Cooperative Games Lecture 7: The Kernel (end) and The Shapley Value

Stéphane Airiau

ILLC - University of Amsterdam

- We prove one property of the kernel, and we consider an algorithm to compute an element in the kernel
- We introduce a solution concept called the Shapley value.

Last week

Theorem

Let (N, v, S) a game with coalition structure, and let $\Im mp \neq \emptyset$. Then we have:

- (i) $Nu(N,v,\mathbb{S}) \subseteq K(N,v,\mathbb{S})$ Proof \checkmark
- (ii) $K(N,v,\mathbb{S}) \subseteq BS(N,v,\mathbb{S})$ Proof **X**

Proof of (ii)

Let (N,v,S) a TU game with coalition structure. Let $x \in K(N,v,S)$. We want to prove that $x \in BS(N,v,S)$. To do so, we need to show that for any objection (P,y) from any player *i* against any player *j* at *x*, there is a counter objection (Q,z) to (P,y). For the bargaining set, An **objection of** *i* **against** *j* is a pair (P,y) where

• $P \subseteq N$ is a coalition such that $i \in P$ and $j \notin P$.

• $y \in \mathbb{R}^p$ where *p* is the size of *P*

• $y(P) \leq v(P)$ (y is a feasible payoff for members of *P*)

• $\forall k \in P, y_k \ge x_k \text{ and } y_i > x_i$

An **counter-objection to** (P, y) is a pair (Q, z) where

• $Q \subseteq N$ is a coalition such that $j \in Q$ and $i \notin Q$.

•
$$z \in \mathbb{R}^q$$
 where q is the size of Q

• $z(Q) \leq v(Q)$ (z is a feasible payoff for members of Q)

•
$$\forall k \in Q, z_k \ge x_k$$

• $\forall k \in Q \cap P \ z_k \ge y_k$

Proof of (ii)

Let (P, y) be an objection of player *i* against player *j* to *x*. $i \in P$, $j \notin P$, $y(P) \leq v(P)$ and y(P) > x(P). We choose y(P) = v(P).

- $x_j = v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_i > v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{ii}(x) \ge s_{ij}(x) \ge v(P) - x(P) \ge y(P) - x(P)$ since $i \in P, j \notin P$. Let $Q \subseteq N$ such that $j \in Q$, $i \notin Q$ and $s_{ji}(x) = v(Q) - x(Q)$. We have $v(Q) - x(Q) \ge y(P) - x(P)$. Then, we have

$$\begin{aligned} v(Q) & \ge & y(P) + x(Q) - x(P) \\ & \ge & y(P \cap Q) + y(P \setminus Q) + x(Q \setminus P) - x(P \setminus Q) \\ & > & y(P \cap Q) + x(Q \setminus P) \text{ since } i \in P \setminus Q, \ y(P \setminus Q) > x(P \setminus Q) \end{aligned}$$

Let us define z as follows
$$\begin{cases} x_k \text{ if } k \in Q \setminus P \\ y_k \text{ if } k \in Q \cap P \\ (Q,z) \text{ is a counter-objection to } (P,y). \checkmark$$

Finally $x \in BS(N,v,S).$

Computing a kernel-stable payoff distribution

- There is a transfer scheme converging to an element in the kernel.
- It may require an infinite number of small steps.
- We can consider the ϵ -kernel where the inequality are defined up to an arbitrary small constant ϵ .

R. E. Stearns. Convergent transfer schemes for n-person games. Transactions of the American Mathematical Society, 1968.

Computing a kernel-stable payoff distribution

Algorithm 1: Transfer scheme converging to a ϵ -Kernelstable payoff distribution for the CS S

