Marginal Contribution Nets for Games with Externalities

Navid Talebanfard
ILLC

May 2010

Games with externalities: a reminder

- In the traditional setting, the value of a coalition depends only on that very coalition.

Games with externalities: a reminder

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by $v(C)$.

Games with externalities: a reminder

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by $v(C)$.
- In many real life situations this is not necessarily so. The value could also depend on the other coalitions formed.

Games with externalities: a reminder

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by $v(C)$.
- In many real life situations this is not necessarily so. The value could also depend on the other coalitions formed.
- These games are called, games with externalities.

Games with externalities: a reminder

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by $v(C)$.
- In many real life situations this is not necessarily so. The value could also depend on the other coalitions formed.
- These games are called, games with externalities.
- The value of a coalition C relative to a coalition structure π is denote by $w(C, \pi)$. The requirement here is that C must be a member of the coalition structure.

Games with externalities: a reminder

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by $v(C)$.
- In many real life situations this is not necessarily so. The value could also depend on the other coalitions formed.
- These games are called, games with externalities.
- The value of a coalition C relative to a coalition structure π is denote by $w(C, \pi)$. The requirement here is that C must be a member of the coalition structure.
- Each such pair (C, π) is a called an embedded coalition.

An example

- The set of players is $N=\left\{a_{1}, a_{2}, a_{3}\right\}$.

An example

- The set of players is $N=\left\{a_{1}, a_{2}, a_{3}\right\}$.
- The values are given as follows

An example

- The set of players is $N=\left\{a_{1}, a_{2}, a_{3}\right\}$.
- The values are given as follows
-

$$
\begin{gathered}
\left\{a_{1}, 0\right\},\left\{a_{2}, 0\right\},\left\{a_{3}, 1\right\} \\
\left\{a_{1} a_{2}, 1\right\},\left\{a_{3}, 2\right\} \\
\left\{a_{1}, a_{3}, 1\right\},\left\{a_{2}, 0\right\} \\
\left\{a_{1}, 0\right\},\left\{a_{2} a_{3}, 1\right\} \\
\left\{a_{1} a_{2} a_{3}, 2\right\}
\end{gathered}
$$

Embedded MC-nets

- Having an economical repsentation for games with externalities is desirable.

Embedded MC-nets

- Having an economical repsentation for games with externalities is desirable.
- We follow similar ideas as in the first part of the presentation.

Embedded MC-nets

- Having an economical repsentation for games with externalities is desirable.
- We follow similar ideas as in the first part of the presentation.
- This represntation method called embedded MC-net consists of rules, each rule being of the form Pattern \longrightarrow Value.

Embedded MC-nets

- Having an economical repsentation for games with externalities is desirable.
- We follow similar ideas as in the first part of the presentation.
- This represntation method called embedded MC-net consists of rules, each rule being of the form Pattern \longrightarrow Value.
- Each pattern is of the form $\mathcal{P}_{0} \mid \mathcal{P}_{1}, \ldots, \mathcal{P}_{k}$, where each \mathcal{P}_{i} is a boolean expression over N.

Embedded MC-nets

- Having an economical repsentation for games with externalities is desirable.
- We follow similar ideas as in the first part of the presentation.
- This represntation method called embedded MC-net consists of rules, each rule being of the form Pattern \longrightarrow Value.
- Each pattern is of the form $\mathcal{P}_{0} \mid \mathcal{P}_{1}, \ldots, \mathcal{P}_{k}$, where each \mathcal{P}_{i} is a boolean expression over N.
- There is no obligation to specify any of the elements of the rule except for "|" and "Value".

Embedded MC-nets

- An embedded coalition (C, π) is said to meet the embedded pattern $\mathcal{E P}$ if

Embedded MC-nets

- An embedded coalition (C, π) is said to meet the embedded pattern $\mathcal{E P}$ if
- C meets pattern \mathcal{P}_{0}

Embedded MC-nets

- An embedded coalition (C, π) is said to meet the embedded pattern $\mathcal{E P}$ if
- C meets pattern \mathcal{P}_{0}
- every pattern $\mathcal{P}_{j}, j=1, \ldots, k$ is met by at least one coalition in $\pi \backslash C$.

Embedded MC-nets

- An embedded coalition (C, π) is said to meet the embedded pattern $\mathcal{E P}$ if
- C meets pattern \mathcal{P}_{0}
- every pattern $\mathcal{P}_{j}, j=1, \ldots, k$ is met by at least one coalition in $\pi \backslash C$.
- This is denoted by $(C, \pi)=\mathcal{E} \mathcal{P}$.

