On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
	0000

KERNEL STABLE COALITION FORMATION

Bardia Khalesi, Magnus Nord

May 17, 2010

KERNEL STABLE COALITION FORMATION

Bardia Khalesi, Magnus Nord

(日)

	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
000	0000	000
		0000

General

Introduction KCA algorithm

- On safe kernel stable coalition forming among agents Introduction Properties of the KCA
- 3 Feasible Formation of Coalitions in NonSuperAdditive Environments

Introduction DEK-CFM Protocol Truncated Transfer Scheme DNPK-CFM Protocol

Conclusion

General ●00 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{_{\circ\circ\circ\circ\circ}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Introducti	on	

• Formation of kernel stable coalitions

イロト イヨト イヨト イ

KERNEL STABLE COALITION FORMATION

General ●oo ○oo	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Introducti	00	

- Formation of kernel stable coalitions
 - KCA algorithm

メロト メポト メヨト メヨト

Gene o●o ooo	ral On safe kernel stable coalition forming among agents o ocoo	Feasible Formation of Coalitions in NonSuperAdditive Environments
Intro	luction	

• Local value or *lworth*_a(*C*) of an agent a is the sum of the self-worth and the marginal contribution to the coalition *C*.

Gene o●o ooo	ral On safe kernel stable coalition forming among agents o ocoo	Feasible Formation of Coalitions in NonSuperAdditive Environments
Intro	luction	

• Local value or *lworth*_a(*C*) of an agent a is the sum of the self-worth and the marginal contribution to the coalition *C*.

Gene o●o ooo	ral On safe kernel stable coalition forming among agents o ocoo	Feasible Formation of Coalitions in NonSuperAdditive Environments
Intro	luction	

- Local value or *lworth_a*(*C*) of an agent a is the sum of the self-worth and the marginal contribution to the coalition *C*.
- Non-super-additive Games

Gene o●o ooo	ral On safe kernel stable coalition forming among agents o ocoo	Feasible Formation of Coalitions in NonSuperAdditive Environments
Intro	luction	

Overview

- Local value or *lworth*_a(*C*) of an agent a is the sum of the self-worth and the marginal contribution to the coalition *C*.
- Non-super-additive Games
 - At least one pair of potential coalitions are not better off by merging

General ○●○ ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

- Local value or *lworth_a(C)* of an agent a is the sum of the self-worth and the marginal contribution to the coalition C.
- Non-super-additive Games
 - At least one pair of potential coalitions are not better off by merging
 - Costly to increase the amount of members in a coalition

Gene ○○● ○○○	ral On safe kernel stable coalition forming among agents o oooo	Feasible Formation of Coalitions in NonSuperAdditive Environments
Introd	uction	

Kernel

- Why the kernel?
 - Will not be empty

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Kernel

- Why the kernel?
 - Will not be empty
 - Handles agent symmetry

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Kernel

- Why the kernel?
 - Will not be empty
 - · Handles agent symmetry
 - · Significantly smaller than bargaining set

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Kernel

- Why the kernel?
 - · Will not be empty
 - Handles agent symmetry
 - · Significantly smaller than bargaining set
 - · Easier to compute

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

- Why the kernel?
 - · Will not be empty
 - Handles agent symmetry
 - · Significantly smaller than bargaining set
 - · Easier to compute
 - · Compatible with other agents

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

- Why the kernel?
 - Will not be empty
 - · Handles agent symmetry
 - · Significantly smaller than bargaining set
 - · Easier to compute
 - · Compatible with other agents
- Kernel consists of configurations which are in equilibrium

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

- Why the kernel?
 - Will not be empty
 - · Handles agent symmetry
 - · Significantly smaller than bargaining set
 - · Easier to compute
 - · Compatible with other agents
- Kernel consists of configurations which are in equilibrium
 - Equilibrium Conditions:

•
$$s_{ij} = s_{ji}$$

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

- Why the kernel?
 - · Will not be empty
 - · Handles agent symmetry
 - · Significantly smaller than bargaining set
 - · Easier to compute
 - · Compatible with other agents
- · Kernel consists of configurations which are in equilibrium
 - Equilibrium Conditions:

•
$$s_{ij} = s_{ji}$$

•
$$s_{ij} > s_{ji}, u_j = v(A_j)$$

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Kernel

- Why the kernel?
 - · Will not be empty
 - · Handles agent symmetry
 - · Significantly smaller than bargaining set
 - · Easier to compute
 - · Compatible with other agents
- · Kernel consists of configurations which are in equilibrium
 - Equilibrium Conditions:
 - $s_{ij} = s_{ji}$
 - $s_{ij} > s_{ji}, u_j = v(A_j)$
 - $s_{jj} < s_{ij}, u_j = v(A_j)$

< 口 > < 同 > < 臣 > < 臣 >

General ○○● ○○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Kernel

- Why the kernel?
 - Will not be empty
 - · Handles agent symmetry
 - · Significantly smaller than bargaining set
 - · Easier to compute
 - · Compatible with other agents
- · Kernel consists of configurations which are in equilibrium
 - Equilibrium Conditions:
 - $s_{ij} = s_{ji}$
 - $s_{ij} > s_{ji}, u_j = v(A_j)$
 - $s_{jj} < s_{ij}, u_j = v(A_j)$
 - Pareto optimality is insufficient for the evaluation of possible coalitions.

General ○○○ ●○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

Communication

1 Every agent is coalition leader in its singelton coalition

ъ

General ○○○ ●○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

Communication

- Every agent is coalition leader in its singelton coalition
- 2 Send and receive tasks from all other agents

General ○○○ ●○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

Communication

- Every agent is coalition leader in its singelton coalition
- 2 Send and receive tasks from all other agents
- 3 Send and receive evaluations of the tasks

< 口 > < 同 > < 臣 > < 臣 >

General ○○○ ●○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}}{\overset{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\overset{\text{O}}}{\overset{\overset{\text{O}}}}{\overset{\overset{\text{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}}{\overset{O}}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}}{\overset{O}}}{\overset{O}}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}}}}}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

Communication

- Every agent is coalition leader in its singelton coalition
- 2 Send and receive tasks from all other agents
- 3 Send and receive evaluations of the tasks
- For all possible coalitions: evaluate *lworth_a(C)* and send to all agents

General ○○○ ●○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

Communication

- Every agent is coalition leader in its singelton coalition
- 2 Send and receive tasks from all other agents
- 3 Send and receive evaluations of the tasks
- For all possible coalitions: evaluate *lworth_a(C)* and send to all agents
- 5 Receive all local values from all other agents

General ○○○ ●○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

Communication

- Every agent is coalition leader in its singelton coalition
- 2 Send and receive tasks from all other agents
- 3 Send and receive evaluations of the tasks
- For all possible coalitions: evaluate *lworth_a(C)* and send to all agents
- **5** Receive all local values from all other agents
- Generating Proposals
 - 1 If the agent is not leader of the coalition, 4.3.

