Marginal Contribution Nets for Games with Externalities

Navid Talebanfard

ILLC

May 2010

Navid Talebanfard

Introduction Embedded MC-nets Extended Shapley Value Conclusion

(本部) (本語) (本語)

э

Games with externalities: a reminder

 In the traditional setting, the value of a coalition depends only on that very coalition.

A B M A B M

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by v(C).

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by v(C).
- In many real life situations this is not necessarily so. The value could also depend on the other coalitions formed.

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by v(C).
- In many real life situations this is not necessarily so. The value could also depend on the other coalitions formed.
- These games are called, games with externalities.

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by v(C).
- In many real life situations this is not necessarily so. The value could also depend on the other coalitions formed.
- These games are called, games with externalities.
- The value of a coalition C relative to a coalition structure π is denote by w(C, π). The requirement here is that C must be a member of the coalition structure.

- In the traditional setting, the value of a coalition depends only on that very coalition.
- Formally, the value of a coalition C is denoted by v(C).
- In many real life situations this is not necessarily so. The value could also depend on the other coalitions formed.
- These games are called, games with externalities.
- The value of a coalition C relative to a coalition structure π is denote by w(C, π). The requirement here is that C must be a member of the coalition structure.
- Each such pair (C, π) is a called an embedded coalition.

• The set of players is $N = \{a_1, a_2, a_3\}$.

æ

<ロト <部ト < 注ト < 注ト

Introduction Embedded MC-nets Extended Shapley Value Conclusion

(日) (同) (三) (三)

э

An example

- The set of players is $N = \{a_1, a_2, a_3\}$.
- The values are given as follows

Introduction Embedded MC-nets Extended Shapley Value Conclusion

<ロト <部ト < 注ト < 注ト

э

An example

۲

- The set of players is $N = \{a_1, a_2, a_3\}$.
- The values are given as follows

$$\{a_1, 0\}, \{a_2, 0\}, \{a_3, 1\} \\ \{a_1a_2, 1\}, \{a_3, 2\} \\ \{a_1, a_3, 1\}, \{a_2, 0\} \\ \{a_1, 0\}, \{a_2a_3, 1\} \\ \{a_1a_2a_3, 2\}$$

Introduction Embedded MC-nets Extended Shapley Value Conclusion

- 4 同 6 4 日 6 4 日 6

э

Embedded MC-nets

• Having an economical repsentation for games with externalities is desirable.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

.≣ →

- Having an economical repsentation for games with externalities is desirable.
- We follow similar ideas as in the first part of the presentation.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

- Having an economical repsentation for games with externalities is desirable.
- We follow similar ideas as in the first part of the presentation.
- This representation method called *embedded MC-net* consists of rules, each rule being of the form *Pattern* \longrightarrow *Value*.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

- Having an economical repsentation for games with externalities is desirable.
- We follow similar ideas as in the first part of the presentation.
- This representation method called *embedded MC-net* consists of rules, each rule being of the form *Pattern* → *Value*.
- Each pattern is of the form $\mathcal{P}_0|\mathcal{P}_1, \ldots, \mathcal{P}_k$, where each \mathcal{P}_i is a boolean expression over N.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

- Having an economical repsentation for games with externalities is desirable.
- We follow similar ideas as in the first part of the presentation.
- This representation method called *embedded MC-net* consists of rules, each rule being of the form *Pattern* \longrightarrow *Value*.
- Each pattern is of the form $\mathcal{P}_0|\mathcal{P}_1, \ldots, \mathcal{P}_k$, where each \mathcal{P}_i is a boolean expression over N.
- There is no obligation to specify any of the elements of the rule except for "|" and "*Value*".

Introduction Embedded MC-nets Extended Shapley Value Conclusion

э

Embedded MC-nets

• An embedded coalition $({\it C},\pi)$ is said to meet the embedded pattern \mathcal{EP} if

Introduction Embedded MC-nets Extended Shapley Value Conclusion

글 > - < 글 >

< 1⁻→ <

э

- An embedded coalition (C, π) is said to *meet* the embedded pattern \mathcal{EP} if
 - C meets pattern \mathcal{P}_0

Introduction Embedded MC-nets Extended Shapley Value Conclusion

글 > - < 글 >

< 1⁻→ <

- An embedded coalition (C,π) is said to meet the embedded pattern \mathcal{EP} if
 - C meets pattern \mathcal{P}_0
 - every pattern \mathcal{P}_j , $j = 1, \ldots, k$ is met by at least one coalition in $\pi \setminus C$.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

