Weighted Voting Games

Introduction EU: Power Distribution Inverse Problem Naive Algorithm Solution Algorithm Conclusion

Weighted Voting Games and the tension between weight and power

> Annemieke Reijngoud & Ole Martin Brende

> > Cooperative Games

May 16, 2010

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ① への

Outline

Introduction

Introduction Power Indices

EU: Power Distribution

Background Analysis Fair Game

Inverse Problem Introduction Terminology

Naive Algorithm

Observations Naive Algorithm Running Time

Solution Algorithm

Improvements Enumeration Algorithm

Conclusion

Weighted Voting Games

Introduction EU: Power Distribution Inverse Problem Naive Algorithm Solution Algorithm Conclusion

Introduction

What are we going to talk about?

- Voting within EU (is it fair?);
- How to develop a fair game.

Weighted Voting Games (WVG)?

A game $(N, w_{i \in N}, q)$ is a weighted voting game if:

- v satisfies unanimity $(\sum_{i \in N} w_i \ge q)$
- v satisfies monotonicity ($\forall i \in N : w_i \geq 0$)
- v is defined as follows:

$$v(C) = egin{cases} 1 & ext{if } \sum_{i \in C} w_i \geq q \ 0 & ext{otherwise} \end{cases}$$

• representation: $[q; w_1, \ldots, w_n]$

Weighted Voting Games

Introduction

Introduction Power Indices EU: Power Distributio Inverse Problem Naive Algorithm Solution Algorithm

Power Indices

Several power indices have been proposed to represent the power of each player, among which:

Shapley-Shubik index, I_{SS}(N, v, i)
 'For each permutation, the pivotal player gets a point.'

$$I_{SS}(N, v, i) = \sum_{C \subseteq N \setminus \{i\}} \frac{|C|!(|N| - |C| - 1)!}{|N|!} (v(C \cup \{i\}) - v(C))$$

(raw) Banzhaf index, β_i 'For each coalition in which a player is pivotal, it gets a point.'

$$\beta_i = \frac{\sum_{C \subseteq N \setminus \{i\}} \left(v(C \cup \{i\}) - v(C) \right)}{2^{n-1}}$$

Weighted Voting Games

Introduction Introduction Power Indices EU: Power Distribution Inverse Problem Naive Algorithm Solution Algorithm Conclusion

EU: History of Voting Methods

- EU consists of 25 member countries.
- In Nice (2000) a new voting scheme was developed to improve the decision process of the EU. This game is called the *Nice Rule*.
- ▶ In Brussels (2004) a new voting scheme was approved by the EU. This game is called the *European Constitution Rule*. It is also extended to 27 member countries (Romania and Bulgaria)
- Algaba et al. (2007) analyse both games and try to find a game that is fairer.

Weighted Voting Games

Introduction

EU: Power Distribution

Background Analysis Fair Game

Inverse Problem

Naive Algorithm

olution Algorithm

Nice Game (1)

Representing the Nice Game:

 $\mathbf{v_1} = [\mathbf{232}; \ \mathbf{29}, \ \mathbf{29}, \ \mathbf{29}, \ \mathbf{29}, \ \mathbf{27}, \ \mathbf{27}, \ \mathbf{13}, \ \mathbf{12}, \ \mathbf{12}, \ \mathbf{12}, \ \mathbf{12}, \ \mathbf{12}, \ \mathbf{12}, \ \mathbf{10}, \ \mathbf{10}, \ \mathbf{7}, \\ \mathbf{7}, \ \mathbf{7}, \ \mathbf{7}, \ \mathbf{7}, \ \mathbf{4}, \ \mathbf{4}, \ \mathbf{4}, \ \mathbf{4}, \ \mathbf{3}],$

with member states sorted by decreasing population.

