Weighted Voting Games

 and the tension between weight and powerAnnemieke Reijngoud \&
Ole Martin Brende

Cooperative Games

May 16, 2010

Outline

Introduction
Introduction
Power Indices
EU: Power Distribution
Background
Analysis
Fair Game
Inverse Problem
Introduction
Terminology
Naive Algorithm
Observations
Naive Algorithm
Running Time
Solution Algorithm
Improvements
Enumeration Algorithm
Conclusion

Introduction

What are we going to talk about?

- Voting within EU (is it fair?);
- How to develop a fair game.

Weighted Voting Games (WVG)?
A game $\left(N, w_{i \in N}, q\right)$ is a weighted voting game if:

- v satisfies unanimity $\left(\sum_{i \in N} w_{i} \geq q\right)$
- v satisfies monotonicity $\left(\forall i \in N: w_{i} \geq 0\right)$
- v is defined as follows:

$$
v(C)= \begin{cases}1 & \text { if } \sum_{i \in C} w_{i} \geq q \\ 0 & \text { otherwise }\end{cases}
$$

- representation: $\left[q ; w_{1}, \ldots, w_{n}\right]$

Power Indices

Several power indices have been proposed to represent the power of each player, among which:

- Shapley-Shubik index, $I_{S S}(N, v, i)$
'For each permutation, the pivotal player gets a point.'

$$
I_{S S}(N, v, i)=\sum_{C \subseteq N \backslash\{i\}} \frac{|C|!(|N|-|C|-1)!}{|N|!}(v(C \cup\{i\})-v(C))
$$

- (raw) Banzhaf index, β_{i}
'For each coalition in which a player is pivotal, it gets a point.'

$$
\beta_{i}=\frac{\sum_{C \subseteq N \backslash\{i\}}(v(C \cup\{i\})-v(C))}{2^{n-1}}
$$

EU: History of Voting Methods

- EU consists of 25 member countries.
- In Nice (2000) a new voting scheme was developed to improve the decision process of the EU. This game is called the Nice Rule.
- In Brussels (2004) a new voting scheme was approved by the EU. This game is called the European Constitution Rule. It is also extended to 27 member countries (Romania and Bulgaria)
- Algaba et al. (2007) analyse both games and try to find a game that is fairer.

Nice Game (1)

Background

$v_{1}=[232 ; 29,29,29,29,27,27,13,12,12,12,12,12,10,10,7$,
$7,7,7,7,4,4,4,4,4,3]$,
with member states sorted by decreasing population.

Additional requirements on a winning coalition:
v_{2} : it must contain at least 13 members;

$$
v_{2}=[13 ; 1,1,1,1,1,1,1,1,1,1,1,1,1]
$$

v_{3} : it must contain at least 62% of the population of the EU .
$v_{3}=[620 ; 182,131,131,130,126,91,84,36,24,23,23$,
$22,22,20,18,12,12,11,9,8,5,4,3,2,1,1]$, where
$w_{3, i}$ is proportional to the population of $i\left(\sum_{i \in N} w_{3, i}=1000\right)$

Nice Game (2)

Background

Analysis

A coalition S must be winning in each of v_{1}, v_{2} and v_{3}. Notation: $v_{1} \wedge v_{2} \wedge v_{3}$. This is called a weighted 3-majority game.

$$
\left(v_{1} \wedge v_{2} \wedge v_{3}\right)(S)= \begin{cases}1 & \text { if } w_{i}(S) \geq q_{i} \text { where } 1 \leq i \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

Here $v_{i}=\left[q_{i} ; w_{i, 1}, \ldots, w_{i, n}\right]$ and $w_{i}(S)=\sum_{j \in S} w_{i, j}$.

European Constitution Game (1)

Representing the European Constitution Game:
Similar to the Nice Game, except for:
v_{2}^{\prime} : 15 countries are needed to win: v_{2} with $q_{2} \leftarrow 15$
v_{3}^{\prime} : These 15 countries must sum up to at least 65% of the population of the EU: v_{3} with $q_{3} \leftarrow 650$.
$b c$: The minimum number of countries to block a coalition is 4.

