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Cooperative Games
Lecture 7: The Kernel (end) and The Shapley Value

Stéphane Airiau o We prove one property of the kernel, and we consider

an algorithm to compute an element in the kernel
ILLC - University of Amsterdam . "
o We introduce a solution concept called the Shapley

value.
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Last week Proof of (ii)

Let (N,v,8) a TU game with coalition structure. Let x € K(N,7,8).

We want to prove that x € BS(N,v,8). To do so, we need to show

that for any objection (P,y) from any player i against any player j
at x, there is a counter objection (Q,z) to (P,y). For the bargaining
set, An objection of i against j is a pair (P,y) where

o PC N is a coalition such that i€ P and j ¢ P.
o y € R” where p is the size of P

Theorem
Let (N,v,8) a game with coalition structure, and let
Jmp # 0. Then we have:

o (i) Nu(N,v,8) CK(N,v,8) o y(P) <o(P) (y is a feasible payoff for members of P)
Proof v/ O VkeP, yp >xx and y; > x;

o (ii) K(N,v,8) € BS(N,7,8) An counter-objection to (P,y) is a pair (Q,z) where
Proof ¥ 0 QCN is a coalition such that j€ Q and i ¢ Q.

0 z € R7 where q is the size of Q

0 z(Q) <v(Q) (zis a feasible payoff for members of Q)
o VkeQ, zx > xx

0 Vke QNP zr >y,
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Proof of (ii) Computing a kernel-stable payoff distribution

Let (P,y) be an objection of player i against player j to x. i € P,
j€P, y(P) <v(P) and y(P) > x(P).We choose y(P) =v(P).
© xj=({j}): Then ({j},v({j})) is a counter objection to (Py). ¥ o There is a transfer scheme converging to an element in
o x;>o({j}): Since x € K(N,v,8) we have the kernel.
sji(x) > si/[x) >v(P)—x(P) > y(P)—x(P) since i€ P, j ¢ P.
Let Q C N such that j€ Q, i ¢ Q and s;;(x) =v(Q) —x(Q). . . .
We have 9(Q) —x(Q) > y(P) — x(P). Then, we have o We can consider the e-kernel where the inequality are
defined up to an arbitrary small constant e.

o It may require an infinite number of small steps.

0(Q) y(P)+x(Q) —x(P)
y(PNQ)+y(P\Q) +x(Q\P)—x(P\Q)

y(PNQ)+x(Q\P) since i € P\ Q, y(P\Q) >x(P\Q)

\ARAR

R. E. Stearns. Convergent transfer schemes for n-person games. Transac-

. tions of the American Mathematical Society, 1968.
xi if ke Q\P

Yy if ke QNP
(Q,z) is a counter-objection to (P,y). v/

Finally x € BS(N,v,8).

Let us define z as follows {
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Computing a kernel-stable payoff distribution o The complexity for one side-payment is O(n-2").

o Upper bound for the number of iterations for

. R )
Algorithm 1: Transfer scheme converging to a e-Kernel- converging to an element of the e-kernel: 1-log>(giey),

stable payoff distribution for the CS § where &) is the maximum surplus difference in the
initial payoff distribution.

compute-e-Kernel-Stable(N, v, §, €)
repeat
for each coalition C € § do

©

To derive a polynomial algorithm, the number of
coalitions must be bounded. For example, only consider
for each member (i,j) € C,i #j d // compute the maximum surplus . . . . . g
T // for cwo (Lj) of a %]]0 s e - coalitions which size is bounded in [Ky,Ks] . The
L Sij < Maxgew (ier,jgr) 0(R) —X(R) complexity of the truncated algorithm is O(1? - zaiitions)
where 1gggitions is the number of coalitions with size

& +—max(; i ce2 ees Sij — Sjis . . . .
lij)eez ees i — Sjii in[Kj, Kz], which is a polynomial of order Kj.

