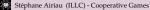
Cooperative Games Lecture 5: The nucleolus

Stéphane Airiau

ILLC - University of Amsterdam



- We consider one way to compare two imputations.
- We define the Nucleolus and look at some properties.
- We prove important properties of the nucleolus, which requires some elements of analysis.

Definition (Excess of a coalition)

Let (N, v) be a TU game, $\mathcal{C} \subseteq N$ be a coalition, and xbe a payoff distribution over N. The excess $e(\mathcal{C}, x)$ of coalition \mathcal{C} at x is the quantity $e(\mathcal{C}, x) = v(\mathcal{C}) - x(\mathcal{C})$.

An example: let $N = \{1, 2, 3\}, C = \{1, 2\}, v(\{1, 2\}) = 8, x = \langle 3, 2, 5 \rangle$, $e(\mathcal{C}, x) = v(\{1, 2\}) - (x_1 + x_2) = 8 - (3 + 2) = 3.$

We can interpret a positive excess ($e(\mathcal{C}, x) \ge 0$) as the amount of **dissatisfaction** or **complaint** of the members of C from the allocation *x*.

We can use the excess to define the core: $Core(N,v) = \{x \in \mathbb{R}^n \mid x \text{ is an imputation and } \forall \mathcal{C} \subseteq N, e(\mathcal{C}, x) \leq 0\}$

This definition shows that no coalition has any complaint: each coalition's demand can be granted.

$$N = \{1, 2, 3\}, v(\{i\}) = 0 \text{ for } i \in \{1, 2, 3\}$$
$$v(\{1, 2\}) = 5, v(\{1, 3\}) = 6, v(\{2, 3\}) = 6$$
$$v(N) = 8$$

Let us consider two payoff vectors $x = \langle 3, 3, 2 \rangle$ and $y = \langle 2, 3, 3 \rangle$. Let e(x) denote the sequence of **excesses** of all coalitions at *x*.

$x = \langle 3, 3, 2 \rangle$		$y = \langle 2, 3, 3 \rangle$	
coalition C	$e(\mathcal{C},x)$	coalition C	$e(\mathcal{C},y)$
{1}	-3	{1}	-2
{2}	-3	{2}	-3
{3}	-2	{3}	-3
{1,2}	-1	{1,2}	0
{1,3}	1	{1,3}	1
{2,3}	1	{2,3}	0
{1,2,3}	0	{1,2,3}	0

Which payoff should we prefer? *x* or *y*? Let us write the excess in the decreasing order (from the greatest excess to the smallest)

 $\langle 1, 1, 0, -1, -2, -3, -3 \rangle$ $\langle 1, 0, 0, 0, -2, -3, -3 \rangle$

Definition (lexicographical order of $\mathbb{R}^m \ge_{lex}$)

Let
$$\geq_{lex}$$
 denote the lexicographical ordering of \mathbb{R}^m ,
i.e., $\forall (x,y) \in \mathbb{R}^m$, $x \geq_{lex} y$ iff
 $\begin{cases} x=y \text{ or} \\ \exists t \text{ s. t. } 1 \leq t \leq m \text{ and } \forall i \text{ s. t. } 1 \leq i < t x_i = y_i \text{ and } x_t > y_t \end{cases}$
example: $\langle 1, 1, 0, -1, -2, -3, -3 \rangle \geq_{lex} \langle 1, 0, 0, 0, -2, -3, -3 \rangle$
Let *l* be a sequence of *m* reals. We denote by *l* the reorder-
ing of *l* in decreasing order.

In the example, e(x) = (-3, -3, -2, -1, 1, 1, 0) and then e(x) $\models \langle 1, 1, 0, -1, -2, -3, -3 \rangle.$

Hence, we can say that *y* is better than *x* by writing $e(x)^{\blacktriangleright} \geq_{lex} e(y)^{\blacktriangleright}$.