European Constitution Game (2)

Background

 in the paper that if $b c$ is the game $[22 ; 1,1,1,1,1,1,1,1,1,1$, $1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]$ (S winning if $|S| \geq 22$) then the game can be represented as$$
\left(v_{2}^{\prime} \wedge v_{3}^{\prime}\right) \vee b c
$$

I will see if this blocking clause has an effect at all.

Effect of Blocking Clause

Effect of bc condition

Hence, the blocking game does not have any effect and just makes the total game more complicated.

Comparison of Power in the two Games

Comparison of games

The power is distributed differently in each game. Which one is fairest?

What do we want? (1)

- We want each person in each member country to have equal power.
- There is a two tier system:
- Each person votes for a representative to send to the EU meeting;
- The representatives from each country vote.
- How to distribute the weight of each representative based on the number of people in the country he represents?

What do we want? (2)

If β_{x}^{\prime} is the normalized Banzhaf index for a person in a country i in EU with population n_{i}, and β_{i}^{\prime} is the normalized Banzhaf index of a representative for i, then Felsenthal and Machover have shown that:

$$
\beta_{x}^{\prime} \propto \beta_{i}^{\prime} \sqrt{\frac{2}{\pi n_{i}}}
$$

Thus the Banzhaf index of each representative β_{i}^{\prime} should be $\propto \sqrt{n_{i}}$ for each person in the EU to have equal power.
Let's see if this is the case for any of the games presented here.

Fair games？

Fair games should have all points on the regression line since we want $\beta_{i}^{\prime} \propto \sqrt{n_{i}}$ ．This is not the case for any of the current voting systems．

Background
Analysis
Fair Game

Inverse Problem

Inverse Problem?
Given a power index \vec{p}, find a WVG such that the power of each player i is as close as possible to p_{i}.

Solution: (de Keijzer et al. 2010)

1. Enumerate all WVGs of n players;
2. Compute for each WVG its power index;
3. Output the WVG which power index is closest to \vec{p}.

Has anybody solved this before?
Not really, there are some hill climbing algorithms, but they do not guarantee an optimal outcome.

Terminology

Representing WVGs:
$\left(q: w_{1}, \ldots, w_{n}\right) \Longleftrightarrow\left(N, W_{\min }\right) \Longleftrightarrow\left(N, L_{\max }\right)$
Representation Languages:
$\mathcal{L}_{\text {weights }} ; \mathcal{L}_{W, \text { min }} ; \mathcal{L}_{L, \max }$
Linear Games:

- desirability relation \succeq_{D}, where:
$i \succeq_{D} j$ iff $\forall S \subseteq N \backslash\{i, j\}: v(S \cup\{i\}) \geq v(S \cup\{j\})$
- (N, v) is linear iff $\forall i, j \in N: i \succeq_{D} j$ or $j \succeq_{D} i$ \Longrightarrow every WVG is a linear game;
- $\left(q: w_{1}, \ldots, w_{n}\right)$ is a canonical $W V G$ iff $1 \succeq_{D} \cdots \succeq_{D} n$.

Observations

- the number of weighted representations for each WVG is infinite;
- there is exactly one ($N, W_{\text {min }}$)-representation for each WVG;
- the number of WVGs of n players is finite, because there are only finitely many sets of MWCs for n players.

Naive Algorithm

```
Algorithm 1: Solving the Inverse Problem
Input: target power index \(\vec{p}=\left(p_{1}, \ldots, p_{n}\right)\)
Output: \(l \in \mathcal{L}_{W, \text { min }}\) such that \(f\left(G_{l}\right)\) is as close as possible to \(\vec{p}\)
begin
    bestgame \(\leftarrow 0\);
    besterror \(\leftarrow \infty\);
    forall \(l \in \mathcal{L}_{W, \text { min }}\) do
    Compute \(f\left(G_{l}\right)=\left(f\left(G_{l}, 1\right), \ldots, f\left(G_{l}, n\right)\right)\);
        error \(\leftarrow \sum_{i=1}^{n}\left(f\left(G_{l}, i\right)-p_{i}\right)^{2}\);
        if error \(<\) besterror then
        bestgame \(\leftarrow l\);
        besterror \(\leftarrow\) error;
    return bestgame;
end
```


Running Time

- power index function f : \leq exponential in n; (for all known power indices)
- enumeration of $\mathcal{L}_{W, \text { min }}$: doubly exponential in n.

