
Lecture 10
Non-Transferable Utility Games (NTU games)

An underlying assumption behind a TU game is that agents have a common scale to
measure the worth of a coalition. Such a scale may not exist in every situations, which
leads to the study of games where the utility is non-transferable (NTU games). We
start by introducing a particular type of NTU games called Hedonic games. We chose
this type of games for the simplicity of the formalism. Next, we provide the classical
definition of a NTU game, which can represent a lot more situations.

10.1 Hedonic Games
In an hedonic game, agents have preferences over coalitions: each agent knows whether
it prefers to be in company of some agents rather than others. An agent may enjoy more
the company of members of C1 over members of C2, but it cannot tell by how much
it prefers C1 over C2. Consequently, it does not make sense to talk about any kind of
compensation when an agent is not part of its favorite coalition. The question that each
agent must answer is “which coalition to form?”.

More formally, let N be a set of agents and Ni be the set of coalitions that contain
agent i, i.e.,Ni = {C ∪{i} | C ⊆ N \{i}}. For a CS S, we will note S(i) the coalition
in S containing agent i.

10.1.1. DEFINITION. [Hedonic games] An Hedonic game is a tuple (N, (�i)i∈N) where

• N is the set of agents

• �i⊆ 2Ni×2Ni is a complete, reflexive and transitive preference relation for agent
i, with the interpretation that if S �i T , agent i prefers coalition T at most as
much as coalition S.

In a hedonic game, each agent has a preference over each coalition it can join. The
solution of a hedonic game is a coalition structure (CS), i.e., a partition of the set of
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agents into coalition. A first desirable property of a solution is to be Pareto optimal: it
would not be possible to find a different solution that is weakly preferred by all agents.

The notion of core can be easily extended for this type of games. Given a current
CS, no group of agents should have an incentive to leave the current CS. As it is the
case for TU games, the core of an NTU game may be empty, and it is possible to
define weaker versions of stability. We now give the definition of stability concepts
adapted from [10]. For the core, it is a group of agents that leave their corresponding
coalitions to form a new one they all prefer. In the weaker stability solution concepts,
the possible deviations feature a single agent i that leaves its current coalition C1 ∪ {i}
to join a different existing coalition C2 ∈ N \ {i} or to form a singleton coalition {i}.
There are few scenarios one can consider, depending on the behavior of the members
of C1 and C2. For a Nash stable S, the behavior of C1 and C2 are not considered at
all: if i prefers to join C2, it is a valid deviation. This assumes that the agents in C2

will accept agent i, which is quite optimistic (it may very well be the case that some
or all agents in C2 do not like agent i). For individual stability, the deviation is valid if
no agent in C2 is against accepting agent i, in other words the agents in C2 are happy
or indifferent about i joining them. Finally, for contractual individual stability, the
preference of the members of C1 – the coalition that i leaves – are taken into account.
Agents in C1 should prefer to be without i than with i. The three stability concepts
have the following inclusion: Nash stability is included in Individual stability, which is
included in contractual individual stability1. We now provide the corresponding formal
definitions.

Core stability: A CS S is core-stable iff @C ⊆ N | ∀i ∈ C, C �i S(i).

Nash stability: A CS S is Nash-stable iff (∀i ∈ N) (∀C ∈ S ∪ {∅}) S(i) %i
C ∪{i}. No player would like to join any other coalition in S assuming the other
coalitions did not change.

Individual stability A CS S is individually stable iff (@i ∈ N) (@C ∈ S ∪
{∅}) | (C ∪ {i} �i S(i)) and (∀j ∈ C, C ∪ {i} %j C). No player can move to
another coalition that it prefers without making some members of that coalition
unhappy.

Contractually individual stability: A CS S is contractually individually stable
iff (@i ∈ N) (@C ∈ S ∪ {∅}) | (C ∪ {i} �i S(i)) and (∀j ∈ C, C ∪ {i} %j
C) and (∀j ∈ S(i)\{i}, S(i)\{i} %j S(i)). No player can move to a coalition
it prefers so that the members of the coalition it leaves and it joins are better off.

Let us see some examples.

1This ordering may appear counter-intuitive at first, but note that the conditions for being a valid de-
viation are more difficult to meet from Nash stability to Contractual individual stability, and the stability
concepts are defined as CS such that no deviation exists
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Example 1

{1, 2} �1 {1} �1 {1, 2, 3} �1 {1, 3}
{1, 2} �2 {2} �2 {1, 2, 3} �2 {2, 3}
{1, 2, 3} �3 {2, 3} �3 {1, 3} �3 {3}

Let us consider each CS one by one.
{{1}, {2}, {3}} {1, 2} is preferred by both agent 1 and 2, hence it is not Nash stable.

{{1, 2}, {3}}
{1, 2, 3} is preferred by agent 3, so it is not Nash stable,
as agents 1 and 3 are worse off, it is not a possible move for individual stability.
no other move is possible for individual stability.

{{1, 3}, {2}} agent 1 prefers to be on its own (hence the CS is not Nash stable,
and then, neither individually stable).