compute- ϵ -Kernel-Stable(N, v, S, ϵ) repeat **for** each coalition $C \in S$ **do** $\begin{array}{l} \text{for each member } (i,j) \in \mathbb{C}, i \neq j \text{ do } // \text{ compute the maximum surplus} \\ // \text{ for two members of a coalition in S} \\ s_{ij} \leftarrow \max_{R \subseteq N | (i \in R, j \notin R)} v(R) - x(R) \end{array}$ $\delta \leftarrow \max_{(i,j) \in \mathbb{C}^2, \mathbb{C} \in \mathbb{S}} s_{ij} - s_{ji};$ $(i^{\star}, j^{\star}) \leftarrow \operatorname{argmax}_{(i,i) \in N^2} (s_{ij} - s_{ji});$ if $(x_{j\star} - v(\{j\}) < \frac{\delta}{2})$ then // payment should be individually rational $| \hat{d} \leftarrow x_{i^{\star}} - v(\{i^{\overline{\star}}\});$ else $d \leftarrow \frac{\delta}{2};$ $\begin{array}{l} x_{i^{\star}} \leftarrow x_{i^{\star}} + d; \\ x_{j^{\star}} \leftarrow x_{j^{\star}} - d; \end{array}$ until $\frac{\delta}{v(S)} \leq \epsilon$;

- The complexity for one side-payment is $O(n \cdot 2^n)$.
- Upper bound for the number of iterations for converging to an element of the ϵ -kernel: $n \cdot log_2(\frac{\delta_0}{\epsilon \cdot n(S)})$, where δ_0 is the maximum surplus difference in the initial payoff distribution.
- To derive a polynomial algorithm, the number of coalitions must be bounded. For example, only consider coalitions which size is bounded in $[K_1, K_2]$. The complexity of the truncated algorithm is $O(n^2 \cdot n_{coalitions})$ where $n_{coalitions}$ is the number of coalitions with size in $[K_1, K_2]$, which is a polynomial of order K_2 .

• M. Klusch and O. Shehory. A polynomial kernel-oriented coalition algorithm for rational information agents. In Proceedings of the Second International Conference on Multi-Agent Systems, 1996.

• O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous agents in non-superadditve environments. Computational Intelligence, 1999.

- We saw another way to use the excess to make objections and counter-objections.
- We defined the kernel.
- We proved that both the kernel and the bargaining set are non-empty if the set of imputations is non-empty.
- If the set of imputations is non-empty, the nucleolus, pros: kernel, bargaining set are non-empty.
- There is an algorithm to compute a payoff in the kernel. cons: The algorithm is not polynomial

The Shapley value

Lloyd S. Shapley. A Value for n-person Games. In Contributions to the Theory of Games, volume II (Annals of Mathematical Studies), 1953.

Definition (marginal contribution)

The **marginal contribution** of agent *i* for a coalition $\mathcal{C} \subseteq N \setminus \{i\}$ is $mc_i(\mathcal{C}) = v(\mathcal{C} \cup \{i\}) - v(\mathcal{C})$.

 $\langle mc_1(\emptyset), mc_2(\{1\}), mc_3(\{1,2\}) \rangle$ is an efficient payoff distribution for any game ($\{1,2,3\}, v$). This payoff distribution may model a dynamic process in which 1 starts a coalition, is joined by 2, and finally 3 joins the coalition $\{1,2\}$, and where the incoming agent gets its marginal contribution.

An agent's payoff depends on which agents are already in the coalition. This payoff may not be **fair**. To increase fairness,one could take the average marginal contribution over all possible joining orders.

Let σ represent a joining order of the grand coalition *N*, i.e., σ is a permutation of $\langle 1, ..., n \rangle$.

We write $mc(\sigma) \in \mathbb{R}^n$ the payoff vector where agent *i* obtains $mc_i(\{\sigma(j) | j < i\})$. The vector *mc* is called a **marginal vector**.

Let (N, v) be a TU game. Let $\Pi(N)$ denote the set of all permutations of the sequence $\langle 1, \ldots, n \rangle$.

$$Sh(N,v) = rac{\displaystyle\sum_{\sigma \in \Pi(N)} mc(\sigma)}{n!}$$

the Shapley value is a fair payoff distribution based on marginal contributions of agents averaged over joining orders of the coalition.