Solution:
Improving the enumeration method.

Improvements on Enumeration (1)

- focus on $\mathcal{G}_{\text {cwvg }}(n)$

Define poset $\left(\mathcal{G}_{\text {cwvg }}(n), \supseteq_{M W C}\right)$ as follows:
$G_{1} \supseteq_{M W C} G_{2}$ iff $W_{\text {min }}\left(G_{1}\right) \supseteq W_{\text {min }}\left(G_{2}\right)$, where $G_{1}, G_{2} \in \mathcal{G}_{\text {cwvg }}(n)$

Define rank function $\rho: \mathcal{G}_{\text {cwvg }}(n) \rightarrow \mathbb{Z}$ as follows:
$\rho(G):=\left|W_{\min }(G)\right|$
Claim: $\left(\mathcal{G}_{\text {cwvg }}(n), \supseteq_{\text {MWC }}\right)$ is graded under ρ
i.e. $\forall G_{1}, G_{2} \in \mathcal{G}_{\text {cwvg }}(n): \rho\left(G_{1}\right)=\rho\left(G_{2}\right)-1$ if G_{1} covers G_{2}
G_{1} covers G_{2} iff
$G_{1} \subseteq_{M W C} G_{2}$ and there is no G_{3} such that $G_{1} \subseteq_{M W C} G_{3} \subseteq_{M W C} G_{2}$ Proof omitted.

Improvements on Enumeration (2)

Definition of $\operatorname{tr}(C, i)$:
Let (N, v) be a canonical WVG and $C \subseteq N$. Let p_{i} be the i th highest-numbered player among the players in C. Define $\operatorname{tr}(C, i)$ as follows:
$\operatorname{tr}(C, i):= \begin{cases}C \backslash\left\{p_{i}, \ldots, n\right\} & \text { if } 0<i \leq|C| \\ C & \text { if } i=0 \\ \text { undefined } & \text { otherwise }\end{cases}$

Claim:

$\forall G_{1}, G_{2} \in \mathcal{G}_{\text {cwvg }}(n)$ such that G_{1} covers G_{2} in $\left(\mathcal{G}_{c w v g}(n), \supseteq м w C\right)$: there is a $C \in L_{\max }\left(G_{1}\right)$ and an $i \in \mathbb{N}$ with $0 \leq i \leq n$ such that $W_{\text {min }}\left(G_{2}\right)=W_{\text {min }}\left(G_{1}\right) \cup \operatorname{tr}(C, i)$.

Proof on the blackboard (if time allows).

Enumeration Algorithm

Algorithm 2: Enumerating the class of n-agent canonical WVGs begin
output (1:0, .., 0);
games $[0] \leftarrow\{\emptyset\}$;
for $i=1$ to $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ do
forall $W_{\min } \in \operatorname{games}[i-1]$ do
$L_{\text {max }} \leftarrow$ computeMLCs $\left(W_{\text {min }}\right)$;
forall $C \in L_{\text {max }}$ do for $j=1$ to n do if isweighted $\left(W_{\min } \cup \operatorname{tr}(C, i)\right)$ then
if $W_{\min } \cup \operatorname{tr}(C, i)$ passes the duplicates-check then
output the weighted representation of the voting game with MWCs
$W_{\min } \cup \operatorname{tr}(C, i)$;
append $W_{\min } \cup \operatorname{tr}(C, i)$ to games $[i]$;

Observations

- duplicates-check is necessary, because ($\mathcal{G}_{\text {cwvg }}(n), \supseteq_{м W C}$) is not a tree;
- running time: exponential in n.

Solution Algorithm:
Incorporating Algorithm 2 into Algorithm 1 gives an exact anytime algorithm for solving the Inverse Problem. This solution algorithm runs in time exponential in n.

Conclusion

- exact anytime algorithm for solving the Inverse Problem;
- algorithm runs in time exponential in the number of players;
- however,

