Cooperative Games Lecture 3: The core

Stéphane Airiau

ILLC - University of Amsterdam

- Characterize the set of games with non-empty core (Bondareva Shapley theorem), and we will informally introduce linear programming.
- Application of the Bondareva Shapley theorem to market games.

The Bondareva Shapley theorem: a characterization of games with non-empty core.

The theorem was proven independently by O. Bondareva (1963) and L. Shapley (1967). Let $\mathcal{C} \subseteq N$. The **characteristic vector** $\chi_{\mathcal{C}}$ of \mathcal{C} is the member of \mathbb{R}^N defined by $\chi_{\mathcal{C}}^i = \begin{cases} 1 \text{ if } i \in \mathcal{C} \\ 0 \text{ if } i \in N \setminus \mathcal{C} \end{cases}$

A **map** is a function $2^N \setminus \emptyset \to \mathbb{R}_+$ that gives a positive weight to each coalition.

Definition (Balanced map)

A function $\lambda : 2^N \setminus \emptyset \to \mathbb{R}_+$ is a **balanced map** iff $\sum_{\mathfrak{C} \subseteq N} \lambda(\mathfrak{C}) \chi_{\mathfrak{C}} = \chi_N$

A map is balanced when the amount received over all the coalitions containing an agent *i* sums up to 1.

Example:
$$n = 3$$
, $\lambda(\mathcal{C}) = \begin{cases} \frac{1}{2} & \text{if } |\mathcal{C}| = 2\\ 0 & \text{otherwise} \end{cases}$

	1	2	3
{1,2}	$\frac{1}{2}$	$\frac{1}{2}$	0
{1,3}	$\frac{1}{2}$	õ	$\frac{1}{2}$
{2,3}	ō	$\frac{1}{2}$	1

Each of the column sums up to 1. $\frac{1}{2}\chi_{\{1,2\}} + \frac{1}{2}\chi_{\{1,3\}} + \frac{1}{2}\chi_{\{2,3\}} = \chi_{\{1,2,3\}}$

Definition (Balanced game)

A game is **balanced** iff for each balanced map λ we have $\sum_{\mathcal{C} \subset N, \mathcal{C} \neq \emptyset} \lambda(\mathcal{C}) v(\mathcal{C}) \leq v(N)$.

Theorem (Bondareva Shapley)

A TU game has a non-empty core iff it is balanced.

Notations:

- Let $\mathcal{V}(N) = \mathcal{V}$ the set of all coalition functions on 2^N .
- Let $\mathcal{V}_{Core} = \{v \in \mathcal{V} | Core(N, v) \neq \emptyset\}.$

Can we characterize \mathcal{V}_{Core} ?

 $Core(N, v) = \{x \in \mathbb{R}^n \mid x(\mathcal{C}) \ge v(\mathcal{C}) \text{ for all } \mathcal{C} \subseteq N\}$

The core is defined by a set of linear constraints.

 \Rightarrow The idea is to use results from linear optimization.

A linear program has the following form:

$$\begin{cases} \max c^T x \\ \text{subject to} \begin{cases} Ax \leq b, \\ x \geq 0 \end{cases} \end{cases}$$

- *x* is a vector of *n* variables
- *c* is the objective function
- A is a $m \times n$ matrix
- *b* is a vector of size *n*
- *A* and *b* represent the linear constraints

example: maximize
$$8x_1 + 10x_2 + 5x_3$$

subject to $\begin{cases} 3x_1 + 4x_2 + 2x_3 \leq 7 & (1) \\ x_1 + x_2 + x_3 \leq 2 & (2) \end{cases}$
 $A = \begin{pmatrix} 3 & 4 & 2 \\ 1 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 7 \\ 2 \end{pmatrix}, c = \begin{pmatrix} 8 \\ 10 \\ 5 \end{pmatrix}.$

A **feasible solution** is a solution that satisfies the constraints.

