > v(\{k\})$

• $s_{lk}(y) > s_{kl}(y)$

We need to show that $e(y)^{\blacktriangleright} \leq_{lex} e(x)^{\blacktriangleright}$.

Note that for any coalition $S \subseteq N$ s.t. $e(S, x) \neq e(S, y)$ we have either

- $k \in S$ and $l \notin S$ (e(S,x) > e(S,y) since $e(S,y) = e(S,x) + \epsilon > e(S,x)$)
- $k \notin S$ and $l \in S$ (e(S,x) < e(S,y) since $e(S,y) = e(S,x) \varepsilon < e(S,x)$)

Let $\{B_1(x), \ldots, B_M(x)\}$ a partition of the set of all coalitions s.t.

• $(S,T) \in B_i(x)$ iff e(S,x) = e(T,x). We denote by $e_i(x)$ the common value of the excess in $B_i(x)$, i.e. $e_i(x) = e(S,x)$ for all $S \in B_i(x)$.

•
$$e_1(x) > e_2(x) > \cdots > e_M(x)$$

In other words, $e(x)^{\blacktriangleright} = \langle \underbrace{e_1(x), \dots, e_1(x)}_{|B_1(x)| \text{times}}, \dots, \underbrace{e_M(x), \dots, e_M(x)}_{|B_M(x)| \text{times}} \rangle$. Let i^* be the minimal value of $i \in \{1, \dots, M\}$ such that there is $\mathcal{C} \in B_{i^*}(x)$ with $e(\mathcal{C}, x) \neq e(\mathcal{C}, y)$. For all $i < i^*$, we have $B_i(x) = B_i(y)$ and $e_i(x) = e_i(y)$.

Proof of (i)

Since $s_{lk}(x) > s_{kl}(x) B_{i^*}$ contains

- at least one coalition S that contains l but not k, for such coalition, we must have e(S, x) > e(S, y)
- no coalition that contains k but not l.
- If B_{i^*} contains either
 - \bigcirc coalitions that contain both k and l
 - or coalitions that do not contain both k and l

Then, for any such coalitions *S*, we have e(S, x) = e(S, y), and it follows that $B_{i^*}(y) \subset B_{i^*}(x)$.

Otherwise, we have $e_{i^*}(y) < e_{i^*}(x)$.

In both cases, we have e(y) is lexicographically less than e(x), and hence *y* is not in the nucleolus of the game (N, v, S).

Proof of (ii)

Let (N,v,S) a TU game with coalition structure. Let $x \in K(N,v,S)$. We want to prove that $x \in BS(N,v,S)$. To do so, we need to show that for any objection (P,y) from any player *i* against any player *j* at *x*, there is a counter objection (Q,z) to (P,y).For the bargaining set, An **objection of** *i* **against** *j* is a pair (P,y) where

- $P \subseteq N$ is a coalition such that $i \in P$ and $j \notin P$.
- $y \in \mathbb{R}^p$ where *p* is the size of *P*
- $y(P) \leq v(P)$ (y is a feasible payoff for members of *P*)
- $\forall k \in P, y_k \ge x_k \text{ and } y_i > x_i$

An **counter-objection to** (P, y) is a pair (Q, z) where

- $Q \subseteq N$ is a coalition such that $j \in Q$ and $i \notin Q$.
- $z \in \mathbb{R}^q$ where q is the size of Q
- $z(Q) \leq v(Q)$ (z is a feasible payoff for members of *Q*)
- $\forall k \in Q, z_k \ge x_k$
- $\forall k \in Q \cap P \ z_k \ge y_k$

Proof of (ii)

Let (P, y) be an objection of player *i* against player *j* to *x*. $i \in P$, $j \notin P$, $y(P) \leq v(P)$ and y(P) > x(P). We choose y(P) = v(P).