I iı ∀x ∈ ℝ^m x ≤_{lex} x
∀x ∈ ℝ^m and any permutation σ of {1,...,m}, σ(x) ≤_{lex} x
∀x, y, u, v ∈ ℝ^m and α > 0
x ≤_{lex} y ⇒ αx ≤_{lex} αy
x <_{lex} y ⇒ αx <_{lex} αy
(x ≤_{lex} y ∧ u ≤_{lex} v) ⇒ x+u ≤_{lex} y+v
(x <_{lex} y ∧ u ≤_{lex} v) ⇒ x+u <_{lex} y+v
x ≤_{lex} y ∧ u ≤_{lex} v) ⇒ x+u <_{lex} y+v
x ≤_{lex} y we cannot conclude anything for the comparison between -αx and -αy.

Definition (Nucleolus)

Let (N, v) be a TU game. Let *Jmp* be the set of all imputations. The **nucleolus** Nu(N, v) is the set $Nu(N,v) = \{ x \in \exists mp \mid \forall y \in \exists mp \ e(y)^{\blacktriangleright} \ge_{lex} e(x)^{\blacktriangleright} \}$ An alternative definition in terms of objections and counter-objections

Let (N, v) be a TU game. **Objections** are made by **coalitions** instead of individual agents. Let $P \subseteq N$ be a coalition that expresses an objection.

A pair (P, y), in which $P \subseteq N$ and y is an imputation, is an **objection** to x iff e(P, x) > e(P, y).

Our excess for coalition P is too large at x, payoff y reduces it.

A coalition (Q, y) is a **counter-objection** to the objection (P, y)when e(Q, y) > e(Q, x) and $e(Q, y) \ge e(P, x)$.

Our excess under y is larger than it was under x for coalition Q! Furthermore, our excess at y is larger than what your excess was at x!

An imputation fails to be stable if the excess of some coalition P can be reduced without increasing the excess of some other coalition to a level at least as large as that of the original excess of P.

Definition (Nucleolus)

Let (N, v) be a TU game. The **nucleolus** is the set of imputations x such that for every objection (P, y), there exists a counter-objection (Q, y).

M.J. Osborne and A. Rubinstein. A course in game theory, MIT Press, 1994, Section 14.3.3.

Theorem

Let (N, v) be a TU game with a non-empty core. Then $Nu(N,v) \subseteq Core(N,v)$

Proof

This will be part of homework 2

Theorem

Let (N, v) be a superadditive game and $\exists mp$ be its set of imputations. Then, $\exists mp \neq \emptyset$.

Proof

Let (N, v) be a superadditive game. Let x be a payoff distribution defined as follows: $x_i = v(\{i\}) + \frac{1}{|N|} \left(v(N) - \sum_{j \in N} v(\{j\}) \right).$ • $v(N) - \sum_{j \in N} v(\{j\}) > 0$ since (N, v) is superadditive. • It is clear x is individually rational \checkmark • It is clear x is efficient \checkmark

Hence, $x \in \Im mp$.

Theorem (Non-emptyness of the nucleolus)

Let (N, v) be a TU game, if $\exists mp \neq \emptyset$, then the nucleolus Nu(N, v) is **non-empty**. Let $E = \mathbb{R}^m$ and $X \subseteq E$. ||.|| denote a distance in *E*, e.g., the euclidean distance.

We consider functions of the form $u : \mathbb{N} \to \mathbb{R}^m$. Another viewpoint on u is an infinite **sequence** of elements indexed by natural numbers $(u_0, u_1, \dots, u_k, \dots)$ where $u_i \in X$.

- **convergent sequence:** A sequence (u_t) converges to $l \in \mathbb{R}^m$ iff for all $\epsilon > 0$, $\exists T \in \mathbb{N}$ s.t. $\forall t \ge T$, $||u_t l|| \le \epsilon$.
- **extracted sequence:** Let (u_t) be an infinite sequence and $f : \mathbb{N} \to \mathbb{N}$ be a monotonically increasing function. The sequence v is extracted from u iff $v = u \circ f$, i.e., $v_t = u_{f(t)}$.
- **closed set:** a set *X* is closed if and only if it contains all of its limit points.

i.e. for all converging sequences $(x_0, x_1...)$ of elements in X, the limit of the sequence has to be in X as well. An example: if X = (0,1], $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ..., \frac{1}{n}, ...)$ is a converging sequence. However, 0 is not in X, and hence, X is not closed. "A closed set contains its borders".

