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Today

We prove one property of the kernel, and we consider
an algorithm to compute an element in the kernel
We introduce a solution concept called the Shapley
value.
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Last week

Theorem
Let (N,v,S) a game with coalition structure, and let
Imp 6= ∅. Then we have:

(i) Nu(N,v,S)⊆ K(N,v,S)
Proof 4

(ii) K(N,v,S)⊆ BS(N,v,S)
Proof 8
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Proof of (ii)

Let (N,v,S) a TU game with coalition structure. Let x ∈ K(N,v,S).
We want to prove that x ∈ BS(N,v,S). To do so, we need to show
that for any objection (P,y) from any player i against any player j
at x, there is a counter objection (Q,z) to (P,y). For the bargaining
set, An objection of i against j is a pair (P,y) where

P⊆N is a coalition such that i ∈ P and j /∈ P.

y ∈ Rp where p is the size of P

y(P) 6 v(P) (y is a feasible payoff for members of P)

∀k ∈ P, yk > xk and yi > xi

An counter-objection to (P,y) is a pair (Q,z) where

Q⊆N is a coalition such that j ∈Q and i /∈Q.

z ∈ Rq where q is the size of Q

z(Q) 6 v(Q) (z is a feasible payoff for members of Q)

∀k ∈Q, zk > xk

∀k ∈Q∩P zk > yk
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Proof of (ii)

Let (P,y) be an objection of player i against player j to x. i ∈ P,
j /∈ P, y(P) 6 v(P) and y(P)> x(P).We choose y(P) = v(P).

xj = v({j}): Then ({j},v({j})) is a counter objection to (P,y). 4

xj > v({j}): Since x ∈ K(N,v,S) we have
sji(x) > sij(x) > v(P)−x(P) > y(P)−x(P) since i ∈ P, j /∈ P.
Let Q⊆N such that j ∈Q, i /∈Q and sji(x) = v(Q)−x(Q).
We have v(Q)−x(Q) > y(P)−x(P). Then, we have

v(Q) > y(P)+x(Q)−x(P)

> y(P∩Q)+y(P\Q)+x(Q\P)−x(P\Q)

> y(P∩Q)+x(Q\P) since i ∈ P\Q, y(P\Q)> x(P\Q)

Let us define z as follows
{

xk if k ∈Q\P
yk if k ∈Q∩P

(Q,z) is a counter-objection to (P,y). 4

Finally x ∈ BS(N,v,S).
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Computing a kernel-stable payoff distribution

There is a transfer scheme converging to an element in
the kernel.
It may require an infinite number of small steps.
We can consider the ε-kernel where the inequality are
defined up to an arbitrary small constant ε.

R. E. Stearns. Convergent transfer schemes for n-person games. Transac-
tions of the American Mathematical Society, 1968.
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Computing a kernel-stable payoff distribution

Algorithm 1: Transfer scheme converging to a ε-Kernel-
stable payoff distribution for the CS S

compute-ε-Kernel-Stable(N, v, S, ε)
repeat

for each coalition C∈ S do
for each member (i, j)∈C, i 6= j do // compute the maximum surplus

// for two members of a coalition in S

sij←maxR⊆N|(i∈R, j/∈R) v(R)−x(R)

δ←max(i,j)∈C2 ,C∈S sij − sji;
(i?, j?)← argmax(i,j)∈N2 (sij − sji);

if
(
xj? −v({j})< δ

2

)
then // payment should be individually rational

d← xj? −v({j?});

else
d← δ

2 ;

xi? ← xi? +d;
xj? ← xj? −d;

until δ
v(S) 6 ε ;
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The complexity for one side-payment is O(n ·2n).
Upper bound for the number of iterations for
converging to an element of the ε-kernel: n · log2(

δ0
ε·v(S) ),

where δ0 is the maximum surplus difference in the
initial payoff distribution.
To derive a polynomial algorithm, the number of
coalitions must be bounded. For example, only consider
coalitions which size is bounded in [K1,K2] . The
complexity of the truncated algorithm is O(n2 ·ncoalitions)
where ncoalitions is the number of coalitions with size
in[K1,K2], which is a polynomial of order K2.