Embedded MC-nets

- An embedded coalition (C, π) is said to meet the embedded pattern $\mathcal{E P}$ if
- C meets pattern \mathcal{P}_{0}
- every pattern $\mathcal{P}_{j}, j=1, \ldots, k$ is met by at least one coalition in $\pi \backslash C$.
- This is denoted by $(C, \pi)=\mathcal{E} \mathcal{P}$.
- The value $w(C, \pi)$ of an embedded coalition with respect to an embedded MC-net is given by

$$
w(C, \pi)=\sum_{\mathcal{E R} \ni \mathcal{E R} \longrightarrow \text { Value: }(C, \pi) \mid=\mathcal{E P}} \text { Value. }
$$

Embedded MC-nets

- An embedded coalition (C, π) is said to meet the embedded pattern $\mathcal{E P}$ if
- C meets pattern \mathcal{P}_{0}
- every pattern $\mathcal{P}_{j}, j=1, \ldots, k$ is met by at least one coalition in $\pi \backslash C$.
- This is denoted by $(C, \pi)=\mathcal{E} \mathcal{P}$.
- The value $w(C, \pi)$ of an embedded coalition with respect to an embedded MC-net is given by

$$
w(C, \pi)=\sum_{\mathcal{E R} \ni \mathcal{E R} \longrightarrow \text { Value: }(C, \pi) \mid=\mathcal{E P}} \text { Value. }
$$

- P_{i} and P_{i}^{\prime} denote the set of positive and negative literals in \mathcal{P}_{i}, respectively.

Example

- We represent the example we game using embedded MC-nets

Example

- We represent the example we game using embedded MC-nets -

$$
\begin{gathered}
\left\{a_{1}, 0\right\},\left\{a_{2}, 0\right\},\left\{a_{3}, 1\right\} \\
\left\{a_{1} a_{2}, 1\right\},\left\{a_{3}, 2\right\} \\
\left\{a_{1}, a_{3}, 1\right\},\left\{a_{2}, 0\right\} \\
\left\{a_{1}, 0\right\},\left\{a_{2} a_{3}, 1\right\} \\
\left\{a_{1} a_{2} a_{3}, 2\right\}
\end{gathered}
$$

Example

- We represent the example we game using embedded MC-nets
-

$$
\begin{gathered}
\left\{a_{1}, 0\right\},\left\{a_{2}, 0\right\},\left\{a_{3}, 1\right\} \\
\left\{a_{1} a_{2}, 1\right\},\left\{a_{3}, 2\right\} \\
\left\{a_{1}, a_{3}, 1\right\},\left\{a_{2}, 0\right\} \\
\left\{a_{1}, 0\right\},\left\{a_{2} a_{3}, 1\right\} \\
\left\{a_{1} a_{2} a_{3}, 2\right\}
\end{gathered}
$$

$$
\begin{gathered}
a_{3} \longrightarrow 1 \\
a_{3} \mid a_{1} \wedge a_{2} \longrightarrow 1 \\
a_{1} \wedge a_{2} \longrightarrow 1
\end{gathered}
$$

Expressiveness

- Let $\left(C_{0}, \pi\right)$ be an embedded coalition with $\pi=\left\{C_{0}, C_{1}, \ldots, C_{k}\right\}$.
$p_{0} \wedge \neg \bigwedge_{i \neq 0} p_{i} \mid p_{1} \wedge \neg \bigwedge_{i \neq 1} p_{i}, p_{2} \wedge \neg \bigwedge_{i \neq 2} p_{i}, \ldots, p_{m} \wedge$
$\neg \bigwedge_{i \neq m} p_{i}$
Each p_{i} is the conjuction of agents in coalition C_{i}.

Extended generalized Shapley value

- Given w and an embedded coalition (C, π), the EGSV of w is

$$
\begin{aligned}
& \chi_{w}(C, \pi)= \\
& \sum_{C \in T \subseteq \pi} \frac{(|T|-1)!(|\pi|-|T|)!}{|\pi|!}(v(\lfloor T\rfloor)-v(\lfloor T \backslash\{C\}\rfloor)) \text { where } \\
& \lfloor T\rfloor=\cup_{A \in T} A \text { and } v(S)=w(S,\{S, N \backslash S\}) .
\end{aligned}
$$

- This is in fact the standard Shapley value of a game w_{π} where $\pi=\left\{C_{0}, C_{1}, \ldots, C_{m}\right\}$ and $N_{\pi}=\left\{a_{C_{0}}, a_{C_{1}}, \ldots, a_{C_{m}}\right\}$ is the set of players and the value function w_{π} is defined as $w_{\pi}(T)=w(\lfloor T\rfloor,\{\lfloor T\rfloor,\lfloor\pi \backslash T\rfloor\}$.