Example: maximize $8x_1 + 10x_2 + 5x_3$ subject to $\begin{cases} 3x_1 + 4x_2 + 2x_3 \leq 7 & (1) \\ x_1 + x_2 + x_3 \leq 2 & (2) \end{cases}$

- $\langle 0, 1, 1 \rangle$ is feasible, with objective function value 15.
- $\langle 1, 1, 0 \rangle$ is feasible, with objective function value 18.

The **dual** of a LP: finding an upper bound to the objective function of the LP.

$$(1) \times 1 + (2) \times 6 \implies 9x_1 + 10x_2 + 8x_3 \leq 19$$

$$(1) \times 2 + (2) \times 2 \implies 8x_1 + 10x_2 + 6x_3 \le 18$$

The coefficients are as large as in the obective function,

 \Rightarrow the bound is an upper bound for the objective function.

Hence, the solution cannot be better than 18, and we found one, Problem solved! \checkmark

Primal	Dual		
$\begin{cases} \max c^T x \\ \text{subject to } \begin{cases} Ax \leq b, \\ x \geq 0 \end{cases} \end{cases}$	$\begin{cases} \min y^T b \\ \text{subject to} \begin{cases} y^T A \ge c^T, \\ y \ge 0 \end{cases} \end{cases}$		

Theorem (Duality theorem)

When the primal and the dual are feasible, they have optimal solutions with equal value of their objective function. We consider the following **linear programming** problem: (*LP*) $\begin{cases} \min x(N) \\ \text{subject to } x(\mathcal{C}) \ge v(\mathcal{C}) \text{ for all } \mathcal{C} \subseteq N, S \neq \emptyset \end{cases}$

 $v \in \mathcal{V}_{core}$ iff the value of (LP) is v(N).

The dual of (LP): $(DLP) \begin{cases} \max \sum_{\mathcal{C} \subseteq N} y_{\mathcal{C}} v(\mathcal{C}) \\ \text{subject to} \begin{cases} \sum_{\mathcal{C} \subseteq N} y_{\mathcal{C}} \chi_{\mathcal{C}} = \chi_N \text{ and,} \\ y_{\mathcal{C}} \ge 0 \text{ for all } \mathcal{C} \subseteq N, \ \mathcal{C} \neq \emptyset. \end{cases}$ It follows from the duality theorem of linear programming: (N, v) has a non empty core iff $v(N) \ge \sum_{\mathcal{C} \subseteq N} y_{\mathcal{C}} v(\mathcal{C})$ for all feasible vector $(y_{\mathcal{C}})_{\mathcal{C} \subseteq N}$ of (DLP).

Recognize the balance map in the constraint of (DLP)

A market is a quadruple (N, M, A, F) where

- N is a set of traders
- *M* is a set of *m* continuous good
- $A = (a_i)_{i \in N}$ is the initial endowment vector
- $F = (f_i)_{i \in N}$ is the valuation function vector

•
$$v(S) = \max\left\{\sum_{i\in S} f_i(x_i) \mid x_i \in \mathbb{R}^m_+, \sum_{i\in S} x_i = \sum_{i\in S} a_i\right\}$$

• we further assume that the f_i are continuous and concave.

Theorem

Every Market Game is balanced

Definition (Coalition Structure)

A coalition structure (CS) is a partition of the grand coalition into coalitions.

 $S = \{C_1, \ldots, C_k\}$ where $\bigcup_{i \in \{1,k\}} C_i = N$ and $i \neq j \Rightarrow C_i \cap C_j = \emptyset$. We note \mathscr{S}_N the set of all coalition structures over the set N.

ex: {{1,3,4}{2,7}{5}{6,8}} is a coalition structure for n = 8 agents.

We will study three solution concepts: the **bargaining set**, the **nu**cleolus and the kernel. They form the "bargaining set family" and we will see later why. In addition, the definition of each of these solution concepts uses a CS.

We start by defining a game with coalition structure, and see how we can define the core of such a game. Then, we'll start studying the bargaining set family.