General ○○○ ●○○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

Communication

- Every agent is coalition leader in its singelton coalition
- 2 Send and receive tasks from all other agents
- 3 Send and receive evaluations of the tasks
- For all possible coalitions: evaluate *lworth_a(C)* and send to all agents
- **5** Receive all local values from all other agents
- Generating Proposals
 - 1 If the agent is not leader of the coalition, 4.3.
 - Por each other coalition, compute a Kernel-stable configuration. Send proposal to strictly dominating coalitional configuration.

< 口 > < 同 > < 臣 > < 臣 >

General ○○○ ○●○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{_{\circ\circ\circ\circ\circ}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

- 8 Evaluating proposal
 - 1 Evaluate received proposals, choose the most beneficial

General ○○○ ○●○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{_{\circ\circ\circ\circ\circ}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

- 8 Evaluating proposal
 - Evaluate received proposals, choose the most beneficial
 - 2 Inform all leaders about accepted proposal
- Deciding coalition configuration

< □ > < 同 > < 臣 > < 臣

General ○○○ ○●○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{_{\circ\circ\circ\circ\circ}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

- 8 Evaluating proposal
 - Evaluate received proposals, choose the most beneficial
 - Inform all leaders about accepted proposal
- Deciding coalition configuration
 - Receive accepted proposals: if none was accepted, then stop

< 口 > < 同 > < 臣 > < 臣 >

General ○○○ ○●○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

- 8 Evaluating proposal
 - Evaluate received proposals, choose the most beneficial
 - Inform all leaders about accepted proposal
- Deciding coalition configuration
 - Receive accepted proposals: if none was accepted, then stop
 - Choose one configuration, by considering the order of preferences: bilateral > unilateral, biggest payoff distribution than greatest computational power.

General ○○○ ○●○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

- 8 Evaluating proposal
 - Evaluate received proposals, choose the most beneficial
 - Inform all leaders about accepted proposal
- Deciding coalition configuration
 - Receive accepted proposals: if none was accepted, then stop
 - Choose one configuration, by considering the order of preferences: bilateral > unilateral, biggest payoff distribution than greatest computational power.

Inform all coalition members about new configuration

General ○○○ ○●○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

- 3 Evaluating proposal
 - Evaluate received proposals, choose the most beneficial
 - 2 Inform all leaders about accepted proposal
- Deciding coalition configuration
 - Receive accepted proposals: if none was accepted, then stop
 - 2 Choose one configuration, by considering the order of preferences: bilateral > unilateral, biggest payoff distribution than greatest computational power.

3 Inform all coalition members about new configuration A New coalition leader is the agent with the highest computational power. The other coalition leaders are informed about the new leader

General ○○○ ○●○	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

- 8 Evaluating proposal
 - Evaluate received proposals, choose the most beneficial
 - Inform all leaders about accepted proposal
- Occiding coalition configuration
 - Receive accepted proposals: if none was accepted, then stop
 - Choose one configuration, by considering the order of preferences: bilateral > unilateral, biggest payoff distribution than greatest computational power.
 - 3 Inform all coalition members about new configuration
 - A New coalition leader is the agent with the highest computational power. The other coalition leaders are informed about the new leader
 - If grand coalition is formed, or time ends: stop. Else go back to Generating proposals

General ○○○ ○○●	On safe kernel stable coalition forming among agents $\overset{\text{O}}{_{\circ\circ\circ\circ\circ}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

• Some elements which can affect the performance

メロト メぼと メヨト メヨト

General ○○○ ○○●	On safe kernel stable coalition forming among agents $\overset{\text{O}}{_{\circ\circ\circ\circ\circ}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
KCA algo	rithm	

- Some elements which can affect the performance
 - Distribution

General ○○○ ○○●	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

- · Some elements which can affect the performance
 - Distribution
 - Communication cost

General ○○○ ○○●	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\text{O}}}{\overset{\overset{\text{O}}}{\overset{\text{O}}{\overset{\text{O}}}{\overset{\overset{\text{O}}}{\overset{\overset{\text{O}}}}{\overset{\overset{\text{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}}{\overset{O}}}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}}}{\overset{O}}}{\overset{O}}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}{\overset{O}}}}}}}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

- Some elements which can affect the performance
 - Distribution
 - Communication cost
 - · Limited computation time

イロト イポト イヨト イヨト

General ○○○ ○○●	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

- · Some elements which can affect the performance
 - Distribution
 - · Communication cost
 - · Limited computation time
- Therefore there is a trade-off between quality of solution, and speed

General ○○○ ○○●	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

- Some elements which can affect the performance
 - Distribution
 - · Communication cost
 - · Limited computation time
- Therefore there is a trade-off between quality of solution, and speed
 - Quality: payoff maximization and stability

General ○○○ ○○●	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

KCA algorithm

- Some elements which can affect the performance
 - Distribution
 - · Communication cost
 - · Limited computation time
- Therefore there is a trade-off between quality of solution, and speed
 - Quality: payoff maximization and stability
 - · Speed: efficiency and anytime algorithm

General ooo ooo	On safe kernel stable coalition forming among agents $\overset{\bullet}{\circ} \circ \circ \circ$	Feasible Formation of Coalitions in NonSuperAdditive Environments

On safe kernel stable coalition forming among agents

Investigates several properties of the KCA algorithm

General ooo ooo	On safe kernel stable coalition forming among agents $\overset{\bullet}{\circ} \circ \circ \circ$	Feasible Formation of Coalitions in NonSuperAdditive Environments

On safe kernel stable coalition forming among agents

- Investigates several properties of the KCA algorithm
 - Incomplete information

General ooo ooo	On safe kernel stable coalition forming among agents $\overset{\bullet}{\circ} \circ \circ \circ$	Feasible Formation of Coalitions in NonSuperAdditive Environments