- **bounded set:** A subset $X \subseteq \mathbb{R}^m$ is **bounded** if it is contained in a ball of finite radius, i.e. $\exists c \in \mathbb{R}^m$ and $\exists r \in \mathbb{R}^+$ s.t. $\forall x \in X ||x-c|| \leq r$.
- **compact set:** A subset $X \subseteq \mathbb{R}^m$ is a **compact** set iff from all sequences in *X*, we can extract a convergent sequence in *X*.
- \Rightarrow A set is **compact** set of \mathbb{R}^m iff it is **closed** and **bounded**.
- **convex set:** A set *X* is convex iff $\forall (x, y) \in X^2$, $\forall \alpha \in [0, 1]$, $\alpha x + (1 \alpha)y \in X$ (i.e. all points in a line from *x* to *y* is contained in *X*).
- **continuous function:** Let $X \subseteq \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^m$. *f* is **continuous at** $x_0 \in X$ iff $\forall \epsilon \in \mathbb{R}$, $\epsilon > 0$, $\exists \delta \in \mathbb{R}$, $\delta > 0$ s.t. $\forall x \in X$ s.t. $||x - x_0|| < \delta$, we have $||f(x) - f(x_0)|| < \epsilon$, i.e. $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \epsilon$.

Let $X \subseteq \mathbb{R}^n$.

- **Thm** A₁ If $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $X \subseteq E$ is a non-empty compact subset of \mathbb{R}^n , then f(X) is a non-empty compact subset of \mathbb{R}^m .
- **Thm A**₂ Extreme value theorem: Let X be a non-empty compact subset of \mathbb{R}^n , $f : X \to \mathbb{R}$ a **continuous** function. Then f is bounded and it reaches its supremum.
- **Thm A**₃ Let *X* be a non-empty compact subset of \mathbb{R}^n . $f: X \to \mathbb{R}$ is continuous iff for every closed subset $B \subseteq \mathbb{R}$, the set $f^{-1}(B)$ is compact.

Assume we have the following theorems 1 and 2 (we will prove them in the next slide).

Theorem (1)

Let *A* be a non-empty compact subset of \mathbb{R}^m . $\{x \in A \mid \forall y \in A \ x \leq_{lex} y\}$ is non-empty.

Theorem (2)

Assume we have a TU game (N, v), and consider its set $\exists mp$. If $\exists mp \neq \emptyset$, then set $B = \{e(x) \models | x \in \exists mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$

Let us take a TU game (N, v) and let us assume $\exists mp \neq \emptyset$. Then *B* in theorem 2 is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$. Now let *A* in theorem 1 be *B* in theorem 2. So $\{e(x)^{\blacktriangleright} \mid (x \in \exists mp) \land (\forall y \in \exists mp \ e(x)^{\blacktriangleright} \leq_{lex} e(y)^{\blacktriangleright})\}$ is non-empty. From this, it follows that: $Nu(N, v) = \{x \in \exists mp \ | \ \forall y \in \exists mp \ e(y)^{\blacktriangleright} \geq_{lex} e(x)^{\blacktriangleright}\} \neq \emptyset$. Let (N, v) be a TU game and consider its set $\Im mp$. Let us assume that $\Im mp \neq \emptyset$ to prove that $B = \{e(x)^{\blacktriangleright} | x \in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$.

First, let us prove that $\exists mp$ is a non-empty compact subset of $\mathbb{R}^{|N|}$. • $\exists mp$ non-empty by assumption.

• To see that $\exists mp$ is bounded, we need to show that for all i, x_i is bounded by some constant (independent of x). We have $v(\{i\}) \leq x_i$ (ind. rational) and x(N) = v(N) (efficient). Then $x_i + \sum_{j=1, j \neq i}^n v(\{j\}) \leq v(N)$, hence $x_i \leq v(N) - \sum_{j=1, j \neq i}^n v(\{j\})$.