An example

$N = \{1, 2, 3\}, v(\{1\}) = 0, v(\{2\}) = 0, v(\{3\}) = 0,$							
$v(\{1,2\}) = 90, v(\{1,3\}) = 80, v(\{2,3\}) = 70,$							
$v(\{1,2,3\}) = 120.$							
	1			T . 1 /	FO 40 20)		
	1	2	3	Let $y = \langle x \rangle$	Let $y = \langle 50, 40, 30 \rangle$		
$1 \leftarrow 2 \leftarrow 3$	0	90	30	C	$e(\mathcal{C}, x)$	$e(\mathcal{C},y)$	
$1 \gets 3 \gets 2$	0	40	80	{1}	-45	0	
$2 \gets 1 \gets 3$	90	0	30	{2}	-40	0	
$2 \gets 3 \gets 1$	50	0	70	{3}	-35	0	
$3 \gets 1 \gets 2$	80	40	0	{1,2}	5	0	
$3 \leftarrow 2 \leftarrow 1$	50	70	0	{1,3}	0	0	
total	270	240	210	{2,3}	-5	0	
Shapley value	45	40	35	{1,2,3}	120	0	

This example shows that the Shapley value may not be in the core, and may not be the nucleolus.

- There are $|\mathcal{C}|!$ permutations in which all members of \mathcal{C} precede *i*.
- There are $|N \setminus (\mathcal{C} \cup \{i\})|!$ permutations in which the remaining members succede *i*, i.e. $(|N| - |\mathcal{C}| - 1)!$.

The Shapley value $Sh_i(N, v)$ of the TU game (N, v) for player *i* can also be written

$$Sh_i(N,v) = \sum_{\mathfrak{C} \subseteq N \setminus \{i\}} \frac{|\mathfrak{C}|!(|N| - |\mathfrak{C}| - 1)!}{|N|!} \left(v(\mathfrak{C} \cup \{i\}) - v(\mathfrak{C}) \right).$$

Using definition, the sum is over $2^{|N|-1}$ instead of |N|!.

Definition (value function)

Let \mathcal{G}_N the set of all TU games (N, v). A value func**tion** ϕ is a function that assigns to each TU game (*N*,*v*) an efficient allocation, i.e. $\phi: \mathcal{G}_N \to \mathbb{R}^{|N|}$ such that $\phi(N,v)(N) = v(N).$

- The Shapley value is a value function.
- None of the concepts presented thus far were a value function (the nucleolus is guaranteed to be non-empty only for games with a non-empty set of imputations).

Let (N, v) and (N, u) be TU games and ϕ be a value function.

- Symmetry or substitution (SYM): If $\forall (i,j) \in N$, $\forall \mathcal{C} \subseteq N \setminus \{i, j\}, v(\mathcal{C} \cup \{i\}) = v(\mathcal{C} \cup \{j\}) \text{ then } \phi_i(N, v) = \phi_i(N, v)$
- **Dummy (DUM):** If $\forall \mathcal{C} \subset N \setminus \{i\} v(\mathcal{C}) = v(\mathcal{C} \cup \{i\})$, then $\phi_i(N,v) = 0.$
- **Additivity (ADD):** Let (N, u + v) be a TU game defined by $\forall \mathcal{C} \subseteq N$, (u+v)(N) = u(N) + v(N). $\Phi(u+v) = \Phi(u) + \Phi(v).$

Theorem

The Shapley value is the unique value function ϕ that satisfies (SYM), (DUM) and (ADD).

Let *N* be a set of agents and $T \subseteq N \setminus \emptyset$. The **unanimity game** (N, v_T) is defined as follows: $\forall \mathcal{C} \subseteq N, v_T(\mathcal{C}) = \begin{cases} 1, \text{ if } T \subseteq \mathcal{C}, \\ 0 \text{ otherwise.} \end{cases}$

We note that

- if $i \in N \setminus T$, *i* is a null player.
- if $(i,j) \in T^2$, *i* and *j* are substitutes.

Lemma

The set $\{v_T \mid T \subseteq N \setminus \emptyset\}$ is a linear basis of \mathcal{G}_N .

This means that a TU game (N, v) can be represented by a unique set of values $(\alpha_T)_{T \subseteq N \setminus \emptyset}$ such that

$$\forall \mathfrak{C} \subseteq N, v(\mathfrak{C}) = \left(\sum_{T \subseteq N \setminus \emptyset} \alpha_T v_T\right)(\mathfrak{C}).$$

There are $2^n - 1$ unanimity games and the dimension of \mathcal{G}_N is also $2^n - 1$.

We only need to prove that the unanimity games are linearly independent.