{{2, 3}, {1}}
agent 2 prefers to join agent 1,
and agent 1 is better off, hence the CS is neither Nash stable nor
Individually stable.

{{1, 2, 3}} agents 1 and 2 have an incentive to form a singleton,
hence the CS is neither Nash stable, nor Individually stable.

As a conclusion:

• {{1, 2}, {3}} is in the core and is individually stable.

• There is no Nash stable partitions.

Example 2

{1, 2} �1 {1, 3} �1 {1, 2, 3} �1 {1}
{2, 3} �2 {1, 2} �2 {1, 2, 3} �2 {2}
{1, 3} �3 {2, 3} �3 {1, 2, 3} �3 {3}

Again, let us consider all the CSs.
{{1}, {2}, {3}} {1, 2}, {1, 3}, {2, 3} and {1, 2, 3} are blocking. As a result, the CS is

not Nash stable
{{1, 2}, {3}} {2, 3} is blocking, and since 2 can leave 1 to form {1, 2}, it follows that

the CS is not Nash stable
{{1, 3}, {2}} {1, 2} is blocking, and since 1 can leave 3 to form {1, 2}, it follows that

the CS is not Nash stable
{{2, 3}, {1}} {1, 3} is blocking, and since 3 can leave 2 to form {1, 3},it follows that

the CS is not Nash stable
{{1, 2, 3}} {1, 2}, {1, 3}, {2, 3} are blocking, but it is contractually individually

stable

As a conclusion, we obtain that

• The core is empty.
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• {{1, 2, 3}} is the unique Nash stable partition, unique individually stable parti-
tion (no agent has any incentive to leave the grand coalition).

Example 3

{1, 2} �1 {1, 3} �1 {1} �1 {1, 2, 3}
{2, 3} �2 {1, 2} �2 {2} �2 {1, 2, 3}
{1, 3} �3 {2, 3} �3 {3} �3 {1, 2, 3}

For this game we can show that

• The core is empty (similar argument as for example 2).

• There is no Nash stable partition or individually stable partition. But there are
three contractually individually stable CSs: {{1, 2}, {3}}, {{1, 3}, {2}},{{2, 3}, {1}}.

For example, we can consider all the possible changes for the CS {{1, 2}, {3}}:

• agent 2 joins agent 3:

In this case, both agents 2 and 3 benefit from forming {{1}, {2, 3}}, hence
{{1, 2}, {3}} is not Nash or individually stable. As agent 1 is worse off it is
not a legal deviation for contractual individual stability.

• agent 1 joins agent 3, but agent 1 has no incentive to join agent 3, hence this is
not a deviation.

• Agent 1 or 2 forms a singleton coalition, but neither agent has any incentive to
form a singleton coalition. Hence, there is no deviation.

In Examples 2 and 3, we see that the core may be empty. The literature in game
theory focuses on finding conditions for the existence of the core. In the AI literature,
Elkind and Wooldridge have proposed a succinct representation of Hedonic games [20]
and Brânzei and Larson considered a subclass of hedonic games called the affinity
games [12].

10.2 NTU games
We now turn to the most general definition of an NTU game. This definition is more
general than the definition of hedonic gamess. The idea is that each coalition has
the ability to achieve a set of outcomes. The preference of the agents are about the
outcomes that can be brought about by the different coalitions. The formal definition
is the following:

10.2.1. DEFINITION. [NTU Game] A non-transferable utility game (NTU Game) is
defined by a tuple (N,X, V, (�i)i∈N) such that
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• N is a set of agents;

• X is a set of outcomes;

• V : 2N → 2X is a function that describes the outcomes V (C) ⊆ X that can be
brought about by coalition C;

• �i is the preference relation of agent i over the set of outcomes. The relation is
assumed to be transitive and complete.

Intuitively, V (C) is the set of outcomes that the members of C can bring about by
means of their joint-actions. The agents have a preference relation over the outcomes,
which makes a lot of sense. This type of games is more general that the class of hedonic
games or even TU games, as we can represent these games using a NTU game.

10.2.2. PROPOSITION. A hedonic game can be represented by an NTU games.

Proof. Let (N, (�Hi )i∈N) be a hedonic game.

• For each coalition C ⊆ N , create a unique outcome xC .

• For any two outcomes xS and xT corresponding to coalitions S and T that con-
tains agent i, We define �i as follows: xS �i xT iff S �Hi T .

• For each coalition C ⊆ N , we define V (C) as V (C) = {xC}.

�

10.2.3. PROPOSITION. A TU game can be represented as an NTU game.

Proof. Let (N, v) be a TU game.

• We define X to be the set of all allocations, i.e., X = Rn.

• For any two allocations (x, y) ∈ X2, we define�i as follows: x �i y iff xi ≥ yi.

• For each coalition C ⊆ N , we define V (C) as V (C) = {x ∈ Rn | ∑i∈N xi ≤
v(C)}. V (C) lists all the feasible allocation for the coalition C.

�

First, we can note that the definition of the core can easily be modified in the case
of NTU games.

