Cooperative Games

Lecture 6: The Kernel

Stéphane Airiau

ILLC - University of Amsterdam

One last stability concept from the bargaining set family:

The kernel.

M. Davis. and M. Maschler, The kernel of a cooperative game. Naval Research Logistics Quarterly, 1965.

Excess

Definition (Excess)

For a TU game (N,v), the excess of coalition \mathcal{C} for a payoff distribution x is defined as $e(\mathcal{C}, x) = v(\mathcal{C}) - x(\mathcal{C})$.

We saw that a positive excess can be interpreted as an amount of complaint for a coalition.

We can also interpret the excess as a potential to generate more utility.

Let (N, v) be a TU game, $S \in \mathcal{S}_N$ a coalition structure and x a payoff distribution. Objections and counter-objections are exchanged between members of the same coalition in 8. Objections and counter-objections take the form of coalitions, i.e., they do not propose another payoff distribution.

Let $C \in S$, $k \in C$, $l \in C$.

Objection: A coalition $P \subseteq N$ is an objection of k against l to x iff $k \in P$, $l \notin P$ and $x_l > v(\{l\})$.

"P is a coalition that contains k, excludes l and which sacrifices too much (or gains too little)."

Counter-objection: A coalition $Q \subseteq N$ is a counter-objection to the objection P of k against l at x iff $l \in Q$, $k \notin Q$ and $e(Q,x) \geqslant e(P,x)$.

"k's demand is not justified: Q is a coalition that contains l and excludes k and that sacrifices even more (or gains even less)."

A first definition

Remember that the set of feasible payoff vectors for (N, v, S)is $X_{(N,v,S)} = \{x \in \mathbb{R}^n \mid \text{ for every } \mathcal{C} \in \mathcal{S} : x(\mathcal{C}) \leq v(\mathcal{C})\}.$

Definition (Kernel)

Let (N, v, S) be a TU game in coalition structure. The **kernel** is the set of imputations $x \in X_{(N,v,S)}$ s.t. for any coalition $\mathcal{C} \in \mathcal{S}$, for each objection P of an agent $k \in \mathcal{C}$ over any other member $l \in \mathcal{C}$ to x, there is a counterobjection of l to P.

Another definition

Definition (Maximum surplus)

For a TU game (N,v), the **maximum surplus** $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that in**cludes** *k* but does **exclude** *l*, i.e.,

$$s_{k,l}(x) = \max_{\mathfrak{C} \subseteq N \mid k \in \mathfrak{C}, l \notin \mathfrak{C}} e(\mathfrak{C}, x).$$

Definition (Kernel)

Let (N, v, S) be a TU game with coalition structure. The **kernel** is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $\mathcal{C} \in \mathcal{S}$, if $(k,l) \in \mathcal{C}^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$.

 $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.

Properties

Theorem

Let (N, v, S) a game with coalition structure, and let $\Im mp \neq \emptyset$. Then we have:

- (i) $Nu(N,v,S) \subseteq K(N,v,S)$
- (ii) $K(N,v,S) \subset BS(N,v,S)$

Theorem

Let (N, v, S) a game with coalition structure, and let $\exists mp \neq \emptyset$. The kernel K(N,v,S) and the bargaining set BS(N, v, S) of the game are non-empty.

Proof

Since the Nucleolus is non-empty when $\Im mp \neq \emptyset$, the proof is immediate using the theorem above.

Proof of (i)

Let $x \notin K(N, v, S)$, we want to show that $x \notin Nu(N, v, S)$.

 $x \notin K(N, v, S)$, hence, there exists $\mathcal{C} \in CS$ and $(k, l) \in \mathcal{C}^2$ such that $s_{lk}(x) > s_{kl}(x)$ and $x_k > v(\{k\})$.