(i*,j%) « argmax;  en2 (i — 5ji);

if (xj« —o({j}) < 5) then // payment should be individually rational ® M. Klusch and O. Shehory. A polynomial kernel-oriented coalition
d—xp —o({j*)); algorithm for rational information agents. In Proceedings of the Second
else International Conference on Multi-Agent Systems, 1996.
L d— %; ® O. Shehory and S. Kraus. Feasible formation of coalitions among au-
Xjx — Xix +d; tonomous agents in ddi envi Comp 1 Intel-
Xjr = Xje —d; ligence, 1999.
until ﬁ <e;
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Summary

o We saw another way to use the excess to make The Shapley value

objections and counter-objections.
o We defined the kernel.

o We proved that both the kernel and the bargaining set Lloyd S. Shapley. A Value for n-person Games. In Contributions to the
are non-empty if the set of imputations is non-empty. Theory of Games, volume II (Annals of Mathematical Studies), 1953.
pros: o If the set of imputations is non-empty, the nucleolus,

kernel, bargaining set are non-empty.
o There is an algorithm to compute a payoff in the kernel.
cons: The algorithm is not polynomial
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Definition (marginal contribution)

The marginal contribution of agent i for a coalition
€ C N\ {i} is mc;(C) =v(CU{i}) —v(C).

Shapley value: version based on marginal contributions

(mcy(0),mey({1}),me3({1,2})) is an efficient payoff distribu-
tion for any game ({1,2,3},v). This payoff distribution may
model a dynamic process in which 1 starts a coalition, is Let (er) be a TU game. Let I1(N) denote the set of all per-
joined by 2, and finally 3 joins the coalition {1,2}, and where mutations of the sequence (1,...,n).

the incoming agent gets its marginal contribution.

An agent’s payoff depends on which agents are already in Sh(N,v) = O€T(N)

the coalition. This payoff may not be fair. To increase fair- n!

ness,one could take the average marginal contribution over the Shapley value is a fair payoff distribution based on
all possible joining orders. marginal contributions of agents averaged over joining or-

ders of the coalition.
Let o represent a joining order of the grand coalition N, i.e.,
0 is a permutation of (1,...,1).
We write mc(o) € R" the payoff vector where agent i obtains
mci({o(j) | j <i}). The vector mc is called a marginal vector.
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An example

N={1,2,3}, v({1}) =0, v({2}) =0, v({3}) =0,
v({1,2}) =90, v({1,3}) = 80, v({2,3}) =70, o There are |C|! permutations in which all members of €
0({1,2,3}) = 120. precede i.
o There are [N\ (CU{i})|! permutations in which the

1 2 3 Lety= <50,[40, 3)0> o remaining members succede i, i.e. ([N]—[C|—1)!.
123 0 9 30 C e(C,x) e(C,
132 0 40 80 i 5 0]/ The Shz‘ipley value Sh,»(N,v) of the TU game (N,v) for
213 90 0 30 2 40 0 player i can also be written
23«1 50 0 70 {3} -35 0 ClI(IN|=|C|—1)!
312 80 40 0 1,2 5 0 Shi(N, o)=Y %(v(eu{i}%v(@)).
32«1 50 70 0 {1,3} 0 0 CCN\{i} :
total 270 240 210 {2,3} -5 0 . - . INI=1 ; .
Shapley value 5 0 35 1,2,3) 120 0 Using definition, the sum is over 2 instead of [N|!.

This example shows that the Shapley value may not be in
the core, and may not be the nucleolus.
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Notion of value Some interesting properties

Let (N,v) and (N,u) be TU games and ¢ be a value func-
tion.