10.2.4. DEFINITION. core(V ) = {x ∈ V (N) | @C ⊂ N, @y ∈ V (C),∀i ∈ C y �i x}
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An outcome x ∈ X is blocked by a coalition C when there is another outcome y ∈ X
that is preferred by all the members of C. An outcome is then in the core when it can
be achieved by the grand coalition and it is not blocked by any coalition. As is the case
for TU game, it is possible that the core of an NTU game is empty.

As for TU games, we can define a balanced game and show that the core of a
balanced game is non-empty.

10.2.5. DEFINITION. [Balanced game]A game is balanced iff for every balanced col-
lection B, we have

⋂
C⊆B V (C) ⊂ V (N)

10.2.6. THEOREM (THE SCARF THEOREM). The core of a balanced game is non-
empty.

10.2.1 An application: Exchange Economy
For TU games, we studied market games and proved such games have a non-empty
core. We now consider a similar game without transfer of utility. There is a set of con-
tinuous goods that can be exchanged between the agents. Each agent has a preference
relation over the bundle of goods and tries to obtain the best bundle possible.

Definition of the game

The main difference between the exchange economy and a market game is that the
preference is ordinal in the exchange econmomy whereas it is cardinal in a market
game.

10.2.7. DEFINITION. An exchange economy is a tuple (N,M,A, (�i)i∈N) where

• N is the set of n agents

• M is the set of k continuous goods

• A = (ai)i∈N is the initial endowment vector

• (�i)i∈N is the preference profile, in which �i is a preference relation over bun-
dles of goods.

Given an exchange economy (N,M,A, (�i)i∈N), we define the associated ex-
change economy game as the following NTU game (N,X, V, (�i)i∈N) where:

• The set of outcomes X is defined as X =
{

(x1, . . . , xn) |xi ∈ Rk
+ for i ∈ N

}
.

Note that xi = 〈xi1, . . . , xik〉 represents the quantity of each good that agent i
possesses in an outcome x.

• The preference relation for an agent i is defined as: for (x, y) ∈ X2 x �i y ⇔
xi �i yi. Each player is concerned by its own bundle only.
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• The value sets are defined as ∀C ⊆ N ,

V (C) =

{
x ∈ X

∣∣∣
∑

i∈C
xi =

∑

i∈C
ai ∧ xj = aj for j ∈ N \ C

}
.

The players outside C do not participate in any trading and hold on their ini-
tial endowments. When all agents participate in the trading, we have V (N) ={
x ∈ X | ∑i∈N xi =

∑
i∈N ai

}
.

Solving an exchange economy

Let us assume that we can define a price pr for a unit of good r. The idea would be to
exchange the goods at a constant price during the negotiation.

Let us define a price vector p ∈ Rk
+. The amount of each good that agent i possesses

is xi ∈ Rk
+. The total cost of agent i’s bundle is p · xi =

∑k
r=1 prxi,r. Since the initial

endowment of agent i is ai, the agent has at his disposal an amount p · ai, and i can
afford to obtain a bundle yi such that p · yi ≤ p · ai.

We can wonder about what an ideal situation would be. Given the existence of the
price vector, we can define a competitive equilibrium, the idea is to make believe to
each player that it possesses the best outcome.

10.2.8. DEFINITION. [Competitive equilibrium] The competitive equilibrium of an ex-
change economy (N,X, V, (�i)i∈N) is a pair (p, x) where p ∈ Rk

+ is a price vector and
x ∈

{
(x1, . . . , xn) |xi ∈ Rk

+ for i ∈ N
}

such that

• ∑i∈N xi =
∑

i∈N ai (the allocation results from trading)

• ∀i ∈ N , p · xi ≤ p · ai (each agent can afford its allocation)

• ∀i ∈ N ∀yi ∈ Rk
+ (p · yi ≤ p · ai)⇒ xi �i yi

Among all the allocations that an agent can afford, it obtains one of its most favorites
outcomes.

This competitive equilibrium seems like an ideal situation, and surprisingly, Arrow
and Debreu [1] proved such equilibrium is guaranteed to exist. This is a deep theorem,
and we will not study the proof here.

10.2.9. THEOREM (ARROW & DEBREU, 1954). Let (N,M,A, (�i)i∈N) be an exchange
economy. If each preference relation �i is continuous and strictly convex, then a com-
petitive equilibrium exists.

The proof of the theorem is not constructive, i.e., it guarantees the existence of the
equilibrium, but not how to obtain the price vector or the allocation. The following
theorem links the allocation with the core:
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10.2.10. THEOREM. If (p, x) is a competitive equilibrium of an exchange economy,
then x belongs to the core of the corresponding exchange economy game.

Proof. Let us assume x is not in the core of the associated exchange economy game.
Then, there is at least one coalition C and an allocation y such that ∀i ∈ C y �i x. By
definition of the competitive equilibrium, we must have p · yi > p · ai. Summing over
all the agents in C, we have p ·∑i∈C yi > p ·∑i∈C ai. Since the prices are positive, we
deduce that

∑
i∈C yi >

∑
i∈C ai, which is a contradiction. �

It then follows that if each preference relation is continuous and strictly convex,
then the core of an exchange economy game is non-empty. In an economy, the out-
comes that are immune to manipulations by groups of agent are competitive equilib-
rium allocation.
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