- $x_j = v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_i > v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{ii}(x) \ge s_{ij}(x) \ge v(P) - x(P) \ge y(P) - x(P)$ since $i \in P, j \notin P$. Let $Q \subseteq N$ such that $j \in Q$, $i \notin Q$ and $s_{ji}(x) = v(Q) - x(Q)$. We have $v(Q) - x(Q) \ge y(P) - x(P)$. Then, we have

$$\begin{aligned} v(Q) & \ge & y(P) + x(Q) - x(P) \\ & \ge & y(P \cap Q) + y(P \setminus Q) + x(Q \setminus P) - x(P \setminus Q) \\ & > & y(P \cap Q) + x(Q \setminus P) \text{ since } i \in P \setminus Q, \ y(P \setminus Q) > x(P \setminus Q) \end{aligned}$$

Let us define z as follows
$$\begin{cases} x_k \text{ if } k \in Q \setminus P \\ y_k \text{ if } k \in Q \cap P \\ (Q,z) \text{ is a counter-objection to } (P,y). \checkmark$$

Finally $x \in BS(N,v,S).$

Computing a kernel-stable payoff distribution

- There is a transfer scheme converging to an element in the kernel.
- It may require an infinite number of small steps.
- We can consider the ϵ -kernel where the inequality are defined up to an arbitrary small constant ϵ .

R. E. Stearns. Convergent transfer schemes for n-person games. Transactions of the American Mathematical Society, 1968.

Computing a kernel-stable payoff distribution

Algorithm 1: Transfer scheme converging to a ϵ -Kernelstable payoff distribution for the CS S

compute- ϵ -Kernel-Stable(N, v, S, ϵ) repeat **for** each coalition $C \in S$ **do** $\begin{array}{l} \text{for each member } (i,j) \in \mathbb{C}, i \neq j \text{ do } // \text{ compute the maximum surplus} \\ // \text{ for two members of a coalition in S} \\ s_{ij} \leftarrow \max_{R \subseteq N | (i \in R, j \notin R)} v(R) - x(R) \end{array}$ $\delta \leftarrow \max_{(i,j) \in \mathbb{C}^2, \mathbb{C} \in \mathbb{S}} s_{ij} - s_{ji};$ $(i^{\star}, j^{\star}) \leftarrow \operatorname{argmax}_{(i,i) \in N^2} (s_{ij} - s_{ji});$ if $(x_{j\star} - v(\{j\}) < \frac{\delta}{2})$ then // payment should be individually rational $| \hat{d} \leftarrow x_{i^{\star}} - v(\{i^{\overline{\star}}\});$ else $d \leftarrow \frac{\delta}{2};$ $\begin{array}{l} x_{i^{\star}} \leftarrow x_{i^{\star}} + d; \\ x_{j^{\star}} \leftarrow x_{j^{\star}} - d; \end{array}$ until $\frac{\delta}{v(S)} \leq \epsilon$;

- The complexity for one side-payment is $O(n \cdot 2^n)$.
- Upper bound for the number of iterations for converging to an element of the ϵ -kernel: $n \cdot log_2(\frac{\delta_0}{\epsilon \cdot v(S)})$, where δ_0 is the maximum surplus difference in the initial payoff distribution.
- To derive a polynomial algorithm, the number of coalitions must be bounded. For example, only consider coalitions which size is bounded in $[K_1, K_2]$. The complexity of the truncated algorithm is $O(n^2 \cdot n_{coalitions})$ where $n_{coalitions}$ is the number of coalitions with size in $[K_1, K_2]$, which is a polynomial of order K_2 .

• M. Klusch and O. Shehory. A polynomial kernel-oriented coalition algorithm for rational information agents. In *Proceedings of the Second International Conference on Multi-Agent Systems*, 1996.

• O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous agents in non-superadditve environments. *Computational Intelligence*, 1999.

- We saw another way to use the excess to make objections and counter-objections.
- We defined the kernel.
- We proved that both the kernel and the bargaining set are non-empty if the set of imputations is non-empty.
- If the set of imputations is non-empty, the nucleolus, pros: kernel, bargaining set are non-empty.
- There is an algorithm to compute a payoff in the kernel. cons: The algorithm is not polynomial

• The **Shapley value**.

It is not a stability concept, but it tries to guarantee fairness. We will see it can be defined axiomatically or using the concept of marginal contributions.