Computing the EGSV

- The idea is to comptue MC-nets representing w_{π} from the embedded MC-nets of the original game.

Computing the EGSV

- The idea is to comptue MC-nets representing w_{π} from the embedded MC-nets of the original game.
- The Shapley value of w_{π} is the EGSV of the original game. We already know how to compute the Shapley value from MC-nets.

Computing w_{π} from the embedded MC-nets

- Step 1

Computing w_{π} from the embedded MC-nets

- Step 1
(1) if the embedded rule is of the form $p_{0} \longrightarrow$ Value, we transform it into $\mathbf{p}_{\mathbf{0}} \longrightarrow$ Value, where $\mathbf{p}_{\mathbf{0}}$ is the conjunction fo all a_{C} such that $C \cap P_{0} \neq \varnothing$

Computing w_{π} from the embedded MC-nets

- Step 1
(1) if the embedded rule is of the form $p_{0} \longrightarrow$ Value, we transform it into $\mathbf{p}_{\mathbf{0}} \longrightarrow$ Value, where $\mathbf{p}_{\mathbf{0}}$ is the conjunction fo all a_{C} such that $C \cap P_{0} \neq \varnothing$
(2) otherwise we go to step 2 .

Computing w_{π} from the embedded MC-nets

- Step 1
(1) if the embedded rule is of the form $p_{0} \longrightarrow$ Value, we transform it into $\mathbf{p}_{\mathbf{0}} \longrightarrow$ Value, where $\mathbf{p}_{\mathbf{0}}$ is the conjunction fo all a_{C} such that $C \cap P_{0} \neq \varnothing$
(2) otherwise we go to step 2 .
- Step 2

Computing w_{π} from the embedded MC-nets

- Step 1
(1) if the embedded rule is of the form $p_{0} \longrightarrow$ Value, we transform it into $\mathbf{p}_{\mathbf{0}} \longrightarrow$ Value, where $\mathbf{p}_{\mathbf{0}}$ is the conjunction fo all a_{C} such that $C \cap P_{0} \neq \varnothing$
(2) otherwise we go to step 2 .
- Step 2
(1) If π divides $P_{0} \cup \bigcup_{i \geq 1} P_{i}^{\prime}$ and $P_{0}^{\prime} \cup \bigcup_{i \geq 1} P_{i}$ then the transformed rule would be $\mathbf{p} \wedge \neg \mathbf{p}^{\prime} \longrightarrow$ Value, where \mathbf{p} is the conjunction of ac's such that C overlaps with the first set and $\neg \mathbf{p}^{\prime}$ is the conjuction of negative literals a C^{\prime} 's such that C^{\prime} overlaps with the second set.

Computing w_{π} from the embedded MC-nets

- Step 1
(1) if the embedded rule is of the form $p_{0} \longrightarrow$ Value, we transform it into $\mathbf{p}_{\mathbf{0}} \longrightarrow$ Value, where $\mathbf{p}_{\mathbf{0}}$ is the conjunction fo all a_{C} such that $C \cap P_{0} \neq \varnothing$
(2) otherwise we go to step 2 .
- Step 2
(1) If π divides $P_{0} \cup \bigcup_{i \geq 1} P_{i}^{\prime}$ and $P_{0}^{\prime} \cup \bigcup_{i \geq 1} P_{i}$ then the transformed rule would be $\mathbf{p} \wedge \neg \mathbf{p}^{\prime} \longrightarrow$ Value, where \mathbf{p} is the conjunction of a_{C} 's such that C overlaps with the first set and $\neg \mathbf{p}^{\prime}$ is the conjuction of negative literals a C^{\prime} 's such that C^{\prime} overlaps with the second set.
(2) Otherwise the rule would be $\varnothing \longrightarrow 0$.

Example

$$
\begin{gathered}
\pi=\left\{\left\{a_{1} a_{2}\right\},\left\{a_{3}\right\}\right\} \\
N_{\pi}=\left\{a_{C_{1}}, a_{C_{2}}\right\}
\end{gathered}
$$

$$
\begin{aligned}
a_{3} \rightarrow 1 & \Rightarrow a_{C_{2}} \rightarrow 1 \\
a_{3} \mid a_{1} \wedge a_{2} \rightarrow & \Rightarrow a C_{2} \wedge \neg C_{1} \rightarrow 1 \\
a_{1} \wedge a_{2} \rightarrow 1 & \Rightarrow a_{C_{1}} \rightarrow 1
\end{aligned}
$$

Conclusion

- A compact and simple representation method for games with externalities was demonstrated.
- It was shown that this method expresses all such games and it is exponentially more efficient.
- A method to compute the extended generalized Shapley value using embedded MC-nets was discussed which reveals the computational power of this representation method.