On safe kernel stable coalition forming among agents

- Investigates several properties of the KCA algorithm
 - Incomplete information
 - · Changing agent set

Genera 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
		0000

On safe kernel stable coalition forming among agents

- Investigates several properties of the KCA algorithm
 - Incomplete information
 - · Changing agent set
 - Privacy

3

Genera 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
		0000

On safe kernel stable coalition forming among agents

- Investigates several properties of the KCA algorithm
 - Incomplete information
 - Changing agent set
 - Privacy
 - Fraud

イロト イポト イヨト イヨト

•	Feasible Formation of Coalitions in NonSuperAdditive Environments
0000	000 0 0000

On safe kernel stable coalition forming among agents

- Investigates several properties of the KCA algorithm
 - Incomplete information
 - · Changing agent set
 - Privacy
 - Fraud
- Paper contains many examples, but will skip these due to time constraints

•	Feasible Formation of Coalitions in NonSuperAdditive Environments
0000	000 0 0000

On safe kernel stable coalition forming among agents

- Investigates several properties of the KCA algorithm
 - Incomplete information
 - · Changing agent set
 - Privacy
 - Fraud
- Paper contains many examples, but will skip these due to time constraints
- Fairly general: Considers both superadditive and non-superadditive games

イロト イポト イヨト イヨト

General ooo ooo	On safe kernel stable coalition forming among agents $\overset{\circ}{\bullet} \overset{\circ}{\bullet} \overset{\circ}{\bullet}$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Incomplete information

Example: an agent does not receive the coalition value for some coalition

General ooo ooo	On safe kernel stable coalition forming among agents $\stackrel{\circ}{\bullet}_{\bullet} \stackrel{\circ}{\bullet}_{\bullet} ooo$	Feasible Formation of Coalitions in NonSuperAdditive Environments
- ··		

- Example: an agent does not receive the coalition value for some coalition
- The agent has to estimate the coalition value

eneral	On safe kernel stable coalition forming among agents $\stackrel{\circ}{\bullet}_{\bullet \circ \circ \circ}$	Feasible Formation of Coalitions in NonSuperAdditive Environments

- Example: an agent does not receive the coalition value for some coalition
- The agent has to estimate the coalition value
- This estimation can lead to the agent solving a different game, compared to the agents with complete information

eneral	On safe kernel stable coalition forming among agents $\stackrel{\circ}{\bullet}_{\bullet \circ \circ \circ}$	Feasible Formation of Coalitions in NonSuperAdditive Environments

- Example: an agent does not receive the coalition value for some coalition
- The agent has to estimate the coalition value
- This estimation can lead to the agent solving a different game, compared to the agents with complete information
- Thus reaching different outcomes

Gener 000 000	al On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
Duran		

- Example: an agent does not receive the coalition value for some coalition
- The agent has to estimate the coalition value
- This estimation can lead to the agent solving a different game, compared to the agents with complete information
- Thus reaching different outcomes
- However this still leads to a kernel-stable solution, but the agent might get less payoff.

General 000 000	On safe kernel stable coalition forming among agents $\stackrel{\circ}{\bullet}_{\bullet \circ \circ \circ}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Duran anti-		

- Example: an agent does not receive the coalition value for some coalition
- The agent has to estimate the coalition value
- This estimation can lead to the agent solving a different game, compared to the agents with complete information
- Thus reaching different outcomes
- However this still leads to a kernel-stable solution, but the agent might get less payoff.
- Coalition negotiations are safe with respect to unknown coalition values

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{\circ} \bullet \circ \circ$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Propertie	s of the KCA	

• During the negotiations agents might become unavailable (for example, network connection breaking down)

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{\circ} \bullet \circ \circ$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Propertie	s of the KCA	

- During the negotiations agents might become unavailable (for example, network connection breaking down)
- The agent will therefore not send out messages required by the protocol

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{\circ} \bullet \circ \circ$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Droportio	a of the KCA	

- During the negotiations agents might become unavailable (for example, network connection breaking down)
- The agent will therefore not send out messages required by the protocol
- The severity depends on if it is a coalition leader or member which becomes unavailable

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{\circ} \bullet \circ \circ$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Droportio	o of the KCA	

- During the negotiations agents might become unavailable (for example, network connection breaking down)
- The agent will therefore not send out messages required by the protocol
- The severity depends on if it is a coalition leader or member which becomes unavailable
- If a leader drops out, the coalition will not be send out, or receive, any proposals. In addition the other members in the coalition will not be informed about the new configuration

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{\circ} \bullet \circ \circ$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Droportio	o of the KCA	

- During the negotiations agents might become unavailable (for example, network connection breaking down)
- The agent will therefore not send out messages required by the protocol
- The severity depends on if it is a coalition leader or member which becomes unavailable
- If a leader drops out, the coalition will not be send out, or receive, any proposals. In addition the other members in the coalition will not be informed about the new configuration
- The coalition negotiation will therefore not be safe if the agent set is changing

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{\circ}_{\circ\circ\circ\circ}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Propertie	s of the KCA	

• A surprising property of the KCA algorithm, is the ability of the agents to hide their local information without any profit loss in the final configuration

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{\circ}_{\circ\circ\circ\circ}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Propertie	s of the KCA	

- A surprising property of the KCA algorithm, is the ability of the agents to hide their local information without any profit loss in the final configuration
- This is caused by an inherent property of the definition of kernel stability: an amount added to the valuation function for a coalition will be subtracted when calculating the surplus.