Additional requirements on a winning coalition:

- v_2 : it must contain at least 13 members; $v_2 = [13; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]$
- *v*₃: it must contain at least 62% of the population of the EU. *v*₃ = [620; 182, 131, 131, 130, 126, 91, 84, 36, 24, 23, 23, 22, 22, 20, 18, 12, 12, 11, 9, 8, 5, 4, 3, 2, 1, 1], where *w*_{3,*i*} is proportional to the population of *i* ($\sum_{i \in N} w_{3,i} = 1000$)

Introduction

EU: Power Distribution

Background Analysis Fair Game

verse Problem

Naive Algorithm

olution Algorithm

Nice Game (2)

A coalition S must be winning in each of v_1 , v_2 and v_3 . Notation: $v_1 \wedge v_2 \wedge v_3$. This is called a *weighted 3-majority game*.

$$(v_1 \wedge v_2 \wedge v_3)(S) = egin{cases} 1 & ext{if } w_i(S) \geq q_i ext{ where } 1 \leq i \leq 3 \ 0 & ext{otherwise} \end{cases}$$

Here $v_i = [q_i; w_{i,1}, ..., w_{i,n}]$ and $w_i(S) = \sum_{j \in S} w_{i,j}$.

Weighted Voting Games

Introduction

EU: Power Distribution

Background Analysis Eair Game

Inverse Problem

Naive Algorithm

Solution Algorithm

European Constitution Game (1)

Representing the European Constitution Game: Similar to the Nice Game, except for:

- v_2' : 15 countries are needed to win: v_2 with $q_2 \leftarrow 15$
- v'_3 : These 15 countries must sum up to at least 65% of the population of the EU: v_3 with $q_3 \leftarrow 650$.
- *bc* : The minimum number of countries to block a coalition is 4.

Weighted Voting Games

Introduction

EU: Power Distribution

Background Analysis Fair Game

Inverse Problem

Naive Algorithm

Solution Algorithm

European Constitution Game (2)

Representing the European Constitution Game:

$$(v_2' \wedge v_3') \lor bc$$

I will see if this blocking clause has an effect at all.

Weighted Voting Games

Introduction

EU: Power Distribution

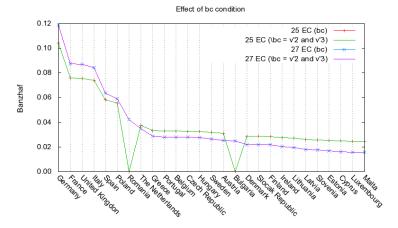
Background Analysis Fair Game

Inverse Problem

Naive Algorithm

olution Algorithm

Effect of Blocking Clause



Hence, the blocking game does not have any effect and just makes the total game more complicated.

Weighted Voting Games

Introduction

EU: Power Distribution

Background

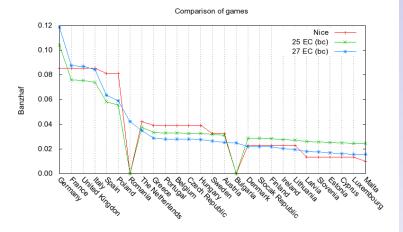
Analysis Fair Game

Inverse Problem

Naive Algorithm

Solution Algorithm

Comparison of Power in the two Games



The power is distributed differently in each game. Which one is fairest?

Weighted Voting Games

Introduction

EU: Power Distribution

Background Analysis

air Game

Inverse Problem

Naive Algorithm

Solution Algorithm

What do we want? (1)

- We want each person in each member country to have equal power.
- There is a two tier system:
 - Each person votes for a representative to send to the EU meeting;
 - The representatives from each country vote.
- How to distribute the weight of each representative based on the number of people in the country he represents?

Weighted Voting Games

Introduction

EU: Power Distribution

Background Analysis Fair Game

nverse Problem

laive Algorithm

olution Algorithm

What do we want? (2)

If β'_x is the normalized Banzhaf index for a person in a country *i* in EU with population n_i , and β'_i is the normalized Banzhaf index of a representative for *i*, then Felsenthal and Machover have shown that:

$$\beta_x' \propto \beta_i' \sqrt{\frac{2}{\pi n_i}}$$

Thus the Banzhaf index of each representative β'_i should be $\propto \sqrt{n_i}$ for each person in the EU to have equal power. Let's see if this is the case for any of the games presented here.