• M. Klusch and O. Shehory. A polynomial kernel-oriented coalition
algorithm for rational information agents. In Proceedings of the Second
International Conference on Multi-Agent Systems, 1996.
• O. Shehory and S. Kraus. Feasible formation of coalitions among au-
tonomous agents in non-superadditve environments. Computational Intel-
ligence, 1999.
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Summary

We saw another way to use the excess to make
objections and counter-objections.
We defined the kernel.
We proved that both the kernel and the bargaining set
are non-empty if the set of imputations is non-empty.

pros: If the set of imputations is non-empty, the nucleolus,
kernel, bargaining set are non-empty.
There is an algorithm to compute a payoff in the kernel.

cons: The algorithm is not polynomial

Stéphane Airiau (ILLC) - Cooperative Games Lecture 7: The Kernel (end) and The Shapley Value 9



The Shapley value

Lloyd S. Shapley. A Value for n-person Games. In Contributions to the
Theory of Games, volume II (Annals of Mathematical Studies), 1953.
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Definition (marginal contribution)
The marginal contribution of agent i for a coalition
C⊆N \ {i} is mci(C) = v(C∪ {i})−v(C).

〈mc1(∅),mc2({1}),mc3({1,2})〉 is an efficient payoff distribu-
tion for any game ({1,2,3},v). This payoff distribution may
model a dynamic process in which 1 starts a coalition, is
joined by 2, and finally 3 joins the coalition {1,2}, and where
the incoming agent gets its marginal contribution.

An agent’s payoff depends on which agents are already in
the coalition. This payoff may not be fair. To increase fair-
ness,one could take the average marginal contribution over
all possible joining orders.

Let σ represent a joining order of the grand coalition N, i.e.,
σ is a permutation of 〈1, . . . ,n〉.
We write mc(σ) ∈ Rn the payoff vector where agent i obtains
mci({σ(j) | j< i}). The vector mc is called a marginal vector.
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Shapley value: version based on marginal contributions

Let (N,v) be a TU game. Let Π(N) denote the set of all per-
mutations of the sequence 〈1, . . . ,n〉.

Sh(N,v) =

∑
σ∈Π(N)

mc(σ)

n!
the Shapley value is a fair payoff distribution based on
marginal contributions of agents averaged over joining or-
ders of the coalition.
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An example

N = {1,2,3}, v({1}) = 0, v({2}) = 0, v({3}) = 0,
v({1,2}) = 90, v({1,3}) = 80, v({2,3}) = 70,

v({1,2,3}) = 120.

1 2 3
1← 2← 3 0 90 30
1← 3← 2 0 40 80
2← 1← 3 90 0 30
2← 3← 1 50 0 70
3← 1← 2 80 40 0
3← 2← 1 50 70 0
total 270 240 210
Shapley value 45 40 35

Let y = 〈50,40,30〉
C e(C,x) e(C,y)

{1} -45 0
{2} -40 0
{3} -35 0

{1,2} 5 0
{1,3} 0 0
{2,3} -5 0

{1,2,3} 120 0

This example shows that the Shapley value may not be in
the core, and may not be the nucleolus.
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There are |C|! permutations in which all members of C

precede i.
There are |N \ (C∪ {i})|! permutations in which the
remaining members succede i, i.e. (|N|− |C|−1)!.

The Shapley value Shi(N,v) of the TU game (N,v) for
player i can also be written

Shi(N,v) =
∑

C⊆N\{i}

|C|!(|N|− |C|−1)!
|N|!

(v(C∪ {i})−v(C)) .

Using definition, the sum is over 2|N|−1 instead of |N|!.
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Notion of value

Definition (value function)
Let GN the set of all TU games (N,v). A value func-
tion φ is a function that assigns to each TU game (N,v)
an efficient allocation, i.e. φ : GN → R|N| such that
φ(N,v)(N) = v(N).

The Shapley value is a value function.
None of the concepts presented thus far were a value
function (the nucleolus is guaranteed to be non-empty only
for games with a non-empty set of imputations).
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Some interesting properties

Let (N,v) and (N,u) be TU games and φ be a value func-
tion.

Symmetry or substitution (SYM): If ∀(i, j) ∈N,
∀C⊆N \ {i, j}, v(C∪ {i}) = v(C∪ {j}) then φi(N,v) = φj(N,v)

Dummy (DUM): If ∀C⊆N \ {i} v(C) = v(C∪ {i}), then
φi(N,v) = 0.
Additivity (ADD): Let (N,u+v) be a TU game defined
by ∀C⊆N, (u+v)(N) = u(N)+v(N).
φ(u+v) = φ(u)+φ(v).

