

Let (N, v) be a simple game. A player $i \in N$ is a **dictator** iff $\{i\}$ is a winning coalition.

Note that with the requirements of simple games, it is possible to have more than one dictator!

Definition (Veto Player)

Let (N, v) be a simple game. A player $i \in N$ is a **veto** player if $N \setminus \{i\}$ is a losing coalition. Alternatively, *i* is a **veto** player iff for all winning coalition C, $i \in C$. It also follows that a veto player is member of every minimal winning coalitions.

Definition (blocking coalition)

A coalition $\mathcal{C} \subseteq N$ is a **blocking coalition** iff \mathcal{C} is a losing coalition and $\forall S \subseteq N \setminus \mathcal{C}$, $S \setminus \mathcal{C}$ is a losing coalition.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 13)

Example

Unanimity requires that $\sum_{i \in N} w_i \ge q$. If we assume that $\forall i \in N \ w_i \ge 0$, monotonicity is guaranteed. For the rest of the lecture, we will assume $w_i \ge 0$.

We will note a weighted voting game $(N, w_{i \in N}, q)$ as $[q; w_1, \ldots, w_n]$

A weighted voting game is a succint representation, as we only need to define a weight for each agent and a threshold.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 14

Stéphane Airiau (ILLC) - Cooperative Games

Shapley-Shubik power index

Definition (Pivotal or swing player) Let (N, v) be a simple game. A agent *i* is **pivotal** or a **swing agent** for a coalition $\mathcal{C} \subseteq N \setminus \{i\}$ if agent *i* turns the coalition \mathcal{C} from a losing to a winning coalition by joining \mathcal{C} , i.e., $v(\mathcal{C}) = 0$ and $v(\mathcal{C} \cup \{i\}) = 1$.

Given a **permutation** σ on *N*, there is a single pivotal agent.

The Shapley-Shubik index of an agent i is the percentage of permutation in which i is pivotal, i.e.

$$I_{SS}(N, v, i) = \sum_{\mathfrak{C} \subset N \setminus \{i\}} \frac{|\mathfrak{C}|! (|N| - |\mathcal{C}| - 1)!}{|N|!} \left(v(\mathfrak{C} \cup \{i\}) - v(\mathfrak{C}) \right).$$

"For each permutation, the pivotal player gets a point."

The Shapley-Shubik power index is the Shapley value. The index corresponds to the expected marginal utility assuming all join orders to form the grand coalitions are equally likely.

Stéphane Airiau (ILLC) - Cooperative Game

ire 8: Simple Games 21

Lecture 8: Simple Games 19

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 24

Lecture 8: Simple Games 22

⇐ Let (N, v_V) a unanimity game. Let us prove it is a convex game. Let $S \subseteq N$ and $T \subseteq N$, and we want to prove that $v(S) + v(T) \leq v(S \cup T) + v(S \cap T)$.

> • if $V \subseteq S$ then $V \not\subseteq T$ and $1 \leq 1 \checkmark$ • if $V \subseteq T$ then $V \not\subseteq S$ and $1 \leq 1 \checkmark$

In addition, all members of V are veto players.

Convex simple games are the games with a single minimal

• case $V \not\subseteq S \cap T \land V \subseteq S \cup T$:

• case $V \not\subseteq S \cup T$: then $0 \leq 0 \checkmark$

unanimity game is convex.

• case $V \subseteq S \cap T$: Then $V \subseteq S$ and $V \subseteq T$, and we have $2 \leq 2 \checkmark$

 \circ otherwise $V \not\subseteq S$ and $V \not\subseteq T$, and then $0 \leq 1 \checkmark$

П

Lecture 8: Simple Games 20

For all cases, $v(S) + v(T) \le v(S \cup T) + v(S \cap T)$, hence a

The index corresponds to the expected marginal utility assuming all coalitions are equally likely.

Stéphane Airiau (ILLC) - Cooperative Games

(continuation)

winning coalition.

Stéphane Airiau (ILLC) - Cooperative Games

- Maybe only minimal winning coalitions are important to measure the power of an agent (non-minimal winning coalitions may form, but only the minimal ones are important to measure power).
- Let (N,v) be a simple game, $i \in N$ be an agent. $\mathcal{M}(N,v)$ denotes the set of minimal winning coalitions, $\mathcal{M}_i(N,v)$ denotes the set of minimal winning coalitions containing *i*.
- The **Deegan-Packel** power index of player *i* is:

$$I_{DP}(N,v,i) = rac{1}{|\mathcal{M}(N,v)|} \sum_{\mathcal{C}\in\mathcal{M}_i(N,v)} rac{1}{|\mathcal{C}|}.$$

• The **public good index** of player *i* is defined as

$$I_{PG}(N,v,i) = \frac{|\mathcal{M}_i(N,v)|}{\sum_{j \in N} |\mathcal{M}_j(N,v)|}$$

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 25

[4; 3, 2, 1, 1]					[5; 3, 2, 1, 1]				
$W = \begin{cases} \\ \\ \end{cases}$	{ <mark>1</mark> ,	{1,2},{1, 2,3},{1,2 { <mark>2,3,4</mark> },{	<mark>3</mark> },{1,4}, ,4},{1,3, 1,2,3,4}}	4}, } %	?= {	{1,2},{1, {1,3,4]	. <mark>2,</mark> 3}, },{1,2	,{ <mark>1,2</mark> 2,3,4	,4}, }}
$\mathcal{M} = \{\{1, \dots, n\}\}$,2},{	1,3},{1,4	},{2,3,4}	-} M	$l = \{\{1,\}\}$	2},{1,3,4	1 }}		_
	1	2	3	4		1	2	3	4
β	68	28	28	28	β	5	38	1 8	$\frac{1}{8}$
I_B	6 12	2 12	2 12	2 12	IB	5 10	$\frac{3}{10}$	1 10	$\frac{1}{10}$
Pact		$\frac{8}{16} = \frac{1}{2}$				5 16			
Pprevent	68	28	28	28	Pprevent	5	35	1 5	1 5
Pinit	68	28	28	28	Pinit	5 11	3 11	111	111
I _{DP}	$\frac{1}{4} \cdot \frac{3}{2}$	$\frac{1}{4} \cdot (\frac{1}{2} + \frac{1}{3})$	$\frac{1}{4} \cdot (\frac{1}{2} + \frac{1}{3})$	$\frac{1}{4} \cdot \left(\frac{1}{2} + \frac{1}{3}\right)$	I _{DP}	$\frac{1}{2} \cdot (\frac{1}{2} + \frac{1}{3})$	$\frac{1}{2} \cdot \frac{1}{2}$	$\frac{1}{2} \cdot \frac{1}{3}$	$\frac{1}{2} \cdot \frac{1}{2}$
I_{PG}	3	29	2	2	I _{PG}	25	1 5	1 5	1 5

Lecture 8: Simple Games 26

Stéphane Airiau (ILLC) - Cooperative Games

