Cooperative games: lecture 3

Stéphane Airiau

Let N be the set of customers, and let 0 be the supplier. Let $N_{*}=N \cup\{0\}$. for $(i, j) \in N_{*}^{2}, i \neq j$, let $c_{i, j}$ be the cost of connecting i and j by the edge $e_{i j}$. Let (N, c) be the corresponding cost game, which is called a minimum cost spanning tree game ((MCST) game).

Theorem 1. Every minimum cost spanning tree game has a non-empty core.
Proof. Let us define a cost distribution x and then we will show that x is in the core.
Let $T=\left(N, E_{N}\right)$ a minimum cost spanning tree for the graph $\left(N_{*}, c_{\{i j\} \subseteq N_{*}^{2}}\right)$. Let i be a customer. Since T is a tree, there is a unique path $\left(0, a_{1}, \ldots, a_{k}, i\right)$ from 0 to i. The cost paid by agent i is defined by $x_{i}=c_{a_{k}, i}$.

This cost allocation is efficient by construction of x.
We need to show the cost allocation is group rational, i.e. for all coalition S, we have $x(S) \leq v(S)$ (it is a cost, which explains the inequality). Let $S \subset N$ and $T_{S}=\left(S \cup\{0\}, E_{s}\right)$ be a minimum cost spanning tree of the graph $\left(S \cup\{0\}, c_{\{i j\} \in S \cup\{0\}}\right)$. Let extand the tree T_{S} to a graph $T_{S}^{+}=\left(N_{*}, E_{N}^{+}\right)$ by adding the remaining customers $N \backslash S$, and for each customer $i \in N \backslash S$, we add the edge of E_{N} ending in i, i.e., we add the edge (a_{k}, i). The graph T_{S}^{+}has $|S|+|N \backslash S|$ edges an is connected. Hence, T_{S}^{+}is a spanning tree. Now, we note that $c(S)+x(N \backslash S)=\sum_{e_{i j} \subseteq E_{N}^{+}} c_{i j} \geq \sum_{e_{i j} \subseteq E_{N}}=c(N)=x(N)$. The inequality is due to the fact that T_{S}^{+}is a spanning tree, and T is a minimum spanning tree. It follows that $x(S) \leq v(S)$.

A market is a quadruple (N, M, A, F) where

- N is a set of traders
- M is a set of m continuous good
- $A=\left(a_{i}\right)_{i \in N}$ is the initial endowment vector
- $F=\left(f_{i}\right)_{i \in N}$ is the valuation function vector
- $v(S)=\max \left\{\sum_{i \in S} f_{i}\left(x_{i}\right) \mid x_{i} \in \mathbb{R}_{+}^{m}, \sum_{i \in S} x_{i}=\sum_{i \in S} a_{i}\right\}$
- we further assume that the f_{i} are continuous and concave.

Theorem 2. Every Market Game is balanced
Proof. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is concave iff $\forall \alpha \in[0,1], \forall(x, y) \in \mathbb{R}^{n}, f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$. It follows from this definition that for $f: \mathbb{R} \rightarrow \mathbb{R}, \forall x \in \mathbb{R}^{n}, \forall \lambda \in \mathbb{R}_{+}^{n}$ such that $\sum_{i=1}^{n} \lambda_{i}=1$, we have $f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)$.

Since the f_{i} s are continuous, $\sum_{i \in S} f_{i}\left(x_{i}\right)$ is a continuous mapping from $\left\{\left(x_{i}\right)_{i \in S} \mid \forall i \in \mathbb{R}_{+}^{k}, \forall x_{i} \in \mathbb{R}_{+}^{k}, \sum_{i \in S} x_{i}=\sum_{i \in S} a_{i}\right\}$ to \mathbb{R}, hence, the maximum exists.

For a coalition $S \subseteq N$, let $x^{S}=\left\langle x_{1}^{S}, \ldots, x_{n}^{S}\right\rangle$ be the endowment that achieves the maximum value for the coalition S, i.e., $v(S)=\sum_{i \in S} f_{i}\left(x_{i}^{S}\right)$. In other words, the members of S have made some trades that have improved the value of the coalition S up to its maximal value.

Let λ be a balanced map. Let $y \in \mathbb{R}_{+}^{n}$ defined as follows: $y_{i}=\sum_{S \in \mathcal{C}_{i}} \lambda_{S} x_{i}^{S}$ where \mathcal{C}_{i} is the set of coalitions that contains agent i.

First, note that y is a feasible payoff function.

$$
\begin{aligned}
\sum_{i \in N} y_{i} & =\sum_{i \in N} \sum_{S \in \mathcal{C}_{i}} \lambda_{S} x_{i}^{S}=\sum_{S \subseteq N} \sum_{i \in S} \lambda_{S} x_{i}=\sum_{S \subseteq N} \lambda_{S} \sum_{i \in S} x_{i}^{S} \\
& =\sum_{S \subseteq N} \lambda_{S} \sum_{i \in S} a_{i} \text { since } x_{i}^{S} \text { was achieved by a sequence of trades within the members of } S \\
& =\sum_{i \in N} a_{i} \sum_{S \in \mathcal{C}_{i}} \lambda_{S} \\
& =\sum_{i \in N} a_{i} \text { as } \lambda \text { is balanced, (i.e., the sum of the weights over all coalitions of one agent sums up to 1) }
\end{aligned}
$$

then, by definition of v, we have $v(N) \geq \sum_{i \in N} f_{i}\left(y_{i}\right)$.
The f_{i} are concave and since $\sum_{S \in \mathcal{C}_{i}} \lambda_{S}=1$, we have $f_{i}\left(\sum_{S \in \mathcal{C}_{i}} \lambda_{S} x_{i}^{S}\right) \geq \sum_{S \in C_{i}} \lambda_{S} f_{i}\left(x_{i}^{S}\right)$. It follows:

$$
v(N) \geq \sum_{i \in N} f_{i}\left(y_{i}\right) \geq \sum_{i \in N} f_{i}\left(\sum_{S \in \mathcal{C}_{i}} \lambda_{S} x_{i}^{S}\right) \geq \sum_{i \in N} \sum_{S \in \mathcal{C}_{i}} \lambda_{S} f_{i}\left(x_{i}^{S}\right) \geq \sum_{S \subseteq N} \lambda_{S} \sum_{i \in S} f_{i}\left(x_{i}^{S}\right) \geq \sum_{S \subseteq N} \lambda_{S} v(S) . \text { This }
$$

inequality proves that the game is balanced.