Weighted Voting Games

Introduction

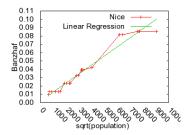
EU: Power Distribution

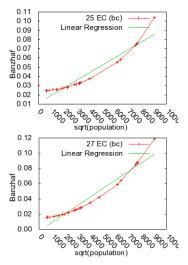
Background Analysis Fair Game

nverse Problem Naive Algorithm

Fair games?

Fair games should have all points on the regression line since we want $\beta'_i \propto \sqrt{n_i}$. This is not the case for any of the current voting systems.





Weighted Voting Games

Introduction

EU: Power Distribution

Background Analysis Fair Game

nverse Problem

Vaive Algorithm

Solution Algorithm

Inverse Problem

Inverse Problem?

Given a power index \vec{p} , find a WVG such that the power of each player *i* is as close as possible to p_i .

Solution: (de Keijzer et al. 2010)

- 1. Enumerate all WVGs of *n* players;
- 2. Compute for each WVG its power index;
- 3. Output the WVG which power index is closest to \vec{p} .

Has anybody solved this before?

Not really, there are some hill climbing algorithms, but they do not guarantee an optimal outcome.

Weighted Voting Games

Introduction

EU: Power Distribution

nverse Problem

Introduction Terminology Naive Algorithm Solution Algorithm

Terminology

Representing WVGs: $(q: w_1, \ldots, w_n) \iff (N, W_{min}) \iff (N, L_{max})$

Representation Languages: $\mathcal{L}_{weights}$; $\mathcal{L}_{W,min}$; $\mathcal{L}_{L,max}$

Linear Games:

- desirability relation \succeq_D , where: $i \succeq_D j$ iff $\forall S \subseteq N \setminus \{i, j\} : v(S \cup \{i\}) \ge v(S \cup \{j\})$
- (N, v) is *linear* iff ∀i, j ∈ N : i ≿_D j or j ≿_D i
 ⇒ every WVG is a linear game;
- $(q: w_1, \ldots, w_n)$ is a canonical WVG iff $1 \succeq_D \cdots \succeq_D n$.

Weighted Voting Games

Introduction EU: Power Distribution

nverse Problem Introduction

Terminology

laive Algorithm

.

Observations

- the number of weighted representations for each WVG is infinite;
- ▶ there is exactly one (*N*, *W*_{min})-representation for each WVG;
- the number of WVGs of n players is finite, because there are only finitely many sets of MWCs for n players.

Weighted Voting Games

Introduction EU: Power Distribution

Inverse Problem

Naive Algorithm

Observations Naive Algorithm Running Time

Solution Algorithm

Naive Algorithm

Algorithm 1: Solving the Inverse Problem

Input: target power index $\vec{p} = (p_1, \ldots, p_n)$

Output: $l \in \mathcal{L}_{W,min}$ such that $f(G_l)$ is as close as possible to \vec{p} begin

Weighted Voting Games

Introduction

EU: Power Distribution

nverse Problem

Naive Algorithm Observations Naive Algorithm

Running Time

- ▶ power index function f: ≤ exponential in n; (for all known power indices)
- enumeration of $\mathcal{L}_{W,min}$: doubly exponential in n.

Solution:

Improving the enumeration method.