Definition (value function) o Symmetry or substitution (SYM): If V¥(i,j) € N,

Let Gy the set of all TU games (N,v). A value func- Ve C N\{i it o(CU) =o(CUIT) th (N.9) = d:(N
tion ¢ is a function that assigns to each TU game (N, v) S NAj), o(CU{) =o(CU(7) then &i(N,0) = ¢;(N,0)

an efficient allocation, i.e. ¢ : Gy — RN such that o Dummy (DUM): If V€ C N\ {i} v(€) =v(CU{i}), then
¢&(N,0)(N) =0(N). $i(N,v) =0.
o Additivity (ADD): Let (N,u+v) be a TU game defined
by V€ CN, (u+0)(N)=u(N)+v(N).

o The Shapley value is a value function. $(u+0) =d(u)+¢(v).

o None of the concepts presented thus far were a value Theorem
function (the nucleolus is guaranteed to be non-empty only The Shapley value is the unique value function ¢ that
for games with a non-empty set of imputations). satisfies (SYM), (DUM) and (ADD).
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Unanimity game Proof of the lemma

Let N be a set of agents and T C N\O.
The unanimity game (N,vr) is defined as follows:

i C
VGQN,UT((?):{ LUTEC » o
0 otherwise. There are 2" — 1 unanimity games and the dimension of Gy

We note that e only nea & that the unanimit linearl

. . e only need to prove that the unanimity games are linearly

o %f i .e,N\T’ 1415 a n.ull player.A independent.

o if (i,j) € T?, i and j are substitutes. Towards a contradiction, let us assume that J_rcyyg oxror =0

Lemma where (oer)renp 7 Ogor 1.
The set {vr | T C N\ 0} is a linear basis of Gy. Let To be a minimal set in {T C N | o #0}.

Then, aror ) (To) = ar, # 0, which is a contradic-
TCN\O 0

This means that a TU game (N,v) can be represented by a tion.
unique set of values (ar)rcpg such that

Ve C N, o(€) = (ngw\m (x—rvr) @).
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Proof of the theorem: Uniqueness (1/2) Proof of the theorem: Uniqueness (2/2)
Let ¢ a feasible solution on Gy that is non-empty and satis- Let TC N\ and « € R. Let us prove that ¢(N, - v7) is
fies the axioms SYM, DUM and ADD. Let us prove that ¢ is uniquely defined.
a value function. o Leti¢ T. We have trivially T C € iff T C CU{i}. Then
Let (Nv,) € Sn- Ve C N\{i}, awr(C) = awr(€U{i}).Hence, all agent i ¢ T
o if v =0g,, all players are dummy. Since the solution is are dummies. By DUM, Vi¢ T, ¢;(N,x-vr) =0.
non-empty, 08" is the unique member of ¢(N,v). o Let (i,j) € T2.Then for all € C N\{ij},
o otherwise, (N, ) € Sy. o(€U1{i}) = v(€U{j}).By SYM, ¢;(N, a-or) = j(N, &-r).
Let x € $(N,v) and y € (N, —0). o Since ¢ is a value function, it is efficient. Then,
By ADD, x+y € ¢(v—0), and then, x = —y is unique. 2 ien $ilN, &-v1) = oawp(N) = .
Moreover, x(N) < v(N) as ¢ is a feasible solution. Hence, Vie T, ¢;(N,x-vr) = %

Also y(N) < —v(N).
Since x = —y, we have v(N) < x(N) < v(N),
ie. x is efficient.

This proves that ¢(N, « - vr) is uniquely defined.Since any
TU game (N,v) can be written as ZTCN\@ oot and because
of ADD, there is a unique value function that satisfies the

Hence, ¢ is a value function. three axioms
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Proof of the theorem: Existence Coming next

We need to show that the Shapley value satisfies the three
axioms. Let (N,v) a TU game.
o Let us assume that V€ C N\ {i,j}, we have
v(CU{i}) =v(CU{j}). Then VC C N\{i,j}, we have
o mc;(C) :mcf((?]
o v(CU{i,j}) —v(CU{i}) = v(CU{i,j}) —v(€U{j}), hence, we
have mc;(CU{j}) = mc;(CU{i}). . L
Shi(N,v) = Sh;(N,v), Sh satisfies SYM. o Voting games and power indices.
o Let us assume there is an agent i such that for all
€ C N\ {i} we have v(C) =v(CU{i}).Then, each marginal
contribution of player i is zero, and it follows that
Shi(N,v) =0. Sh satisfies DUM.
o Sh is clearly additive.
v
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