• $\exists mp$ is closed (the boundaries of $\exists mp$ are members of $\exists mp$). This proves that $\exists mp$ is a non-empty compact subset of $\mathbb{R}^{|N|}$.

Thm A₁ If $f: E \to \mathbb{R}^m$ is continuous, $X \subseteq E$ is a non-empty compact subset of \mathbb{R}^n , then f(X) is a non-empty compact subset of \mathbb{R}^m .

 $e()^{\blacktriangleright}$ is a continuous function and $\exists mp$ is a non-empty and compact subset of $\mathbb{R}^{2^{|N|}}$. Using thm A₁, $e(\exists mp)^{\blacktriangleright} = \{e(x)^{\blacktriangleright} | x \in \exists mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$.

For a non-empty compact subset A of \mathbb{R}^m , we need to prove that the set $\{x \in A \mid \forall y \in A \ x \leq_{lex} y\}$ is non-empty.

First, let $\pi_i : \mathbb{R}^m \to \mathbb{R}$ the projection function s.t. $\pi_i(x_1, \ldots, x_m) = x_i$.

Then, let us define the following sets:

$$\left\{ \begin{array}{l} A_0 = A \\ A_{i+1} = \operatorname*{argmin}_{x \in A_i} \pi_{i+1}(x) \\ i \in \{0, 1, \dots, m-1\} \end{array} \right.$$

$$\bullet A_0 = A$$

• $A_1 = \operatorname{argmin}_{x \in A} \pi_1(x)$ is the set of elements in A with the smallest first entry in the sequence.

• $A_2 = \operatorname{argmin}_{x \in A_1} \pi_2(x)$ composed of the elements that have the smallest second entry among the elements with the smallest first entry

•
$$A_m = \{x \in A \mid \forall y \in A \ x \leq_{lex} y\}$$

We want to prove by induction that each A_i is non-empty compact subset of \mathbb{R}^m for $i \in \{1, ..., m\}$ to prove that A_m is non-empty.

• . . .

- $A_0 = A$ is non-empty compact of \mathbb{R}^m by hypothesis \checkmark .
- Let us assume that A_i is a non-empty compact subset of \mathbb{R}^m and let us prove that A_{i+1} is a non-empty compact subset of \mathbb{R}^m . π_{i+1} is a continuous function and A_i is a non-empty compact subset of \mathbb{R}^m .

Thm A₂: Extreme value theorem: Let *X* be a non-empty compact subset of \mathbb{R}^m , $f: X \to \mathbb{R}$ a **continuous** function.

Using the extreme value theorem, $\min_{x \in A_i} \pi_{i+1}(x)$ exists and it is reached in A_i , hence $\operatorname{argmin}_{x \in A_i} \pi_{i+1}(x)$ is non-empty. Now, we need to show it is compact.

We note by $\pi_i^{-1} : \mathbb{R} \to \mathbb{R}^m$ the inverse of π_i . Let $\alpha \in \mathbb{R}$, $\pi_i^{-1}(\alpha)$ is the set of all vectors $\langle x_1, \dots, x_{i-1}, \alpha, x_{i+1}, \dots, x_m \rangle$ s.t. $x_j \in \mathbb{R}$, $j \in \{1, \dots, m\}, j \neq i$. We can rewrite A_{i+1} as: $A_{i+1} = \pi_{i+1}^{-1} \left(\min_{x \in A_i} \pi_{i+1}(x) \right) \bigcap A_i$ **Thm A₃:** Let *X* be a non-empty compact subset of \mathbb{R}^n . $f: X \to \mathbb{R}$ is continuous iff for every closed subset $B \subseteq \mathbb{R}$, the set $f^{-1}(B)$ is compact.

$$A_{i+1} = \underbrace{\pi_{i+1}^{-1} \left(\left\{ \underbrace{\min_{x \in A_i} \pi_{i+1}(x)}_{\text{closed}} \right\} \right)}_{\text{closed}} \cap A_i$$
According to Thm A_3, it is a compact subset of \mathbb{R}^m
is a compact subset of \mathbb{R}^m since
the intersection of two closed sets is closed and in \mathbb{R}^m ,
and a closed subset of a compact subset of $\mathbb{R}^m \checkmark$
Hence A_{i+1} is a non-empty compact subset of \mathbb{R}^m and the proof is
complete.