Weighted Voting Games

Introduction

EU: Power Distribution

nverse Problem

Vaive Algorithm

Observations Naive Algorithm Running Time

Solution Algorithm

Conclusion

Improvements on Enumeration (1)

• focus on $\mathcal{G}_{cwvg}(n)$

Define poset $(\mathcal{G}_{cwvg}(n), \supseteq_{MWC})$ as follows: $G_1 \supseteq_{MWC} G_2$ iff $W_{min}(G_1) \supseteq W_{min}(G_2)$, where $G_1, G_2 \in \mathcal{G}_{cwvg}(n)$

Define rank function $\rho : \mathcal{G}_{cwvg}(n) \to \mathbb{Z}$ as follows: $\rho(G) := |W_{min}(G)|$

Claim: $(\mathcal{G}_{cwvg}(n), \supseteq_{MWC})$ is graded under ρ i.e. $\forall G_1, G_2 \in \mathcal{G}_{cwvg}(n) : \rho(G_1) = \rho(G_2) - 1$ if G_1 covers G_2

 G_1 covers G_2 iff $G_1 \subseteq_{MWC} G_2$ and there is no G_3 such that $G_1 \subseteq_{MWC} G_3 \subseteq_{MWC} G_2$ Proof omitted. Weighted Voting Games

Introduction

EU: Power Distribution

nverse Problem

Vaive Algorithm

Solution Algorithm

Improvements Enumeration Algorithm

Improvements on Enumeration (2)

Definition of tr(C, i):

Let (N, v) be a canonical WVG and $C \subseteq N$. Let p_i be the *i*th highest-numbered player among the players in C. Define tr(C, i) as follows:

 $\mathtt{tr}(C,i) := \left\{ egin{array}{cc} C ackslash \{ p_i, \dots, n \} & ext{if } 0 < i \leq |C| \ C & ext{if } i = 0 \ ext{undefined} & ext{otherwise} \end{array}
ight.$

Claim:

 $\forall G_1, G_2 \in \mathcal{G}_{cwvg}(n) \text{ such that } G_1 \text{ covers } G_2 \text{ in } (\mathcal{G}_{cwvg}(n), \supseteq_{MWC}) :$ there is a $C \in L_{max}(G_1)$ and an $i \in \mathbb{N}$ with $0 \le i \le n$ such that $W_{min}(G_2) = W_{min}(G_1) \cup \operatorname{tr}(C, i).$

Proof on the blackboard (if time allows).

Weighted Voting Games

EU: Power Distribution

nverse Problem

Vaive Algorithm

Solution Algorithm

Improvements Enumeration Algorithm

Enumeration Algorithm

Algorithm 2: Enumerating the class of *n*-agent canonical WVGs

begin

```
output (1:0,\ldots,0);
    games[0] \leftarrow \{\emptyset\};
    for i = 1 to \binom{n}{\lfloor \frac{n}{2} \rfloor} do
        forall W_{min} \in games[i-1] do
            L_{max} \leftarrow \text{computeMLCs}(W_{min});
            forall C \in L_{max} do
                 for j = 1 to n do
                     if isweighted (W_{min} \cup tr(C, i)) then
                          if W_{min} \cup tr(C, i) passes the
                          duplicates-check then
                              output the weighted representation of
                             the voting game with MWCs
                             W_{min} \cup \operatorname{tr}(C, i);
                             append W_{min} \cup tr(C,i) to games[i];
                                              end
```

Weighted Voting Games

Inverse Problem

Vaive Algorithm

Solution Algorithm

Improvements

Enumeration Algorithm

Observations

- duplicates-check is necessary, because (G_{cwvg}(n), ⊇_{MWC}) is not a tree;
- running time: exponential in n.

Solution Algorithm:

Incorporating Algorithm 2 into Algorithm 1 gives an exact anytime algorithm for solving the Inverse Problem. This solution algorithm runs in time exponential in n.

Weighted Voting Games

ntroduction

EU: Power Distribution

nverse Problem

Vaive Algorithm

Solution Algorithm

Improvements Enumeration

Algorithm

Conclusion

- exact anytime algorithm for solving the Inverse Problem;
- algorithm runs in time exponential in the number of players;
- however,

Weighted Voting Games

Introduction EU: Power Distribution Inverse Problem Naive Algorithm Solution Algorithm Conclusion