Theorem
The Shapley value is the unique value function φ that
satisfies (SYM), (DUM) and (ADD).
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Unanimity game

Let N be a set of agents and T ⊆N \∅.
The unanimity game (N,vT) is defined as follows:

∀C⊆N, vT(C) =

{
1, if T ⊆ C,
0 otherwise.

We note that
if i ∈N \T, i is a null player.
if (i, j) ∈ T2, i and j are substitutes.

Lemma
The set {vT | T ⊆N \∅} is a linear basis of GN.

This means that a TU game (N,v) can be represented by a
unique set of values (αT)T⊆N\∅ such that

∀C⊆N, v(C) =
(∑

T⊆N\∅αTvT

)
(C).
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Proof of the lemma

There are 2n − 1 unanimity games and the dimension of GN
is also 2n −1.
We only need to prove that the unanimity games are linearly
independent.
Towards a contradiction, let us assume that

∑
T⊆N\∅αTvT = 0

where (αT)T⊆N\∅ 6= 0R2n−1 .
Let T0 be a minimal set in {T ⊆N | αT 6= 0}.
Then,

(∑
T⊆N\∅αTvT

)
(T0) = αT0 6= 0, which is a contradic-

tion.
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Proof of the theorem: Uniqueness (1/2)

Let φ a feasible solution on GN that is non-empty and satis-
fies the axioms SYM, DUM and ADD. Let us prove that φ is
a value function.
Let (Nv,) ∈ GN.

if v = 0GN , all players are dummy. Since the solution is
non-empty, 0R|N|

is the unique member of φ(N,v).
otherwise, (N,−v) ∈ GN.
Let x ∈ φ(N,v) and y ∈ φ(N,−v).
By ADD, x+y ∈ φ(v−v), and then, x = −y is unique.
Moreover, x(N) 6 v(N) as φ is a feasible solution.
Also y(N) 6 −v(N).
Since x = −y, we have v(N) 6 x(N) 6 v(N),
i.e. x is efficient.

Hence, φ is a value function.
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Proof of the theorem: Uniqueness (2/2)

Let T ⊆ N \ ∅ and α ∈ R. Let us prove that φ(N,α · vT) is
uniquely defined.

Let i /∈ T. We have trivially T ⊆ C iff T ⊆ C∪ {i}. Then
∀C⊆N \ {i}, αvT(C) = αvT(C∪ {i}).Hence, all agent i /∈ T
are dummies. By DUM, ∀i /∈ T, φi(N,α ·vT) = 0.
Let (i, j) ∈ T2.Then for all C⊆N \ {i, j},
v(C∪ {i}) = v(C∪ {j}).By SYM, φi(N,α ·vT) = φj(N,α ·vT).
Since φ is a value function, it is efficient. Then,∑

i∈Nφi(N,α ·vT) = αvT(N) = α.
Hence, ∀i ∈ T, φi(N,α ·vT) = α

|T| .

This proves that φ(N,α · vT) is uniquely defined.Since any
TU game (N,v) can be written as

∑
T⊆N\∅αTvT and because

of ADD, there is a unique value function that satisfies the
three axioms.
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Proof of the theorem: Existence

We need to show that the Shapley value satisfies the three
axioms. Let (N,v) a TU game.

Let us assume that ∀C⊆N \ {i, j}, we have
v(C∪ {i}) = v(C∪ {j}). Then ∀C⊆N \ {i, j}, we have

mci(C) = mcj(C)

v(C∪ {i, j})−v(C∪ {i}) = v(C∪ {i, j})−v(C∪ {j}), hence, we
have mcj(C∪ {j}) = mci(C∪ {i}).

ë Shi(N,v) = Shj(N,v), Sh satisfies SYM.

Let us assume there is an agent i such that for all
C⊆N \ {i} we have v(C) = v(C∪ {i}).Then, each marginal
contribution of player i is zero, and it follows that
Shi(N,v) = 0. Sh satisfies DUM.
Sh is clearly additive.

4
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Coming next

Voting games and power indices.
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