For a TU game (N, v) the nucleolus Nu(N, v) is non-empty when $\Im mp \neq \emptyset$, which is a great property as agents will always find an agreement. But there is more!

Theorem

The nucleolus has at most one element

In other words, there is **one** agreement which is stable according to the nucleolus.

For a TU game (N, v), the $Nu(N, v) \neq \emptyset$ when $\Im mp \neq \emptyset$, which is a great property as agents will always find an agreement.

Theorem

The nucleolus has at most one element

In other words, there is **one** agreement which is stable according to the nucleolus.

To prove this, we need theorems 3 and 4.

Theorem (3)

Let *A* be a non-empty convex subset of \mathbb{R}^m Then the set $\{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leq_{lex} y^{\blacktriangleright}\}$ has at most one element.

Theorem (4)

Let (N, v) be a TU game such that $\exists mp \neq \emptyset$. (i) $\exists mp$ is a non-empty and convex subset of $\mathbb{R}^{|N|}$ (ii) $\{e(x) \mid x \in \exists mp\}$ is a non-empty convex subset of $\mathbb{R}^{2^{|N|}}$ Let *A* be a non-empty convex subset of \mathbb{R}^m , and $M^{in} = \{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leq_{lex} y^{\blacktriangleright}\}$. We now prove that $|M^{in}| \leq 1$.

Towards a contradiction, let us assume M^{in} has at least two elements x and y, $x \neq y$. By definition of M^{in} , we must have $x^{\blacktriangleright} = y^{\blacktriangleright}$.

Let $\alpha \in (0,1)$ and σ be a permutation of $\{1, \dots, m\}$ such that $(\alpha x + (1 - \alpha)y)^{\blacktriangleright} = \sigma(\alpha x + (1 - \alpha)y) = \alpha \sigma(x) + (1 - \alpha)\sigma(y)$. Let us show by contradiction that $\sigma(x) = x^{\blacktriangleright}$ and $\sigma(y) = y^{\blacktriangleright}$.

Let us assume that either $\sigma(x) <_{lex} x^{\blacktriangleright}$ or $\sigma(y) <_{lex} y^{\blacktriangleright}$, it follows that $\alpha \sigma(x) + (1 - \alpha)\sigma(y) <_{lex} \alpha x^{\blacktriangleright} + (1 - \alpha)y^{\blacktriangleright} = x^{\blacktriangleright}$. Since *A* is convex, $\alpha x + (1 - \alpha)y \in A$. But this is a contradiction because by definition of M^{in} , $\alpha x + (1 - \alpha)y \in A$ cannot be strictly smaller than x^{\blacktriangleright} , y^{\blacktriangleright} in *A*. This proves $\sigma(x) = x^{\blacktriangleright}$ and $\sigma(y) = y^{\blacktriangleright}$.

Since $x^{\blacktriangleright} = y^{\blacktriangleright}$, we have $\sigma(x) = \sigma(y)$, hence x = y. This contradicts the fact that $x \neq y$. Hence, M^{in} cannot have at least two elements, and $|M^{in}| \leq 1$.

Let (N, v) be a TU game s.t. $\exists mp \neq \emptyset$ (in case $\exists mp = \emptyset$, $\exists mp$ is trivially convex). Let $(x, y) \in \mathbb{J}mp^2$, $\alpha \in [0, 1]$. Let us prove $\mathbb{J}mp$ is convex by showing that $u = \alpha x + (1 - \alpha)y \in \exists mp$, i.e., individually rational and efficient.

Individual rationality: Since x and y are individually rational, for all agents *i*, $u_i = \alpha x_i + (1 - \alpha) y_i \ge \alpha v(\{i\}) + (1 - \alpha) v(\{i\}) = v(\{i\})$. Hence *u* is individually rational.