∃ ► < ∃ ►</p>

- An embedded coalition (C,π) is said to meet the embedded pattern \mathcal{EP} if
 - C meets pattern \mathcal{P}_0
 - every pattern \mathcal{P}_j , $j = 1, \ldots, k$ is met by at least one coalition in $\pi \setminus C$.
- This is denoted by $(\mathcal{C}, \pi) \models \mathcal{EP}$.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

Embedded MC-nets

- An embedded coalition (C, π) is said to *meet* the embedded pattern \mathcal{EP} if
 - C meets pattern \mathcal{P}_0
 - every pattern \mathcal{P}_j , $j = 1, \ldots, k$ is met by at least one coalition in $\pi \setminus C$.
- This is denoted by $(\mathcal{C}, \pi) \models \mathcal{EP}$.
- The value w(C, π) of an embedded coalition with respect to an embedded MC-net is given by

$$w(\mathcal{C},\pi) = \sum_{\mathcal{ER} \ni \mathcal{ER} \longrightarrow Value: (\mathcal{C},\pi) \models \mathcal{EP}} Value.$$

Introduction Embedded MC-nets Extended Shapley Value Conclusion

Embedded MC-nets

- An embedded coalition (C,π) is said to meet the embedded pattern \mathcal{EP} if
 - C meets pattern \mathcal{P}_0
 - every pattern \mathcal{P}_j , $j = 1, \ldots, k$ is met by at least one coalition in $\pi \setminus C$.
- This is denoted by $(\mathcal{C}, \pi) \models \mathcal{EP}$.
- The value w(C, π) of an embedded coalition with respect to an embedded MC-net is given by

$$w(\mathcal{C},\pi) = \sum_{\mathcal{ER} \ni \mathcal{ER} \longrightarrow Value: (\mathcal{C},\pi) \models \mathcal{EP}} Value.$$

• P_i and P'_i denote the set of positive and negative literals in \mathcal{P}_i , respectively.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

<ロト <部ト < 注ト < 注ト

æ

Example

• We represent the example we game using embedded MC-nets

Introduction Embedded MC-nets Extended Shapley Value Conclusion

<ロト <部ト < 注ト < 注ト

æ

Example

۲

• We represent the example we game using embedded MC-nets

$$\begin{array}{l} a_1, 0 \}, \{a_2, 0\}, \{a_3, 1\} \\ \{a_1a_2, 1\}, \{a_3, 2\} \\ \{a_1, a_3, 1\}, \{a_2, 0\} \\ \{a_1, 0\}, \{a_2a_3, 1\} \\ \{a_1a_2a_3, 2\} \end{array}$$

Introduction Embedded MC-nets Extended Shapley Value Conclusion

Example

۲

• We represent the example we game using embedded MC-nets

$$a_{1}, 0\}, \{a_{2}, 0\}, \{a_{3}, 1\}$$
$$\{a_{1}a_{2}, 1\}, \{a_{3}, 2\}$$
$$\{a_{1}, a_{3}, 1\}, \{a_{2}, 0\}$$
$$\{a_{1}, 0\}, \{a_{2}a_{3}, 1\}$$
$$\{a_{1}a_{2}a_{3}, 2\}$$

$$egin{array}{c} a_3 \longrightarrow 1 \ a_3 ig| a_1 \wedge a_2 \longrightarrow 1 \ a_1 \wedge a_2 \longrightarrow 1 \end{array}$$

<ロト <部ト < 注ト < 注ト

æ

Introduction Embedded MC-nets Extended Shapley Value Conclusion

- 4 同 6 4 日 6 4 日 6

Expressiveness

• Let (C_0, π) be an embedded coalition with $\pi = \{C_0, C_1, \dots, C_k\}.$ $p_0 \land \neg \bigwedge_{i \neq 0} p_i | p_1 \land \neg \bigwedge_{i \neq 1} p_i, p_2 \land \neg \bigwedge_{i \neq 2} p_i, \dots, p_m \land$ $\neg \bigwedge_{i \neq m} p_i$ Each p_i is the conjuction of agents in coalition C_i .

