

Let (N, v) and (N, u) be TU games and ϕ be a value function.

- **Symmetry or substitution (SYM):** If $\forall (i,j) \in N$, $\forall C \subseteq N \setminus \{i,j\}, v(C \cup \{i\}) = v(C \cup \{j\})$ then $\phi_i(N,v) = \phi_j(N,v)$
 - **Dummy (DUM):** If $\forall C \subseteq N \setminus \{i\} v(C) + v(\{i\}) = v(C \cup \{i\})$, then $\phi_i(N, v) = v(\{i\})$.
 - Additivity (ADD): Let (N, u + v) be a TU game defined by $\forall C \subseteq N$, (u + v)(N) = u(N) + v(N). $\phi(u + v) = \phi(u) + \phi(v)$.

Theorem

The Shapley value is the unique value function ϕ that satisfies (SYM), (DUM) and (ADD).

Stéphane Airiau (ILLC) - Cooperative Games

Definition (value function)

 $\varphi(N,v)(N)=v(N).$

• The Shapley value is a value function.

Let \mathcal{G}_N the set of all TU games (N, v). A value function ϕ is a function that assigns to each TU game (N, v) an efficient allocation, i.e. $\phi : \mathcal{G}_N \to \mathbb{R}^{|N|}$ such that

None of the concepts presented thus far were a value

for games with a non-empty set of imputations).

function (the nucleolus is guaranteed to be non-empty only

- Let ϕ a feasible solution on \mathcal{G}_N that is non-empty and satisfies the axioms SYM, DUM and ADD. Let us prove that ϕ is a value function.Let $(N, v) \in \mathcal{G}_N$. \diamond if $v = \mathcal{O}_{\mathcal{G}_N}$, all players are dummy. Since the solution is
- non-empty, $0^{\mathbb{R}^{|N|}}$ is the unique member of $\phi(N, v)$. • otherwise, $(N, -v) \in \mathcal{G}_N$.
- Let $x \in \phi(N, v)$ and $y \in \phi(N, -v)$. By ADD, $x + y \in \phi(v - v)$, and then, x = -y is unique. Moreover, $x(N) \leq v(N)$ as ϕ is a feasible solution. Also $y(N) \leq -v(N)$. Since x = -y, we have $v(N) \leq x(N) \leq v(N)$, i.e. x is efficient.

Hence, ϕ is a value function.

Stéphane Airiau (ILLC) - Cooperative Games

Proof of the theorem: ExistenceWe need to show that the Shapley value satisfies the three
axioms. Let (N, v) a TU game. $\sum_{f \in \Pi(N)} mc(\sigma)$
 $Sh(N, v) = \frac{\sigma \in \Pi(N)}{n!}$ • Let us assume that $\forall C \subseteq N \setminus \{i,j\}$, we have
 $v(C \cup \{i\}) = v(C \cup \{j\})$. Then $\forall C \subseteq N \setminus \{i,j\}$, we have
 $v(C \cup \{i\}) = v(C \cup \{i\})$. Then $\forall C \subseteq N \setminus \{i,j\}$, we have
 $v \in v(C \cup \{i,j\}) - v(C \cup \{i\}) = v(C \cup \{i,j\}) - v(C \cup \{i\})$, hence, we
have $mc_j(C \cup \{j\}) = mc_i(C \cup \{i\})$.
 $v \in Sh_i(N, v) = Sh_i(N, v)$, Sh satisfies SYM.• Let us assume there is an agent i such that for all
 $C \subseteq N \setminus \{i\}$ we have $v(C) \in v(C \cup \{i\})$. Then, each marginal
contribution of player i is zero, and it follows that
 $Sh_i(N, v) = 0$. Sh satisfies DUM.
• Sh is clearly additive.

Stéphane Airiau (ILLC) - Cooperative Game

Lecture 7: The Shapley Value 13

Lecture 7: The Shapley Value 11)

Proof of the theorem: Uniqueness (2/2)Let $T \subseteq N \setminus \emptyset$ and $\alpha \in \mathbb{R}$. Let us prove that $\phi(N, \alpha \cdot v_T)$ is uniquely defined.• Let $i \notin T$. We have trivially $T \subseteq \mathbb{C}$ iff $T \subseteq \mathbb{C} \cup \{i\}$. Then $\forall \mathbb{C} \subseteq N \setminus \{i\}, \alpha v_T(\mathbb{C}) = \alpha v_T(\mathbb{C} \cup \{i\})$.Hence, all agent $i \notin T$ are dummies. By DUM, $\forall i \notin T, \phi_i(N, \alpha \cdot v_T) = 0$.• Let $(i,j) \in T^2$. Then for all $\mathbb{C} \subseteq N \setminus \{i,j\}, v(\mathbb{C} \cup \{i\}) = v(\mathbb{C} \cup \{j\})$.By SYM, $\phi_i(N, \alpha \cdot v_T) = \phi_j(N, \alpha \cdot v_T)$.• Since ϕ is a value function, it is efficient. Then, $\sum_{i \in N} \phi_i(N, \alpha \cdot v_T) = \alpha \cdots (1) = \alpha$. Hence, $\forall i \in T, \phi_i(N, \alpha \cdot v_T) = \alpha$.This proves that $\phi(N, \alpha \cdot v_T) = \alpha$.This proves that $\phi(N, \alpha \cdot v_T)$ is uniquely defined. Since any TU game (N, v) can be written as $\sum_{T \subseteq N \setminus \emptyset} \alpha_T v_T$ and because of ADD, there is a unique value function that satisfies the

Discussion about the axioms
SYM: it is desirable that two subsitute agents obtain the same value ✓
DUM: it is desirable that an agent that does not bring anything in the cooperation does not get any value. ✓
What does the addition of two games mean?
if the payoff is interpreted as an expected payoff, ADD is a desirable property.
for cost-sharing games, the interpretation is intuitive: the cost for a joint service is the sum of the costs of the separate services.
there is no interaction between the two games.
the structure of the game (N,v+w) may induce a behavior induced by either games (N,v) or (N,w).
The axioms are independent. If one of the axiom is dropped, it is possible to find a different value function satisfying the remaining two axioms.

Stéphane Airiau (ILLC) - Cooperative Game

three axioms.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 7: The Shapley Value 14

Lecture 7: The Shapley Value 12

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 7: The Shapley Value 19

 Coming next

 • Voting games and power indices.