Let y be a payoff distribution corresponding to a transfer of utility

$$\epsilon > 0$$
 from k to l : $y_i = \begin{cases} x_i \text{ if } i \neq k \text{ and } i \neq l \\ x_k - \epsilon \text{ if } i = k \\ x_l + \epsilon \text{ if } i = l \end{cases}$

Since $x_k > v(\{k\})$ and $s_{lk}(x) > s_{kl}(x)$, we can choose $\epsilon > 0$ small enough s.t.

$$x_k - \epsilon > v(\{k\})$$

$$\circ$$
 $s_{lk}(y) > s_{kl}(y)$

We need to show that $e(y)^{\triangleright} \leq_{lex} e(x)^{\triangleright}$.

Note that for any coalition $S \subseteq N$ s.t. $e(S,x) \neq e(S,y)$ we have either

•
$$k \in S$$
 and $l \notin S$ ($e(S,x) > e(S,y)$ since $e(S,y) = e(S,x) + \epsilon > e(S,x)$)

•
$$k \notin S$$
 and $l \in S$ ($e(S,x) < e(S,y)$ since $e(S,y) = e(S,x) - \epsilon < e(S,x)$)

Proof of (i)

Let $\{B_1(x),...,B_M(x)\}$ a partition of the set of all coalitions s.t.

- \circ $(S,T) \in B_i(x)$ iff e(S,x) = e(T,x). We denote by $e_i(x)$ the common value of the excess in $B_i(x)$, i.e. $e_i(x) = e(S,x)$ for all $S \in B_i(x)$.
- $e_1(x) > e_2(x) > \cdots > e_M(x)$

In other words,
$$e(x)^{\blacktriangleright} = \langle e_1(x), \dots, e_1(x), \dots, e_M(x), \dots, e_M(x) \rangle$$
.

Let i^* be the minimal value of $i \in \{1, ..., M\}$ such that there is $\mathcal{C} \in B_{i^*}(x)$ with $e(\mathcal{C}, x) \neq e(\mathcal{C}, y)$.

For all $i < i^*$, we have $B_i(x) = B_i(y)$ and $e_i(x) = e_i(y)$.

Proof of (i)

Since $s_{lk}(x) > s_{kl}(x) B_{i^*}$ contains

- at least one coalition S that contains l but not k, for such coalition, we must have e(S,x) > e(S,y)
- no coalition that contains k but not l.

If B_{i*} contains either

- coalitions that contain both k and l
- or coalitions that do not contain both k and l

Then, for any such coalitions S, we have e(S,x) = e(S,y), and it follows that $B_{i^*}(y) \subset B_{i^*}(x)$.

Otherwise, we have $e_{i^*}(y) < e_{i^*}(x)$.

In both cases, we have e(y) is lexicographically less than e(x), and hence *y* is not in the nucleolus of the game (N, v, S).

Proof of (ii)

Let (N, v, S) a TU game with coalition structure. Let $x \in K(N, v, S)$. We want to prove that $x \in BS(N, v, S)$. To do so, we need to show that for any objection (P,y) from any player i against any player j at x, there is a counter objection (Q,z) to (P,y). For the bargaining set, An objection of i against j is a pair (P,y) where

- $P \subseteq N$ is a coalition such that $i \in P$ and $j \notin P$.
- $y \in \mathbb{R}^p$ where p is the size of P
- $y(P) \le v(P)$ (y is a feasible payoff for members of P)
- \bullet $\forall k \in P, y_k \geqslant x_k \text{ and } y_i > x_i$

An **counter-objection to** (P,y) is a pair (Q,z) where

- $Q \subseteq N$ is a coalition such that $i \in Q$ and $i \notin Q$.
- $z \in \mathbb{R}^q$ where q is the size of Q
- $z(Q) \le v(Q)$ (z is a feasible payoff for members of Q)
- \bullet $\forall k \in O, z_k \geqslant x_k$
- $\bullet \forall k \in Q \cap P \ z_k \geqslant y_k$

Proof of (ii)

Let (P,y) be an objection of player i against player j to x. $i \in P$, $j \notin P$, $y(P) \leq v(P)$ and y(P) > x(P). We choose y(P) = v(P).