(日)

Extended generalized Shapley value

- Given w and an embedded coalition (C, π) , the EGSV of w is $\chi_w(C, \pi) = \sum_{C \in T \subseteq \pi} \frac{(|T|-1)!(|\pi|-|T|)!}{|\pi|!} (v(\lfloor T \rfloor) v(\lfloor T \setminus \{C\}\rfloor))$ where $\lfloor T \rfloor = \cup_{A \in T} A$ and $v(S) = w(S, \{S, N \setminus S\})$.
- This is in fact the standard Shapley value of a game w_{π} where $\pi = \{C_0, C_1, \dots, C_m\}$ and $N_{\pi} = \{a_{C_0}, a_{C_1}, \dots, a_{C_m}\}$ is the set of players and the value function w_{π} is defined as $w_{\pi}(T) = w(\lfloor T \rfloor, \{\lfloor T \rfloor, \lfloor \pi \setminus T \rfloor\})$.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

< 1 → <

.≣ →

Computing the EGSV

• The idea is to comptue MC-nets representing w_{π} from the embedded MC-nets of the original game.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

Computing the EGSV

- The idea is to comptue MC-nets representing w_{π} from the embedded MC-nets of the original game.
- The Shapley value of w_π is the EGSV of the original game. We already know how to compute the Shapley value from MC-nets.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

Computing w_{π} from the embedded MC-nets

• Step 1

Navid Talebanfard

- 4 同 6 4 日 6 4 日 6

Computing w_{π} from the embedded MC-nets

• Step 1

• if the embedded rule is of the form $p_0 \longrightarrow Value$, we transform it into $\mathbf{p_0} \longrightarrow Value$, where $\mathbf{p_0}$ is the conjunction fo all a_C such that $C \cap P_0 \neq \emptyset$

- 4 同 6 - 4 三 6 - 4 三 6

Computing w_{π} from the embedded MC-nets

• Step 1

- if the embedded rule is of the form $p_0 \longrightarrow Value$, we transform it into $\mathbf{p_0} \longrightarrow Value$, where $\mathbf{p_0}$ is the conjunction fo all a_C such that $C \cap P_0 \neq \emptyset$
- Otherwise we go to step 2.

- 4 同 6 - 4 三 6 - 4 三 6

Computing w_{π} from the embedded MC-nets

• Step 1

- if the embedded rule is of the form $p_0 \longrightarrow Value$, we transform it into $\mathbf{p_0} \longrightarrow Value$, where $\mathbf{p_0}$ is the conjunction fo all a_C such that $C \cap P_0 \neq \emptyset$
- Otherwise we go to step 2.
- Step 2

Computing w_{π} from the embedded MC-nets

• Step 1

- if the embedded rule is of the form $p_0 \longrightarrow Value$, we transform it into $\mathbf{p_0} \longrightarrow Value$, where $\mathbf{p_0}$ is the conjunction fo all a_C such that $C \cap P_0 \neq \emptyset$
- Otherwise we go to step 2.
- Step 2
 - If π divides P₀ ∪ ⋃_{i≥1} P'_i and P'₀ ∪ ⋃_{i≥1} P_i then the transformed rule would be p ∧ ¬p' → Value, where p is the conjunction of a_C's such that C overlaps with the first set and ¬p' is the conjuction of negative literals a_{C'}'s such that C' overlaps with the second set.

- 4 同 6 4 日 6 4 日 6

Computing w_{π} from the embedded MC-nets

• Step 1

- if the embedded rule is of the form $p_0 \longrightarrow Value$, we transform it into $\mathbf{p_0} \longrightarrow Value$, where $\mathbf{p_0}$ is the conjunction fo all a_C such that $C \cap P_0 \neq \emptyset$
- Otherwise we go to step 2.
- Step 2
 - If π divides P₀ ∪ ∪_{i≥1} P'_i and P'₀ ∪ ∪_{i≥1} P_i then the transformed rule would be p ∧ ¬p' → Value, where p is the conjunction of a_C's such that C overlaps with the first set and ¬p' is the conjuction of negative literals a_{C'}'s such that C' overlaps with the second set.

(日) (同) (三) (三)

2 Otherwise the rule would be $\emptyset \longrightarrow 0$.

Introduction Embedded MC-nets Extended Shapley Value Conclusion

æ

Example

$$\pi = \{\{a_1a_2\}, \{a_3\}\}$$

 $N_\pi = \{a_{C_1}, a_{C_2}\}$

$$egin{array}{rcl} a_3
ightarrow 1 & \Rightarrow & a_{C_2}
ightarrow 1 \ a_3 ig| a_1 \wedge a_2
ightarrow & \Rightarrow & a_{C_2} \wedge
eg a_{C_1}
ightarrow 1 \ a_1 \wedge a_2
ightarrow 1 & \Rightarrow & a_{C_1}
ightarrow 1 \end{array}$$

Introduction Embedded MC-nets Extended Shapley Value **Conclusion**

Conclusion

- A compact and simple representation method for games with externalities was demonstrated.
- It was shown that this method expresses all such games and it is exponentially more efficient.
- A method to compute the extended generalized Shapley value using embedded MC-nets was discussed which reveals the computational power of this representation method.