Genera 000 000	On safe kernel stable coalition forming among agents ○ ○ ○ ○ ○	Feasible Formation of Coalitions in NonSuperAdditive Environments
Proper	ties of the KCA	

- A surprising property of the KCA algorithm, is the ability of the agents to hide their local information without any profit loss in the final configuration
- This is caused by an inherent property of the definition of kernel stability: an amount added to the valuation function for a coalition will be subtracted when calculating the surplus.
- Therefore the local values are not required to be communicated between the agents to reach a kernel stable solution

Genera 000 000	On safe kernel stable coalition forming among agents ○ ○ ○ ○ ○	Feasible Formation of Coalitions in NonSuperAdditive Environments
Proper	ties of the KCA	

- A surprising property of the KCA algorithm, is the ability of the agents to hide their local information without any profit loss in the final configuration
- This is caused by an inherent property of the definition of kernel stability: an amount added to the valuation function for a coalition will be subtracted when calculating the surplus.
- Therefore the local values are not required to be communicated between the agents to reach a kernel stable solution
- If and only if, the local information is exclusively used to compute its self-value

Genera 000 000	On safe kernel stable coalition forming among agents ○ ○ ○ ○ ○	Feasible Formation of Coalitions in NonSuperAdditive Environments
Proper	ties of the KCA	

- A surprising property of the KCA algorithm, is the ability of the agents to hide their local information without any profit loss in the final configuration
- This is caused by an inherent property of the definition of kernel stability: an amount added to the valuation function for a coalition will be subtracted when calculating the surplus.
- Therefore the local values are not required to be communicated between the agents to reach a kernel stable solution
- If and only if, the local information is exclusively used to compute its self-value
- Therefore the coalition negotiations are safe with respect to privacy

Genera 000 000	On safe kernel stable coalition forming among agents ○ ○ ○ ○ ○	Feasible Formation of Coalitions in NonSuperAdditive Environments
Proper	ties of the KCA	

- A surprising property of the KCA algorithm, is the ability of the agents to hide their local information without any profit loss in the final configuration
- This is caused by an inherent property of the definition of kernel stability: an amount added to the valuation function for a coalition will be subtracted when calculating the surplus.
- Therefore the local values are not required to be communicated between the agents to reach a kernel stable solution
- If and only if, the local information is exclusively used to compute its self-value
- Therefore the coalition negotiations are safe with respect
 to privacy

General 000 000	On safe kernel stable coalition forming among agents ${\stackrel{\circ}{\scriptstyle\circ}}_{\circ\circ\circ\bullet}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Propertie	es of the KCA	

• Waiting to communicate *lworth*_a(*C*) until it has received all the other agent's *lworth*

General 000 000	On safe kernel stable coalition forming among agents ${\stackrel{\circ}{\scriptstyle\circ}}_{\circ\circ\circ\bullet}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Propertie	s of the KCA	

- Waiting to communicate *lworth*_a(*C*) until it has received all the other agent's *lworth*
- The fraudulent agent will be the only one which can compute all coalition values

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{}_{\circ\circ\bullet}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Propertie	es of the KCA	

- Waiting to communicate *lworth*_a(*C*) until it has received all the other agent's *lworth*
- The fraudulent agent will be the only one which can compute all coalition values
- Can not be prevented or detected

General 000 000	On safe kernel stable coalition forming among agents $\overset{\circ}{\underset{\circ}{\circ}}_{\circ\circ\circ\bullet}$	Feasible Formation of Coalitions in NonSuperAdditive Environments
Properties	s of the KCA	

- Waiting to communicate *lworth*_a(*C*) until it has received all the other agent's *lworth*
- The fraudulent agent will be the only one which can compute all coalition values
- Can not be prevented or detected
- However this is computational complex: the fraudulent agent has to check all (*O*(2^{*n*})) possible coalitions

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
Properti	es of the KCA	

- Waiting to communicate *lworth*_a(*C*) until it has received all the other agent's *lworth*
- The fraudulent agent will be the only one which can compute all coalition values
- Can not be prevented or detected
- However this is computational complex: the fraudulent agent has to check all (*O*(2^{*n*})) possible coalitions
- Other agents might become suspicious because of the delay in the deceiving agent's communication

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Environment Description

- Distributed AI:
 - Cooperative Distributed Problem Solving(CDPS)→ distribution of required effort for solving a particular problem among a number of modules(or nodes).

イロト イ理ト イヨト イヨ

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments ●○○ ○○○ ○○○ ○○○

Environment Description

- Distributed AI:
 - Cooperative Distributed Problem Solving(CDPS)→ distribution of required effort for solving a particular problem among a number of modules(or nodes).
 - Multiagent Systems (MAS)→ coordinating intelligent behavior among autonomous, heterogeneous, intelligent agents.

General ooo ooo	On safe kernel stable coalition forming among agents o	Feasible Formation of Coalitions in NonSuperAdditive Environments ●○○ ○○○ ○○○ ○○○

Environment Description

- Distributed AI:
 - Cooperative Distributed Problem Solving(CDPS)→ distribution of required effort for solving a particular problem among a number of modules(or nodes).
 - Multiagent Systems (MAS)→ coordinating intelligent behavior among autonomous, heterogeneous, intelligent agents.
- Protocols:
 - Any interaction among agents requires some protocols. As more protocols are enforced on the agents, communication usually decreases. Yet the protocols may be contradictory to the rationality of an individual agent.
 - Any deviation from the protocols must be revealable and penalizable, or the protocols must be self-enforced.
 - Some constrains are needed to avoid an endless loop of rejected proposals for coalition formation.

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●○ ○○○ ○○○ ○○○

Environment Description

- Strategies:
 - the method that agents employ to handle proposals, such as increasing the payoff or satisfying an equilibrium requirement.

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●○ ○○○ ○○○ ○○○

Environment Description

- Strategies:
 - the method that agents employ to handle proposals, such as increasing the payoff or satisfying an equilibrium requirement.
- Equilibrium:
 - Nash Equilibrium
 - Approach 1: High computations, thus vast increase in the complexity of the model.

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●○ ○ ○ ○ ○ ○

Environment Description

- Strategies:
 - the method that agents employ to handle proposals, such as increasing the payoff or satisfying an equilibrium requirement.
- Equilibrium:
 - Nash Equilibrium
 - Approach 1: High computations, thus vast increase in the complexity of the model.
 - Approach 2: Bounded rationality leads to approximations which is not satisfactory due to existence of better decisions.

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●○ ○ ○ ○ ○ ○

Environment Description

- Strategies:
 - the method that agents employ to handle proposals, such as increasing the payoff or satisfying an equilibrium requirement.
- Equilibrium:
 - Nash Equilibrium
 - Approach 1: High computations, thus vast increase in the complexity of the model.
 - Approach 2: Bounded rationality leads to approximations which is not satisfactory due to existence of better decisions.
 - Approach 3: Time-bounded equilibrium → By belief of maximizing the expected utility with respect to a bounded computation time of a strategy.

