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Introduction

What are we going to talk about?

I Voting within EU (is it fair?);

I How to develop a fair game.

Weighted Voting Games (WVG)?
A game (N,wi∈N , q) is a weighted voting game if:

I v satisfies unanimity (
∑

i∈N wi ≥ q)

I v satisfies monotonicity (∀i ∈ N : wi ≥ 0)

I v is defined as follows:

v(C ) =

{
1 if

∑
i∈C wi ≥ q

0 otherwise

I representation: [q; w1, . . . ,wn]
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Power Indices

Several power indices have been proposed to represent the power
of each player, among which:

I Shapley-Shubik index, ISS(N, v , i)
‘For each permutation, the pivotal player gets a point.’

ISS(N, v , i) =
∑

C⊆N\{i}

|C |!(|N| − |C | − 1)!

|N|!
(v(C ∪ {i})− v(C ))

I (raw) Banzhaf index, βi

‘For each coalition in which a player is pivotal, it gets a point.’

βi =

∑
C⊆N\{i}

(
v(C ∪ {i})− v(C )

)
2n−1
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EU: History of Voting Methods

I EU consists of 25 member countries.

I In Nice (2000) a new voting scheme was developed to
improve the decision process of the EU. This game is called
the Nice Rule.

I In Brussels (2004) a new voting scheme was approved by the
EU. This game is called the European Constitution Rule. It is
also extended to 27 member countries (Romania and
Bulgaria)

I Algaba et al. (2007) analyse both games and try to find a
game that is fairer.
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Nice Game (1)

Representing the Nice Game:
v1 = [232; 29, 29, 29, 29, 27, 27, 13, 12, 12, 12, 12, 12, 10, 10, 7,
7, 7, 7, 7, 4, 4, 4, 4, 4, 3],
with member states sorted by decreasing population.

Additional requirements on a winning coalition:

v2: it must contain at least 13 members;
v2 = [13; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

v3: it must contain at least 62% of the population of the EU.
v3 = [620; 182, 131, 131, 130, 126, 91, 84, 36, 24, 23, 23,
22, 22, 20, 18, 12, 12, 11, 9, 8, 5, 4, 3, 2, 1, 1], where
w3,i is proportional to the population of i (

∑
i∈N w3,i = 1000)
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Nice Game (2)

A coalition S must be winning in each of v1, v2 and v3.
Notation: v1 ∧ v2 ∧ v3. This is called a weighted 3-majority game.

(v1 ∧ v2 ∧ v3)(S) =

{
1 if wi (S) ≥ qi where 1 ≤ i ≤ 3

0 otherwise

Here vi = [qi ; wi,1, . . . ,wi,n] and wi (S) =
∑

j∈S wi,j .
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European Constitution Game (1)

Representing the European Constitution Game:
Similar to the Nice Game, except for:

v ′2: 15 countries are needed to win: v2 with q2 ← 15

v ′3: These 15 countries must sum up to at least 65% of the
population of the EU: v3 with q3 ← 650.

bc : The minimum number of countries to block a coalition is 4.
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European Constitution Game (2)

Representing the European Constitution Game:
It is a bit harder than representing the Nice game. But it is shown
in the paper that if bc is the game [22; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (S winning if |S | ≥ 22)
then the game can be represented as(

v ′2 ∧ v ′3

)
∨ bc

I will see if this blocking clause has an effect at all.
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Effect of Blocking Clause

Hence, the blocking game does not have any effect and just makes
the total game more complicated.
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Comparison of Power in the two Games

The power is distributed differently in each game. Which one is
fairest?
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What do we want? (1)

I We want each person in each member country to have equal
power.

I There is a two tier system:
I Each person votes for a representative to send to the EU

meeting;
I The representatives from each country vote.

I How to distribute the weight of each representative based on
the number of people in the country he represents?
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What do we want? (2)

If β′x is the normalized Banzhaf index for a person in a country i in
EU with population ni , and β′i is the normalized Banzhaf index of
a representative for i , then Felsenthal and Machover have shown
that:

β′x ∝ β′i

√
2

πni

Thus the Banzhaf index of each representative β′i should be ∝ √ni

for each person in the EU to have equal power.
Let’s see if this is the case for any of the games presented here.
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Fair games?

Fair games should have all points
on the regression line since we
want β′i ∝

√
ni . This is not the

case for any of the current voting
systems.
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Inverse Problem

Inverse Problem?
Given a power index ~p, find a WVG such that
the power of each player i is as close as possible to pi.