Efficiency: Since *x* and *y* are efficient, we have $\sum u_i = \sum \alpha x_i + (1 - \alpha) y_i \ge \alpha \sum x_i + (1 - \alpha) \sum y_i$ $i \in N$ $i \in N$ $i \in N$ $i \in N$ $\sum u_i \ge \alpha v(N) + (1 - \alpha)v(N) = v(N)$, hence *u* is efficient. $i \in N$

Thus, $u \in \mathbb{J}mp$.

Let (N, v) be a TU game and $\exists mp$ its set of imputations. We need to show $\{e(z) \mid z \in \exists mp\}$ is a non-empty convex subset of \mathbb{R}^m . Let $(x, y) \in \exists mp^2$, $\alpha \in [0, 1]$, and $\mathcal{C} \subseteq N$ and we consider the sequence $\alpha e(x) + (1 - \alpha)e(y)$, and we look at the entry corresponding to coalition \mathcal{C} .

$$\begin{aligned} \left(\alpha e(x) + (1-\alpha)e(y)\right)_{\mathfrak{C}} &= \alpha e(\mathfrak{C}, x) + (1-\alpha)e(\mathfrak{C}, y) \\ &= \alpha (v(\mathfrak{C}) - x(\mathfrak{C})) + (1-\alpha)(v(\mathfrak{C}) - y(\mathfrak{C})) \\ &= v(\mathfrak{C}) - (\alpha x(\mathfrak{C}) + (1-\alpha)y(\mathfrak{C})) \\ &= v(\mathfrak{C}) - ([\alpha x + (1-\alpha)y](\mathfrak{C})) \\ &= e(\alpha x + (1-\alpha)y, \mathfrak{C}) \end{aligned}$$

Since the previous equality is valid for all $C \subseteq N$, both sequences are equal: $\alpha e(x) + (1 - \alpha)e(y) = e(\alpha x + (1 - \alpha)y)$.

Since $\exists mp$ is convex, $\alpha x + (1 - \alpha)y \in \exists mp$, it follows that $e(\alpha x + (1 - \alpha)y) \in \{e(z) \mid z \in \exists mp\}$. Hence, $\{e(z) \mid z \in \exists mp\}$ is convex.

Let (N, v) be a TU game, and $\Im mp$ its set of imputations. **Theorem 4(ii):** $\{e(x) \mid x \in \exists mp\}$ is a non-empty convex subset of $\mathbb{R}^{2^{|N|}}$

Theorem 3: If A is a non-empty convex subset of \mathbb{R}^m , then the set $\{x \in A \mid \forall y \in A \ x^{\triangleright} \leq_{lex} y^{\triangleright}\}$ has at most one element.

Applying theorem 3 with $A = \{e(x) \mid x \in \exists mp\}$ we obtain $B = \{e(x) \mid x \in \exists mp \land \forall y \in \exists mp \ e(x)^{\blacktriangleright} \leq_{lex} e(y)^{\blacktriangleright}\}$ has at most one element.

B is the image of the nucleolus under the function *e*. We need to make sure that an e(x) corresponds to at most one element in $\exists mp$. This is true since for $(x, y) \in \overline{Jmp^2}$, we have $x \neq y \Rightarrow e(x) \neq e(y)$.

Hence $Nu(N, v) = \{x \mid x \in \exists mp \land \forall y \in \exists mp \ e(x)^{\blacktriangleright} \leq_{lex} e(y)^{\blacktriangleright}\}$ has at most one element!

- We defined the excess of a coalition at a payoff distribution, which can model the complaints of the members in a coalition.
- We used the ordered sequence of excesses over all coalitions and the lexicographic ordering to compare any two imputations.
- We defined the nucleolus for a TU game.
 - pros: If the set of imputations is non-empty, the nucleolus is non-empty.
 - The nucleolus contains at most one element.
 - When the core is non-empty, the nucleolus is contained in the core.

cons: Difficult to compute.

• The kernel, also a member of the bargaining set family, also based on the excess.