Towards a contradiction, let us assume that $\sum_{T \subseteq N \setminus \emptyset} \alpha_T v_T = 0$ where $(\alpha_T)_{T \subseteq N \setminus \emptyset} \neq 0_{\mathbb{R}^{2^n}-1}$. Let T_0 be a minimal set in $\{T \subseteq N \mid \alpha_T \neq 0\}$. Then, $\left(\sum_{T\subseteq N\setminus\emptyset} \alpha_T v_T\right)(T_0) = \alpha_{T_0} \neq 0$, which is a contradiction.

Let ϕ a feasible solution on \mathcal{G}_N that is non-empty and satisfies the axioms SYM, DUM and ADD. Let us prove that ϕ is a value function.

Let $(Nv,) \in \mathcal{G}_N$.

- if v = 0_{S_N}, all players are dummy. Since the solution is non-empty, 0^{ℝ^{|N|}} is the unique member of φ(N,v).
- otherwise, $(N, -v) \in \mathcal{G}_N$. Let $x \in \phi(N, v)$ and $y \in \phi(N, -v)$. By ADD, $x + y \in \phi(v - v)$, and then, x = -y is unique. Moreover, $x(N) \leq v(N)$ as ϕ is a feasible solution. Also $y(N) \leq -v(N)$. Since x = -y, we have $v(N) \leq x(N) \leq v(N)$, i.e. x is efficient.

Hence, ϕ is a value function.

Let $T \subseteq N \setminus \emptyset$ and $\alpha \in \mathbb{R}$. Let us prove that $\phi(N, \alpha \cdot v_T)$ is uniquely defined.

- Let $i \notin T$. We have trivially $T \subseteq C$ iff $T \subseteq C \cup \{i\}$. Then $\forall C \subseteq N \setminus \{i\}, \ \alpha v_T(C) = \alpha v_T(C \cup \{i\})$.Hence, all agent $i \notin T$ are dummies. By DUM, $\forall i \notin T, \ \phi_i(N, \alpha \cdot v_T) = 0$.
- Let $(i,j) \in T^2$. Then for all $\mathbb{C} \subseteq N \setminus \{i,j\}$, $v(\mathbb{C} \cup \{i\}) = v(\mathbb{C} \cup \{j\})$. By SYM, $\phi_i(N, \alpha \cdot v_T) = \phi_j(N, \alpha \cdot v_T)$.
- Since ϕ is a value function, it is efficient. Then, $\sum_{i \in N} \phi_i(N, \alpha \cdot v_T) = \alpha v_T(N) = \alpha.$ Hence, $\forall i \in T$, $\phi_i(N, \alpha \cdot v_T) = \frac{\alpha}{|T|}$.

This proves that $\phi(N, \alpha \cdot v_T)$ is uniquely defined. Since any TU game (N, v) can be written as $\sum_{T \subseteq N \setminus \emptyset} \alpha_T v_T$ and because of ADD, there is a unique value function that satisfies the three axioms.

We need to show that the Shapley value satisfies the three axioms. Let (N, v) a TU game.

- Let us assume that $\forall C \subseteq N \setminus \{i, j\}$, we have $v(\mathcal{C} \cup \{i\}) = v(\mathcal{C} \cup \{j\})$. Then $\forall \mathcal{C} \subseteq N \setminus \{i, j\}$, we have
 - $mc_i(\mathcal{C}) = mc_i(\mathcal{C})$
 - $v(\mathcal{C} \cup \{i, j\}) v(\mathcal{C} \cup \{i\}) = v(\mathcal{C} \cup \{i, j\}) v(\mathcal{C} \cup \{j\})$, hence, we have $mc_i(\mathcal{C} \cup \{j\}) = mc_i(\mathcal{C} \cup \{i\})$.
 - \Rightarrow Sh_i(N,v) = Sh_i(N,v), Sh satisfies SYM.
- Let us assume there is an agent *i* such that for all $\mathcal{C} \subseteq N \setminus \{i\}$ we have $v(\mathcal{C}) = v(\mathcal{C} \cup \{i\})$. Then, each marginal contribution of player *i* is zero, and it follows that $Sh_i(N,v) = 0$. Sh satisfies DUM.
- *Sh* is clearly additive.

1

• Voting games and power indices.