Solution: (de Keijzer et al. 2010)
1. Enumerate all WVGs of n players;
2. Compute for each WVG its power index;
3. Output the WVG which power index is closest to ~p.

Has anybody solved this before?
Not really, there are some hill climbing algorithms,
but they do not guarantee an optimal outcome.
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Terminology

Representing WVGs:
(q : w1, . . . ,wn)⇐⇒ (N,Wmin)⇐⇒ (N, Lmax)

Representation Languages:
Lweights ; LW ,min; LL,max

Linear Games:

I desirability relation �D , where:
i �D j iff ∀S ⊆ N\{i , j} : v(S ∪ {i}) ≥ v(S ∪ {j})

I (N, v) is linear iff ∀i , j ∈ N : i �D j or j �D i
=⇒ every WVG is a linear game;

I (q : w1, . . . ,wn) is a canonical WVG iff 1 �D · · · �D n.

16 / 24



Weighted Voting
Games

Introduction

EU: Power Distribution

Inverse Problem

Naive Algorithm

Observations

Naive Algorithm

Running Time

Solution Algorithm

Conclusion

Observations

I the number of weighted representations for each WVG is
infinite;

I there is exactly one (N,Wmin)-representation for each WVG;

I the number of WVGs of n players is finite,
because there are only finitely many sets of MWCs for n
players.
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Naive Algorithm

Algorithm 1: Solving the Inverse Problem

Input: target power index ~p = (p1, . . . , pn)

Output: l ∈ LW ,min such that f(Gl) is as close as possible to ~p

begin
bestgame← 0;
besterror←∞;
forall l ∈ LW ,min do

Compute f(Gl) = (f(Gl, 1), . . . , f(Gl, n));
error←

∑n
i=1(f(Gl, i)− pi)

2;
if error < besterror then

bestgame← l;
besterror← error;

return bestgame;

end
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Running Time

I power index function f : ≤ exponential in n;
(for all known power indices)

I enumeration of LW ,min: doubly exponential in n.

Solution:
Improving the enumeration method.
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Improvements on Enumeration (1)

I focus on Gcwvg (n)

Define poset (Gcwvg (n),⊇MWC ) as follows:
G1 ⊇MWC G2 iff Wmin(G1) ⊇Wmin(G2),
where G1,G2 ∈ Gcwvg (n)

Define rank function ρ : Gcwvg (n)→ Z as follows:
ρ(G ) := |Wmin(G )|

Claim: (Gcwvg (n),⊇MWC ) is graded under ρ
i.e. ∀G1,G2 ∈ Gcwvg (n) : ρ(G1) = ρ(G2)− 1 if G1 covers G2

G1 covers G2 iff
G1 ⊆MWC G2 and there is no G3 such that G1 ⊆MWC G3 ⊆MWC G2

Proof omitted.
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Improvements on Enumeration (2)

Definition of tr(C, i):
Let (N, v) be a canonical WVG and C ⊆ N. Let pi be the ith
highest-numbered player among the players in C. Define tr(C, i)
as follows:

tr(C, i) :=

 C\{pi, . . . , n} if 0 < i ≤ |C|
C if i = 0
undefined otherwise

Claim:
∀G1,G2 ∈ Gcwvg (n) such that G1 covers G2 in (Gcwvg (n),⊇MWC ) :

there is a C ∈ Lmax(G1) and an i ∈ N with 0 ≤ i ≤ n such that
Wmin(G2) = Wmin(G1) ∪ tr(C, i).

Proof on the blackboard (if time allows).
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Enumeration Algorithm

Algorithm 2: Enumerating the class of n-agent canonical WVGs

begin
output (1 : 0, . . . , 0);
games[0]← {∅};
for i = 1 to

(
n
b n

2 c
)

do

forall Wmin ∈ games[i− 1] do
Lmax ← computeMLCs(Wmin);
forall C ∈ Lmax do

for j = 1 to n do
if isweighted(Wmin ∪ tr(C, i)) then

if Wmin ∪ tr(C, i) passes the
duplicates-check then

output the weighted representation of
the voting game with MWCs
Wmin ∪ tr(C, i);
append Wmin ∪ tr(C, i) to games[i];

end 22 / 24
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Observations

I duplicates-check is necessary,
because (Gcwvg (n),⊇MWC ) is not a tree;

I running time: exponential in n.

Solution Algorithm:
Incorporating Algorithm 2 into Algorithm 1 gives an exact anytime
algorithm for solving the Inverse Problem. This solution algorithm
runs in time exponential in n.
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Conclusion

I exact anytime algorithm for solving the Inverse Problem;

I algorithm runs in time exponential in the number of players;

I however,
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