
Lecture 2
The Core

Let us assume that we have a TU game (N, v) and that we want to form the grand
coalition. The Core, which was first introduced by Gillies [1], is the most attractive
and natural way to define stability. A payoff distribution is in the Core when no group
of agents has any incentive to form a different coalition. This is a strong condition for
stability, so strong that some games may have an empty core. In this lecture, we will
first introduce the definition of the core and consider some graphical representation for
games with up to three players. Then, we will present some games that are guaranteed
to have a non-empty core. Finally, we will present a theorem that characterizes games
with non-empty core: the Bondareva-Shapley theorem. We will give some intuition
about the proof, relying on results from linear programming, and we will use this
theorem to show that market games have a non-empty core.

2.1 Definition and graphical representation for games
with up to three players

We consider a TU game (N, v). We assume that all the agents cooperate by forming
the grand coalition and that they receive a payoff distribution x. We want the grand
coalition to be stable, i.e., no agent should have an incentive to leave the grand coali-
tion. We will say that x is in the core of the game (N, v) when no group of agents has
an incentive to leave the grand coalition and form a separate coalition.

2.1.1. DEFINITION. [Core] A payoff distribution x ∈ Rn is in the Core of a game
(N, v) iff x is an imputation that is group rational, i.e.,Core(N, v) = {x ∈ Rn | ∑i∈N xi =
v(N) ∧ ∀C ⊆ N x(C) ≥ v(C)}

A payoff distribution is in the Core when no group of agents has any interest in
rejecting it, i.e., no group of agents can gain by forming a different coalition. Note
that this condition has to be true for all subsets of N (group rationality). As a special
case, this ensures individual rationality. Another way to define the Core is in terms of
excess:
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8 Lecture 2. The Core

2.1.2. DEFINITION. [Core] The Core is the set of payoff distribution x ∈ Rn, such
that ∀R ⊂ N , e(R, x) ≤ 0

In other words, a PC is in the Core when there exists no coalition that has a positive
excess. This definition is attractive as it shows that no coalition has any complaint:
each coalition’s demand can be granted.

In the first definition of the core, we see that the payoff distribution satisfies weak
linear inequalities: for each coalition C ⊆ N , we have v(C) ≤ x(C). The Core is
therefore closed and convex, and we can try to represent it geometrically.

Let us consider the following two-player game ({1, 2}, v) where v({1}) = 5,
v({2}) = 5, and v({1, 2}) = 20. The core of the game is a segment defined as follows:
core(N, v) = {(x1, x2) ∈ R2 | x1 ≥ 5, x2 ≥ 5, x1 + x2 = 20} and is represented
in Figure 2.1. This example shows that, although the game is symmetric, most of the
payoffs in the core are not fair. Core allocations focus on stability only and they may
not be fair.

x1

x2

0 5 10 15 20
0

5

10

15

20

Figure 2.1: Example of a core allocation

It is possible to represent the core for game with three agents. For a game ({1, 2, 3}, v),
the efficiency condition is v({1, 2, 3}) = x1 + x2 + x3, which is a plane in a 3-
dimensional space. On this plane, we can draw the conditions for individual rationality
and for group rationality. Each of these conditions partitions the space into two regions
separated by a line: one region is incompatible with a core allocation, the other region
is not. The core is the intersection of all the compatible regions. Figure 2.2 represents
the core of a three-player game.

There are, however, multiple concerns associated with using the notion of the Core.
First, the Core can be empty: the conflicts captured by the characteristic function can-
not satisfy all the players simultaneously. When the Core is empty, at least one player is
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Core(N, v)

x1 + x2 = 4

x1 + x3 = 3

x2 + x3 = 5

(1, 6, 1) (1, 0, 7)

(7, 0, 1)

x1 = 1

x3 = 1 x2 = 0
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, 3
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, 3
, 4
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)
(1
, 1
, 6

)

(2, 5, 1)

(3, 4, 1)

(4, 3, 1)

(5, 2, 1)

(6, 1, 1)

(2, 0, 6)

(3, 0, 5)

(4, 0, 4)

(5, 0, 3)

(6, 0, 2)

v({1}) = 1 v({1, 2}) = 4
v({2}) = 0 v({1, 3}) = 3
v({3}) = 1 v({2, 3}) = 5
v(∅) = 0 v({1, 2, 3}) = 8

Figure 2.2: Example of a three-player game: The core is the area in green

dissatisfied by the utility allocation and therefore blocks the coalition. Let us consider
the following example from [2]: v({A,B}) = 90, v({A,C}) = 80, v({B,C}) = 70,
and v(N) = 120. In this case, the Core is the PC where the grand coalition forms and
the associated payoff distribution is (50, 40, 30). If v(N) is increased, the size of the
Core also increases. But if v(N) decreases, the Core becomes empty.