イロト イポト イヨト イヨト

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\circ} \overset{\text{O}}{\circ} $	Feasible Formation of Coalitions in NonSuperAdditive Environments

Definitions

- Payment Configuration (**PC**(**U**,**C**)):
 - **U** =< *u*₁, *u*₂, ..., *u*_n >, where *u*_i is the payoff to *A*_i

3

イロト イポト イヨト イヨト

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\circ} \overset{\text{O}}{\circ} $	Feasible Formation of Coalitions in NonSuperAdditive Environments

Definitions

- Payment Configuration (**PC**(**U**, **C**)):
 - $\mathbf{U} = \langle u_1, u_2, ..., u_n \rangle$, where u_i is the payoff to A_i
 - $\mathbf{C} = \{C_i\}$, where $\cup_i C_i = N; \forall C_i, C_j; C_i \neq C_j; C_i \cap C_j = \emptyset$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\circ} \overset{\text{O}}{\circ} $	Feasible Formation of Coalitions in NonSuperAdditive Environments

Definitions

- Payment Configuration (**PC**(**U**, **C**)):
 - **U** =< *u*₁, *u*₂, ..., *u*_n >, where *u*_i is the payoff to *A*_i
 - $\mathbf{C} = \{C_i\}$, where $\cup_i C_i = N$; $\forall C_i, C_j$; $C_i \neq C_j$; $C_i \cap C_j = \emptyset$
- Coalitional Configuration Space (**CCS**): $\{\mathbf{C} | \forall C_i \in \mathbf{C}, V(C_i) \ge \sum_{A_i \in C_i} V(A_i)\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Definitions

- Payment Configuration (**PC**(**U**, **C**)):
 - **U** =< *u*₁, *u*₂, ..., *u*_n >, where *u*_i is the payoff to *A*_i
 - $\mathbf{C} = \{C_i\}$, where $\cup_i C_i = N; \forall C_i, C_j; C_i \neq C_j; C_i \cap C_j = \emptyset$
- Coalitional Configuration Space (**CCS**): $\{\mathbf{C} | \forall C_i \in \mathbf{C}, V(C_i) \ge \sum_{A_i \in C_i} V(A_i)\}$
- Payment Configuration Space (PCS) consists of pairs $(\boldsymbol{U},\boldsymbol{C})$ where \boldsymbol{U} is individually rational and $\boldsymbol{C}\in\boldsymbol{CCS}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Definitions

- Payment Configuration (**PC**(**U**, **C**)):
 - **U** =< *u*₁, *u*₂, ..., *u*_n >, where *u*_i is the payoff to *A*_i
 - $\mathbf{C} = \{C_i\}$, where $\cup_i C_i = N; \forall C_i, C_j; C_i \neq C_j; C_i \cap C_j = \emptyset$
- Coalitional Configuration Space (**CCS**): $\{\mathbf{C} | \forall C_i \in \mathbf{C}, V(C_i) \ge \sum_{A_i \in C_i} V(A_i)\}$
- Payment Configuration Space (PCS) consists of pairs $(\boldsymbol{U},\boldsymbol{C})$ where \boldsymbol{U} is individually rational and $\boldsymbol{C}\in\boldsymbol{CCS}$
- PC-Error: $\mathbf{e} = max_{i,j}(\mathbf{s}_{ij} \mathbf{s}_{ji})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments

Definitions

- Payment Configuration (**PC**(**U**, **C**)):
 - **U** =< *u*₁, *u*₂, ..., *u*_n >, where *u*_i is the payoff to *A*_i
 - $\mathbf{C} = \{C_i\}$, where $\cup_i C_i = N; \forall C_i, C_j; C_i \neq C_j; C_i \cap C_j = \emptyset$
- Coalitional Configuration Space (**CCS**): $\{\mathbf{C} | \forall C_i \in \mathbf{C}, V(C_i) \ge \sum_{A_i \in C_i} V(A_i)\}$
- Payment Configuration Space (PCS) consists of pairs $(\boldsymbol{U},\boldsymbol{C})$ where \boldsymbol{U} is individually rational and $\boldsymbol{C}\in\boldsymbol{CCS}$
- PC-Error: $\mathbf{e} = max_{i,j}(\mathbf{s}_{ij} \mathbf{s}_{ji})$
- PC relative error: $\mathbf{e}_{\mathbf{r}} = \frac{\mathbf{e}}{\sum u_i}$

Genera 000 000	al On safe kernel stable coalition forming among agents O OOOO	Feasible Formation of Coalitions in NonSuperAdditive Environments

DEK-CFM Protocol

 Distributed, Exponential, Kernel-oriented Coalition-Formation Model (*DEK-CFM*) leads to a PC that is Pareto optimal and K-stable.

Genera 000 000	al On safe kernel stable coalition forming among agents O OOOO	Feasible Formation of Coalitions in NonSuperAdditive Environments

DEK-CFM Protocol

- Distributed, Exponential, Kernel-oriented Coalition-Formation Model (*DEK-CFM*) leads to a **PC** that is **Pareto optimal** and **K-stable**.
- In cases where time, communications, and computation are cheap or costless,or in cases where there is a small number of agents, *DEK-CFM* is adequate.

Genera 000 000	On safe kernel stable coalition forming among agents o oooo	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○ ○ ○ ○ ○

- Protocol:
 - compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

Genera 000 000	On safe kernel stable coalition forming among agents o oooo	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○ ○ ○ ○ ○

• Protocol:

- compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.
- 2 A_i is assigned to a unique random integer $z_i \in [1, n]$

Genera 000 000	I On safe kernel stable coalition forming among agents o oooo	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○●● ○ ○○○
	EM Brotocol	

- Protocol:

1 compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

- **2** A_i is assigned to a unique random integer $z_i \in [1, n]$

3 compute **CC**s consist of z_i coalitions.

Genera 000 000	I On safe kernel stable coalition forming among agents o oooo	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○●● ○ ○○○
	EM Brotocol	

- Protocol:

 compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

- 2 A_i is assigned to a unique random integer $z_i \in [1, n]$
- **3** compute **CC**s consist of z_i coalitions.
- 4 find a K-stable PCs of each computed CCs.

Genera 000 000	I On safe kernel stable coalition forming among agents o oooo	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○●● ○ ○○○
	EM Brotocol	

- Protocol:

 compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

- 2 A_i is assigned to a unique random integer $z_i \in [1, n]$
- **3** compute **CC**s consist of z_i coalitions.
- 4 find a K-stable PCs of each computed CCs.
- **5** list personally *Pareto optimal* **PC**s from computed **PC**s.

