Two Interesting NTU-games

Krzysztof R. Apt

April 21, 2010

Example 1 [Stable matching]

Suppose that $N = M \cup W$, where |M| = |W|. We refer to the members of M as men and to the members of W as women. A **matching** is a function $f: N \to N$ that pairs men and women into couples. So for all $i \in N$ we have f(f(i)) = i (*i* is matched with f(i) and f(i) is matched with *i*) and both f(M) = W and f(W) = M (each *i* is of the opposite sex than f(i)).

Suppose that each member i of N has a strict preference relation \succ_i over the members of the opposite sex. We call a matching f **unstable** if for some $m \in M$ and $w \in W$

$$w \succ_m f(m)$$
 and $m \succ_w f(w)$.

In words, a matching is unstable if a man and a woman exist who both prefer each other than the assigned partner. A matching is *stable* if it is not unstable.

We now interpret the above setting as an NTU game. We take as the set of outcomes X the set of all matchings. Next, we extend each strict preference relation \succ_i to a non-strict preference over the set of matchings X, by putting for $f, g \in X$

$$f \succeq_i g$$
 iff $f(i) \succ_i g(i)$ or $f(i) = g(i)$.

That is, player i prefers the matching f over the matching g if he/she strictly prefers his/her partner in f over his/her partner in g or both f and g assign the same partner to i.

Given a coalition $S \subseteq N$ we say that it is **closed** under a matching f if f(S) = S. Finally, for each coalition $S \subseteq N$ we define V(S) as the set of matchings under which S is closed. That is,

$$V(S) := X \cap \{f : N \to N \mid f(S) = S\}.$$

We call the above NTU game the *matching game*.

We have the following characterization of stable matchings in gametheoretic terms.

Theorem 1 The core of the matching game consists of the set of all stable matchings.

Proof. Suppose that a matching f is unstable. So for some $m \in M$ and $w \in W$

$$w \succ_m f(m)$$
 and $m \succ_w f(w)$.

Then the matching f is blocked by the coalition $\{m, w\}$. Indeed, let g be an arbitrary matching such that g(m) = w (and hence g(w) = m). By definition $g \in V(\{m, w\})$ and both $g \succ_m f$ and $g \succ_w f$. So f does not belong to the core.

Suppose now that a matching f does not belong to the core. Then it is blocked by some coalition S. So a matching g exists such that S is closed under g and for all $i \in S$ we have $g(i) \succ_i f(i)$.

S is non-empty and closed under g, so $S \cap M$ is non-empty. Take some $m \in S \cap M$. Let w := g(m) (and hence g(w) = m). We have $g(m) \succ_m f(m)$ and, since $w \in S$, $g(w) \succ_w f(w)$, i.e., $w \succ_m f(m)$ and $m \succ_w f(w)$. So f is unstable.

The core of the matching game is non-empty. An element of the core is constructed by means of so-called *deferred acceptance procedure*.

Example 2 [House exchange]

Suppose that each player i owns a different house and that each player i has a strict preference relation \succ_i over the set H of the houses owned. We allow that players exchange houses aiming at situations in which the resulting outcome is satisfactory to all players.

To formulate this problem as an NTU-game we take as the set of outcomes the set of possible house reallocations, i.e.,

$$X := \{f : N \to H \mid f \text{ is } 1\text{-}1\}$$

and assume that $h \in X$ is the *initial* house allocation.

Then we extend each strict preference relation \succ_i to a non-strict preference over the set of reallocations X, by putting for $f, g \in X$

$$f \succeq_i g$$
 iff $f(i) \succ_i g(i)$ or $f(i) = g(i)$.

Finally, given a coalition S we define

$$V(S) := X \cap \{f : N \to H \mid f(S) = h(S) \text{ and } f(i) = h(i) \text{ for } i \notin S\}.$$

So V(S) consists of the house reallocations that exchange among the members of S their initially owned houses and leave unchanged the houses allocated to the other players.

We call the resulting NTU game the *house exchange game*. \Box

The core of the house exchange game is non-empty. An element of the core is constructed by means of so-called *top cycle trading procedure*.