Exercise: How can you modify the game in Figure 2.2 so that the core becomes empty?

2.2 Games with non-empty core
In the previous section, we saw that some games have an empty core. In this section,
we provide examples of some classes of games that are guaranteed to have a non-empty
core. In the following we will show that convex games and minimum cost spanning
tree games have a non empty core.

We start introducing an example that models bankruptcy: individuals have claims
in a resource, but the value of the resource is not sufficient to meet all of the claims
(e.g., a man leaves behind an estate worth less than the value of its debts). The problem
is then to share the value of the estate among all the claimants. The value of a coalition
C is defined as the amount of the estate which is not claimed by the complement of
C, in other words v(C) is the amount of the estate that the coalition C is guaranteed to
obtain.

2.2.1. DEFINITION. Bankruptcy game A Bankruptcy game (N,E, v) where N is the
set of claimants, E ∈ R+ is the estate and c ∈ Rn

+ is the claim vector (i.e., ci is the
claim of the ith claimant. The valuation function v : 2N → R is defined as follows.
For a coalition of claimants C, v(C) = max

{
0, E −∑i∈N\C ci

}
.
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First, we show that a bankruptcy game is convex.

2.2.2. THEOREM. Every bankruptcy game is convex.

Proof. Let (N,E, c) be a bankruptcy game. Let S ⊆ T ⊆ N , and i /∈ T . We want to
show that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ),

or equivalently that

v(S ∪ {i}) + v(T ) ≤ v(T ∪ {i}) + v(S).

For all C ⊆ N , we note c(C) =
∑

j∈C
cj , then we can write:

E −
∑

j∈N\C
cj = E −

∑

j∈N
cj +

∑

j∈C
ci = E − c(N) + c(C).

Let ∆ = E −∑j∈N cj = E − c(N). We have E −
∑

j∈N\C
cj = ∆ + c(C).

First, observe that ∀(x, y) ∈ R2, max{0, x}+ max{0, y} = max{0, x, y, x+ y}.

v(S ∪ {i}) + v(T ) = max



0, E −

∑

j∈N\(S∪{i})
cj



+ max



0, E −

∑

j∈N\T
cj





= max {0, ∆ + c(S) + ci}+ max {0, ∆ + c(T )}
= max {0, ∆ + c(S) + ci, ∆ + c(T ), 2∆ + c(S) + ci + c(T )}

v(T ∪ {i}) + v(S) = max



0, E −

∑

j∈N\(T∪{i})
cj



+ max



0, E −

∑

j∈N\S
cj





= max {0, ∆ + c(T ) + ci}+ max {0, ∆ + c(S)}
= max {0, ∆ + c(T ) + ci, ∆ + c(S), 2∆ + c(T ) + ci + c(S)}

Then, note that since S ⊆ T , c(S) ≤ c(T ). Then
max {0, ∆ + c(T ) + ci, ∆ + c(S), 2∆ + c(T ) + ci + c(S)} =

max {0, ∆ + c(T ) + ci, 2∆ + c(T ) + ci + c(S)}.
We also have:
∆ + c(S) + ci ≤ ∆ + c(T ) + ci.
∆ + c(T ) ≤ ∆ + c(T ) + ci.

It follows that max {0, ∆ + c(S) + ci, ∆ + c(T ), 2∆ + c(S) + ci + c(T )}
≤ max {0, ∆ + c(T ) + ci, 2∆ + c(T ) + ci + c(S)}

which proves that v(S ∪ {i}) + v(T ) ≤ v(T ∪ {i}) + v(S). 4 �
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Now, we show an important property of convex games: they are guaranteed to have
a non-empty core. We define a payoff distribution where each agent gets its marginal
contribution, given that the agents enter the grand coalition one at a time in a given
order, and we show that this payoff distribution is an imputation that is group rational.

2.2.3. THEOREM. A convex game has a non-empty core.

Proof. Let us assume a convex game (N, v). Let us define a payoff vector x in the
following way: x1 = v({1}) and for all i ∈ {2, . . . , n}, xi = v({1, 2, . . . , i}) −
v({1, 2, . . . , i − 1}). In other words, the payoff of the ith agent is its marginal contri-
bution to the coalition consisting of all previous agents in the order {1, 2, . . . , i− 1}.