Definition (TU game)

A TU game is a pair (N, v) where N is a set of agents and where v is a valuation function.

Definition (Game with Coalition Structures)

A **TU-game with coalition structure** (N, v, S) consists of a TU game (N, v) and a CS $S \in \mathscr{S}_N$.

- We assume that the players agreed upon the formation of *S* and only the payoff distribution choice is left open.
- The CS may model affinities among agents, may be due to external causes (e.g. affinities based on locations).
- The agents may refer to the value of coalitions with agents outside their coalition (i.e. opportunities they would have outside of their coalition).
- (N, v) and $(N, v, \{N\})$ represent the same game.

Definition (core of a game (N, v))

The core of a TU game (N, v) is defined as $Core(N,v) = \{x \in \mathbb{R}^n \mid x(N) \le v(N) \land x(\mathcal{C}) \ge v(\mathcal{C}) \forall \mathcal{C} \subseteq N\}$

The set of **feasible** payoff vectors for (N, v, S) is $X_{(N,v,S)} = \{ x \in \mathbb{R}^n \mid \text{ for every } \mathcal{C} \in S \ x(\mathcal{C}) \leqslant v(\mathcal{C}) \}.$

Definition (Core of a game with CS) The **core** Core(N, v, S) of (N, v, S) is defined by $\{x \in \mathbb{R}^n \mid (\forall \mathcal{C} \in \mathcal{S}, x(\mathcal{C}) \leq v(\mathcal{C})) \text{ and } (\forall \mathcal{C} \subseteq N, x(\mathcal{C}) \geq v(\mathcal{C}))\}$

We have $Core(N, v, \{N\}) = Core(N, v)$.

The next theorems are due to Aumann and Drèze.

R.J. Aumann and J.H. Drèze. Cooperative games with coalition structures, International Journal of Game Theory, 1974

Definition (Superadditive cover)

The **superadditive cover** of (N, v) is the game (N, \hat{v}) defined by

$$\begin{cases} \hat{v}(\mathcal{C}) = \max_{\mathcal{P} \in \mathscr{S}_{\mathcal{C}}} \left\{ \sum_{T \in \mathcal{P}} v(T) \right\} \ \forall \mathcal{C} \subseteq N \setminus \emptyset \\ \hat{v}(\emptyset) = 0 \end{cases}$$

• We have $\hat{v}(N) = \max_{\mathcal{P} \in \mathscr{S}_N} \left\{ \sum_{T \in \mathcal{P}} v(T) \right\}$, i.e., $\hat{v}(N)$ is the

maximum value that can be produced by *N*. We call it the **value of the optimal coalition structure**.

• The superadditive cover is a superadditive game (why?).

Theorem

Let (N, v, S) be a game with coalition structure. Then

a)
$$Core(N, v, S) \neq \emptyset$$
 iff $Core(N, \hat{v}) \neq \emptyset \land \hat{v}(N) = \sum_{\mathfrak{C} \in S} v(\mathfrak{C})$

b) if $Core(N, v, S) \neq \emptyset$, then $Core(N, v, S) = Core(N, \hat{v})$

Definition (Substitutes)

Let (N, v) be a game and $(i, j) \in N^2$. Agents *i* and *j* are **substitutes** iff $\forall C \subseteq N \setminus \{i, j\}, v(C \cup \{i\}) = v(C \cup \{j\})$.

A nice property of the core related to fairness:

Theorem

Let (N, v, S) be a game with coalition structure, let *i* and *j* be substitutes, and let $x \in Core(N, v, S)$. If *i* and *j* belong to different members of *S*, then $x_i = x_j$.

- We introduced a stability solution concept: the core.
- we looked at examples:
 - individual games: some games have an empty core.
 - classes of games have a non-empty core: e.g. convex games and minimum cost spanning tree games.
- We look at a characterization of games with non-empty core: the Shapley Bondareva theorem, which relies on a result from linear programming.
- We Apply the Bondareva-Shapley to market games.
- We considered the core of games with coalition structures.