- $x_i = v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_i > v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{ii}(x) \geqslant s_{ij}(x) \geqslant v(P) - x(P) \geqslant y(P) - x(P)$ since $i \in P$, $j \notin P$. Let $Q \subseteq N$ such that $j \in Q$, $i \notin Q$ and $s_{ji}(x) = v(Q) - x(Q)$. We have $v(Q) - x(Q) \ge y(P) - x(P)$. Then, we have

$$\begin{array}{ll} v(Q) & \geqslant & y(P) + x(Q) - x(P) \\ & \geqslant & y(P \cap Q) + y(P \setminus Q) + x(Q \setminus P) - x(P \setminus Q) \\ & > & y(P \cap Q) + x(Q \setminus P) \text{ since } i \in P \setminus Q, \ y(P \setminus Q) > x(P \setminus Q) \end{array}$$

Let us define z as follows $\begin{cases} x_k \text{ if } k \in Q \setminus P \\ y_k \text{ if } k \in Q \cap P \end{cases}$ (Q,z) is a counter-objection to (P,y).

Finally $x \in BS(N, v, S)$.

Computing a kernel-stable payoff distribution

- There is a transfer scheme converging to an element in the kernel.
- It may require an infinite number of small steps.
- We can consider the ϵ -kernel where the inequality are defined up to an arbitrary small constant ϵ .

R. E. Stearns. Convergent transfer schemes for n-person games. Transactions of the American Mathematical Society, 1968.

Computing a kernel-stable payoff distribution

Algorithm 1: Transfer scheme converging to a ϵ -Kernelstable payoff distribution for the CS §

```
compute-\epsilon-Kernel-Stable(N, v, S, \epsilon)
repeat
      for each coalition C \in S do
             for each member (i,j) \in \mathbb{C}, i \neq j do // compute the maximum surplus
               \delta \leftarrow \max_{(i,j) \in \mathbb{C}^2, \mathbb{C} \in \mathbb{S}} s_{ij} - s_{ji};
      (i^{\star}, j^{\star}) \leftarrow \operatorname{argmax}_{(i,i) \in \mathbb{N}^2} (s_{ij} - s_{ji});
      if (x_{j^{\star}} - v(\{j\}) < \frac{\delta}{2}) then // payment should be individually rational
      d \leftarrow x_{i^*} - v(\{j^*\});
      else
      d \leftarrow \frac{\delta}{2};
     x_{i^*} \leftarrow x_{i^*} + d;

x_{j^*} \leftarrow x_{j^*} - d;
until \frac{\delta}{v(S)} \leqslant \epsilon;
```

- The complexity for one side-payment is $O(n \cdot 2^n)$.
- Upper bound for the number of iterations for converging to an element of the ϵ -kernel: $n \cdot log_2(\frac{\delta_0}{\epsilon \cdot n(S)})$, where δ_0 is the maximum surplus difference in the initial payoff distribution.
- To derive a polynomial algorithm, the number of coalitions must be bounded. For example, only consider coalitions which size is bounded in $[K_1, K_2]$. The complexity of the truncated algorithm is $O(n^2 \cdot n_{coalitions})$ where $n_{coalitions}$ is the number of coalitions with size in $[K_1, K_2]$, which is a polynomial of order K_2 .
- M. Klusch and O. Shehory. A polynomial kernel-oriented coalition algorithm for rational information agents. In Proceedings of the Second International Conference on Multi-Agent Systems, 1996.
- O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous agents in non-superadditve environments. Computational Intelligence, 1999.

Summary

- We saw another way to use the excess to make objections and counter-objections.
- We defined the kernel.
- We proved that both the kernel and the bargaining set are non-empty if the set of imputations is non-empty.
 - pros:
- If the set of imputations is non-empty, the nucleolus, kernel, bargaining set are non-empty.
- There is an algorithm to compute a payoff in the kernel.

cons: The algorithm is not polynomial

Coming next

• The **Shapley value**.

It is not a stability concept, but it tries to guarantee fairness. We will see it can be defined axiomatically or using the concept of marginal contributions.