General 000 000	On safe kernel stable coalition forming among agents o ooco	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○ ○ ○ ○ ○
	M Protocol	

- Protocol:

 compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

2 A_i is assigned to a unique random integer $z_i \in [1, n]$

3 compute **CC**s consist of z_i coalitions.

4 find a K-stable PCs of each computed CCs.

- **5** list personally *Pareto optimal* **PC**s from computed **PC**s.
- 6 merge lists of all agents in one list and find the Pareto optimal PCs:

General 000 000	On safe kernel stable coalition forming among agents o ooco	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○ ○ ○ ○ ○
	M Protocol	

- Protocol:

 compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

2 A_i is assigned to a unique random integer $z_i \in [1, n]$

3 compute **CC**s consist of z_i coalitions.

- 4 find a K-stable PCs of each computed CCs.
- **5** list personally *Pareto optimal* **PC**s from computed **PC**s.
- 6 merge lists of all agents in one list and find the Pareto optimal PCs:
 - iteration *j*: A_i s.t. $z_i \mod 2^j = 1$ merge its list with A_k s.t. $z_k = z_i + 2^{j-1}$

General 000 000	On safe kernel stable coalition forming among agents o ooco	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○ ○ ○ ○ ○
	M Protocol	

- Protocol:

 compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

2 A_i is assigned to a unique random integer $z_i \in [1, n]$

3 compute **CC**s consist of z_i coalitions.

4 find a K-stable PCs of each computed CCs.

- **5** list personally *Pareto optimal* **PC**s from computed **PC**s.
- 6 merge lists of all agents in one list and find the Pareto optimal PCs:
 - iteration *j*: A_i s.t. $z_i \mod 2^j = 1$ merge its list with A_k s.t. $z_k = z_i + 2^{j-1}$
 - find the locally *Pareto optimal* **PC**s from the merged list and hold by the A_i with z_i mod 2^j = 1

General 000 000	On safe kernel stable coalition forming among agents o ooco	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○ ○ ○ ○ ○
	M Protocol	

- Protocol:

 compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

2 A_i is assigned to a unique random integer $z_i \in [1, n]$

3 compute **CC**s consist of z_i coalitions.

- 4 find a K-stable PCs of each computed CCs.
- **5** list personally *Pareto optimal* **PC**s from computed **PC**s.
- 6 merge lists of all agents in one list and find the Pareto optimal PCs:
 - iteration *j*: A_i s.t. $z_i \mod 2^j = 1$ merge its list with A_k s.t. $z_k = z_i + 2^{j-1}$
 - find the locally *Pareto optimal* **PC**s from the merged list and hold by the A_i with $z_i \mod 2^j = 1$
 - stop iteration if all of the agents have been approached.

General 000 000	On safe kernel stable coalition forming among agents o ooco	Feasible Formation of Coalitions in NonSuperAdditive Environments ○●● ○ ○ ○ ○ ○
	M Protocol	

- Protocol:

 compute all of the coalitions and corresponding coalitional values and transmit all of them to other agents.

2 A_i is assigned to a unique random integer $z_i \in [1, n]$

3 compute **CC**s consist of z_i coalitions.

- 4 find a K-stable PCs of each computed CCs.
- **5** list personally *Pareto optimal* **PC**s from computed **PC**s.
- 6 merge lists of all agents in one list and find the Pareto optimal PCs:
 - iteration *j*: A_i s.t. $z_i \mod 2^j = 1$ merge its list with A_k s.t. $z_k = z_i + 2^{j-1}$
 - find the locally *Pareto optimal* **PC**s from the merged list and hold by the *A_i* with *z_i* mod 2^{*j*} = 1
 - stop iteration if all of the agents have been approached.
- choose one of the found *Pareto optimal* PCs by the decision-making method

Ge 00 00	On safe kernel stable coalition forming among agents $\overset{\text{O}}{_{\circ\circ\circ\circ\circ}}$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○○○
D E	4 Ducto and	

DEK-CFM Protocol

8 transmit all the details of the calculations to other agents

KERNEL STABLE COALITION FORMATION

General 000 000	On safe kernel stable coalition forming among agents ° ° °	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○○○
	Protocol	

8 transmit all the details of the calculations to other agents

9 any deceitful PC can be detected and canceled by the received calculations.

General 000 000	On safe kernel stable coalition forming among agents ° ° °	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○○○
	Protocol	

- any deceitful PC can be detected and canceled by the received calculations.
 - complexity of the computation of coalitional values and configurations is O(nⁿ)

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○ ○

- To calculate the K-ε-stable PCs:
 - Start with a U₀

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○ ○

- To calculate the K-ε-stable PCs:
 - **1** Start with a U_0
 - **2** If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)

General 000 000	On safe kernel stable coalition forming among agents o	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○○○ ● ○○○

- To calculate the K-*ɛ*-stable **PC**s:
 - Start with a U₀
 - **2** If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)
 - **3** Calculate the demand functions with respect to U_i

General 000 000	On safe kernel stable coalition forming among agents o	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○○○ ● ○○○

- To calculate the K-*ɛ*-stable **PC**s:
 - **1** Start with a U_0
 - **2** If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)
 - Calculate the demand functions with respect to U_i
 - 4 Find the greatest d_{ij}

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○ ○

- To calculate the K-*ɛ*-stable **PC**s:
 - Start with a U₀
 - 2 If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)
 - 3 Calculate the demand functions with respect to U_i
 - Find the greatest d_{ij}
 - **5** Pass part α , $0 < \alpha \leq d_{ij}$ of **U**_i of one agent to another agents

General 000 000	On safe kernel stable coalition forming among agents o	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○○○ ● ○○○

- To calculate the K-*ɛ*-stable **PC**s:
 - Start with a U₀
 - 2 If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)
 - 3 Calculate the demand functions with respect to U_i
 - 4 Find the greatest d_{ii}
 - **5** Pass part α , $0 < \alpha \leq d_{ii}$ of U_i of one agent to another agents
 - 6 Form **U**_{*i*+1}

General 000 000	On safe kernel stable coalition forming among agents o	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○○○ ● ○○○

- To calculate the K-*ɛ*-stable **PC**s:
 - Start with a U₀
 - 2 If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)
 - 3 Calculate the demand functions with respect to U_i
 - 4 Find the greatest d_{ii}
 - **5** Pass part α , $0 < \alpha \leq d_{ij}$ of **U**_i of one agent to another agents
 - 6 Form **U**_{*i*+1}
 - **7** If $\mathbf{e}_{\mathbf{r}} \leq \varepsilon$, Then stop and return \mathbf{U}_{i+1} as the result

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○ ○

- To calculate the K-*ɛ*-stable **PC**s:
 - Start with a U₀
 - **2** If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)
 - 3 Calculate the demand functions with respect to U_i
 - 4 Find the greatest d_{ii}
 - **5** Pass part α , $0 < \alpha \leq d_{ij}$ of **U**_i of one agent to another agents
 - 6 Form **U**_{*i*+1}
 - **7** If $\mathbf{e}_{\mathbf{r}} \leq \varepsilon$, Then stop and return \mathbf{U}_{i+1} as the result
 - If not, do next iteration

General 000 000	On safe kernel stable coalition forming among agents o	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○○○ ● ○○○

- To calculate the K-*ɛ*-stable **PC**s:
 - Start with a U₀
 - 2 If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)
 - 3 Calculate the demand functions with respect to U_i
 - Find the greatest d_{ij}
 - **6** Pass part α , $0 < \alpha \leq d_{ij}$ of **U**_i of one agent to another agents
 - 6 Form **U**_{*i*+1}
 - **7** If $\mathbf{e}_{\mathbf{r}} \leq \varepsilon$, Then stop and return \mathbf{U}_{i+1} as the result
 - If not, do next iteration
- complexity of the computation of the K-ε-stable and Pareto optimal PCs is O(n2ⁿ)

General 000 000	On safe kernel stable coalition forming among agents o	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ○○○ ● ○○○

Truncated Transfer Scheme

- To calculate the K-*ɛ*-stable **PC**s:
 - Start with a U₀
 - 2 If $\sum u_i > \sum V(\mathbf{C})$ Then use the n-correction of Wu(1977)
 - 3 Calculate the demand functions with respect to U_i
 - Find the greatest d_{ij}
 - **6** Pass part α , $0 < \alpha \leq d_{ij}$ of **U**_i of one agent to another agents
 - 6 Form U_{i+1}
 - **7** If $\mathbf{e}_{\mathbf{r}} \leq \varepsilon$, Then stop and return \mathbf{U}_{i+1} as the result
 - If not, do next iteration
- complexity of the computation of the K-ε-stable and Pareto optimal PCs is O(n2ⁿ)
- Thus, **DEK-CFM** has $O(n2^n n^n)$

< 口 > < 同 > < 臣 > < 臣 >

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○ ● ● ● ● ●

The Negotiation-oriented CFM

• Distributed, Negotiation-based, Polynomial, Kernel-oriented Coalition-Formation Model (*DNPK-CFM*) is a reduced-cost CFM based on negotiation.

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\circ} \overset{\text{O}}{\circ} $	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○ ● ● ○○○

The Negotiation-oriented CFM

- Distributed, Negotiation-based, Polynomial, Kernel-oriented Coalition-Formation Model (*DNPK-CFM*) is a reduced-cost CFM based on negotiation.
- It is an anytime Algorithm due to reaching a steady state:
 - the agents have reached a K-stable and Pareto optimal PC, or
 - the agents have not reached a PC as in 1, but have no more possible beneficial proposals (allowed by the protocols) to be transmitted to others.

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ● ● ● ● ●

The Negotiation-oriented CFM

- Distributed, Negotiation-based, Polynomial, Kernel-oriented Coalition-Formation Model (DNPK-CFM) is a reduced-cost CFM based on negotiation.
- It is an anytime Algorithm due to reaching a steady state:
 - 1 the agents have reached a K-stable and Pareto optimal PC. or

 - 2 the agents have not reached a PC as in 1, but have no more possible beneficial proposals (allowed by the protocols) to be transmitted to others.
- protocols must be agreed on that will direct the agents to a well-defined polynomial set of coalitions.
 - thus, only coalitions of sizes in the ranges $[K_1; K_2]$ are allowed to be considered for excess calculations.

Gene 000 000	ral On safe kernel stable coalition forming among agents o o o o o o o	Feasible Formation of Coalitions in NonSuperAdditive Environments
DNP	K-CFM Protocol	

The Negotiation-oriented CFM

 Preliminary Stage: Prior to negotiation, the agents must calculate the values of coalitions in the range of sizes K₁ to K₂, using the calculation methods of the DEK-CFM.

Gene 000 000	ral On safe kernel stable coalition forming among agents o o o o o o o	Feasible Formation of Coalitions in NonSuperAdditive Environments °CO °CO °CO °CO °CO °CO °CO °CO

The Negotiation-oriented CFM

- Preliminary Stage: Prior to negotiation, the agents must calculate the values of coalitions in the range of sizes K_1 to K_2 , using the calculation methods of the DEK-CFM.
- First Stage:

 - agents receive proposals as a member of a coalition
 - 2 coalitions coordinate their actions either via a representative or by voting (or both)

3 coalitions perform iteratively as follow:

- transmit a proposal to a target coalition; wait for responses
- accept P_{rp} only if $P_{rp} = P_{pr}$
- if P_{rp} was accepted and mutually confirmed, form C_{r+p}; if necessary, choose the representative.
- send acceptance of P_{rp} to other coalitions and reject other proposals.

ヘロト ヘアト ヘビト ヘビト

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○●○

The Negotiation-oriented CFM

First Stage:

The above sequence should be repeated until a steady state is reached, or when the time-period ends.

S Announce th status (if there are any more proposals to transmit)

3

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○●○

The Negotiation-oriented CFM

- First Stage:

 - The above sequence should be repeated until a steady state is reached, or when the time-period ends. 6 Announce th status (if there are any more proposals to
 - transmit)
- Second (optional) Stage:

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○●○

The Negotiation-oriented CFM

- First Stage:
 - The above sequence should be repeated until a steady state is reached, or when the time-period ends.

 - 5 Announce th status (if there are any more proposals to transmit)
- Second (optional) Stage:
 - 6 Following the same sequence of steps in the first stage, proposals that involve destruction are allowed.(Proposals addressed to single agents)

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○●○

The Negotiation-oriented CFM

- First Stage:
 - The above sequence should be repeated until a steady state is reached, or when the time-period ends.

 - 5 Announce th status (if there are any more proposals to transmit)
- Second (optional) Stage:
 - 6 Following the same sequence of steps in the first stage, proposals that involve destruction are allowed.(Proposals addressed to single agents)
 - Agents can leave their coalitions due to changes of the coalition's payoff vectors. Thus, these coalitions will destruct.

イロト イポト イヨト イヨト

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○●○

The Negotiation-oriented CFM

- First Stage:
 - The above sequence should be repeated until a steady state is reached, or when the time-period ends.

- 5 Announce th status (if there are any more proposals to transmit)
- Second (optional) Stage:
 - 6 Following the same sequence of steps in the first stage, proposals that involve destruction are allowed.(Proposals addressed to single agents)
 - Agents can leave their coalitions due to changes of the coalition's payoff vectors. Thus, these coalitions will destruct.
 - If a steady state is reached or time ends, stop the iteration

< 口 > < 同 > < 回 > < 回 > < 回 > <

General 000 000	On safe kernel stable coalition forming among agents $\overset{\text{O}}{\underset{O}}{\underset{O}{O$	Feasible Formation of Coalitions in NonSuperAdditive Environments ○○○ ○○○ ○○●○

The Negotiation-oriented CFM

- First Stage:
 - The above sequence should be repeated until a steady state is reached, or when the time-period ends.

 - 5 Announce th status (if there are any more proposals to transmit)
- Second (optional) Stage:
 - 6 Following the same sequence of steps in the first stage, proposals that involve destruction are allowed.(Proposals addressed to single agents)
 - Agents can leave their coalitions due to changes of the coalition's payoff vectors. Thus, these coalitions will destruct.

- 8 If a steady state is reached or time ends, stop the iteration
- Announce the status

イロト イポト イヨト イヨト

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
DNPK-C	EM Protocol	

• DNPK-CFM is enforceable because deviation from it is revealable.

General 000 000	On safe kernel stable coalition forming among agents o oooo	Feasible Formation of Coalitions in NonSuperAdditive Environments
DNPK-C	EM Protocol	

- DNPK-CFM is enforceable because deviation from it is revealable.
- Complexity:

$$n_{\text{coalitions}} = \sum_{i=K_1}^{K_2} \frac{n!}{i!(n-i)!}$$

• preliminary stage: $O(n^2 \times n_{coalitions})$

Genera 000 000	I On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
DNPK-	CEM Protocol	

- DNPK-CFM is enforceable because deviation from it is revealable.
- Complexity:

$$n_{\text{coalitions}} = \sum_{i=K_1}^{K_2} \frac{n!}{i!(n-i)!}$$

- preliminary stage: $O(n^2 \times n_{coalitions})$
- computation: O(n⁶ × n_{coalitions}) in case of less bounded time, and O(n³ × n_{coalitions}) in case of strictly bounded time

Genera 000 000	I On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
DNPK-	CEM Protocol	

- DNPK-CFM is enforceable because deviation from it is revealable.
- Complexity:

$$n_{\text{coalitions}} = \sum_{i=K_1}^{K_2} \frac{n!}{i!(n-i)!}$$

- preliminary stage: $O(n^2 \times n_{coalitions})$
- computation: O(n⁶ × n_{coalitions}) in case of less bounded time, and O(n³ × n_{coalitions}) in case of strictly bounded time
- communication: $O(n^2 \times n_{coalitions})$

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments
	EM Protocol	

- DNPK-CFM is enforceable because deviation from it is revealable.
- Complexity:

$$n_{\text{coalitions}} = \sum_{i=K_1}^{K_2} \frac{n!}{i!(n-i)!}$$

- preliminary stage: $O(n^2 \times n_{coalitions})$
- computation: O(n⁶ × n_{coalitions}) in case of less bounded time, and O(n³ × n_{coalitions}) in case of strictly bounded time
- communication: $O(n^2 \times n_{coalitions})$
- thus, the upper limit is of order $O(n^n)$

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments 000 000 000

Using the KCA algorithm one can achieve kernel stable solutions

イロト イヨト イヨト イ

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments 000 000 000

- Using the KCA algorithm one can achieve kernel stable solutions
 - Safe with respect to privacy

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments 000 000 000

- Using the KCA algorithm one can achieve kernel stable solutions
 - Safe with respect to privacy
 - · Safe with respect to incomplete information
 - Not safe with respect to changing agent sets

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments 000 000 000

- Using the KCA algorithm one can achieve kernel stable solutions
 - Safe with respect to privacy
 - · Safe with respect to incomplete information
 - Not safe with respect to changing agent sets
 - Fraud is possible, however this is impractical because of computational complexity

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments 000 000 000

- Using the KCA algorithm one can achieve kernel stable solutions
 - Safe with respect to privacy
 - · Safe with respect to incomplete information
 - Not safe with respect to changing agent sets
 - Fraud is possible, however this is impractical because of computational complexity
- By modifying KCA two approaches can be achieved

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments 000 000 000

- Using the KCA algorithm one can achieve kernel stable solutions
 - Safe with respect to privacy
 - · Safe with respect to incomplete information
 - Not safe with respect to changing agent sets
 - Fraud is possible, however this is impractical because of computational complexity
- By modifying KCA two approaches can be achieved
 - DEK-CFM: pareto optimal and k-stable coalition

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments 000 000 000

- Using the KCA algorithm one can achieve kernel stable solutions
 - Safe with respect to privacy
 - · Safe with respect to incomplete information
 - Not safe with respect to changing agent sets
 - Fraud is possible, however this is impractical because of computational complexity
- By modifying KCA two approaches can be achieved
 - DEK-CFM: pareto optimal and k-stable coalition
 - DNPK-CFM: polynomial and k-ε-stable

General 000 000	On safe kernel stable coalition forming among agents	Feasible Formation of Coalitions in NonSuperAdditive Environments 000 000 000

- Using the KCA algorithm one can achieve kernel stable solutions
 - Safe with respect to privacy
 - · Safe with respect to incomplete information
 - Not safe with respect to changing agent sets
 - Fraud is possible, however this is impractical because of computational complexity
- By modifying KCA two approaches can be achieved
 - DEK-CFM: pareto optimal and k-stable coalition
 - DNPK-CFM: polynomial and k-*\varepsilon*-stable
 - These algorithms are enforceable and thus deviations are revealable