Let us prove that the payoff vector is efficient by writing up and summing the payoff
of all agents:

x1 = v({1})
x2 = v({1, 2} − v({1})

. . .
xi = v({1, 2, . . . , i})− v({1, 2, . . . , i− 1})

. . .
xn = v({1, 2, . . . , n})− v({1, 2, . . . , n− 1})∑

i∈N xn = v({1, 2, . . . , n}) = v(N)
By summing these n equalities, we obtain the efficiency condition:∑

i∈N xn = v({1, 2, . . . , n}) = v(N).4

Let us prove that the payoff vector is individually rational. By convexity, we have
v({i})− v(∅) ≤ v({1, 2, . . . , i})− v({1, 2, . . . , i− 1}), hence v({i}) ≤ xi. 4

Finally, let us prove that the payoff vector is group rational. Let C ⊆ N , C =
{a1, a2, . . . , ak} and let us consider that a1 < a2 < . . . < ak. It is obvious that
{a1, a2, . . . , ak} ⊆ {1, 2, . . . , ak}. Using the convexity assumption, we obtain the fol-
lowing:

v({a1})− v(∅) ≤ v({1, 2, . . . , a1})− v({1, 2, . . . , a1 − 1}) = xa1
v({a1, a2})− v({a1}) ≤ v({1, 2, . . . , a2})− v({1, 2, . . . , a2 − 1}) = xa2

. . .
v({a1, a2, . . . , al})− v({a1, a2, . . . , al−1}) ≤ v({1, 2, . . . , al})− v({1, 2, . . . , al − 1}) = xal

. . .
v({a1, a2, . . . , ak})− v({a1, a2, . . . , ak−1}) ≤ v({1, 2, . . . , ak})− v({1, 2, . . . , ak − 1}) = xak

v(C) = v({a1, a2, . . . , ak}) ≤ ∑k
i=1 xak = x(C)

By summing these k inequalities, we obtain:
v(C) = v({a1, a2, . . . , ak}) ≤

∑k
i=1 xak = x(C), which is the group rationality con-

dition. 4 �

Another example of games that have a non-empty core are the class of minimum
cost spanning tree game. Let N be the set of customers, and let 0 be the supplier. Let
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us define N∗ = N ∪ {0}. For (i, j) ∈ N2
∗ , i 6= j, let ci,j be the cost of connecting

i and j by the edge eij . Let (N, c) be the corresponding cost game, which is called a
minimum cost spanning tree game.

2.2.4. THEOREM. Every minimum cost spanning tree game has a non-empty core.

Proof. Let us define a cost distribution x and then we will show that x is in the core.
Let T = (N,EN) a minimum cost spanning tree for the graph

(
N∗, c{ij}⊆N2∗

)
. Let

i be a customer. Since T is a tree, there is a unique path (0, a1, . . . , ak, i) from 0 to i.
The cost paid by agent i is defined by xi = cak,i.

This cost allocation is efficient by construction of x.
We need to show the cost allocation is group rational, i.e., for all coalition S, we

have x(S) ≤ v(S) (it is a cost, which explains the inequality).
Let S ⊂ N and TS = (S ∪ {0}, Es) be a minimum cost spanning tree of the graph(
S ∪ {0}, c{ij}∈S∪{0}

)
. Let extand the tree TS to a graph T+

S = (N∗, E
+
N) by adding

the remaining customers N \ S, and for each customer i ∈ N \ S, we add the edge of
EN ending in i, i.e., we add the edge (ak, i). The graph T+

S has |S| + |N \ S| edges
an is connected. Hence, T+

S is a spanning tree. Now, we note that c(S) + x(N \ S) =∑
eij⊆E+

N
cij ≥

∑
eij⊆EN

= c(N) = x(N). The inequality is due to the fact that T+
S is

a spanning tree, and T is a minimum spanning tree. It follows that x(S) ≤ v(S). 4 �

2.3 Characterization of games with a non-empty core
We saw that the core may be empty, but that some classes of games have a non-empty
core. The next issue is whether we can characterize the games with non-empty core. It
turns out that the answer is yes, and the characterization has been found independently
by Bondareva (1963) and Shapley (1967), resulting in what is now known as the Bon-
dareva Shapley theorem. This result connects results from linear programming with
the concept of the core. We will first describe the theorem and provide an intuition
about the proof. Then, we will use this theorem to show that market games have a
non-empty core.

2.3.1 Bondareva-Shapley theorem

Let C ⊆ N . The characteristic vector χC of C is the member of RN defined by χi
C ={

1 if i ∈ C
0 if i ∈ N \ C

2.3.1. DEFINITION. [Map] A map is a function 2N \ ∅ → R+ that gives a positive
weight to each coalition.
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2.3.2. DEFINITION. [Balanced map] A function λ : 2N \ ∅ → R+ is a balanced map
iff
∑
C⊆N λ(C)χC = χN

A map is balanced when the amount received over all the coalitions containing an
agent i sums up to 1. We provide an example in Table 2.1 for a three-player game.

1 2 3
{1, 2} 1

2
1
2

0
{1, 3} 1

2
0 1

2

{2, 3} 0 1
2

1
2

λ(C) =

{
1
2

if |C| = 2
0 otherwise

Each of the column sums up to 1.
1
2
χ{1,2} + 1

2
χ{1,3} + 1

2
χ{2,3} = χ{1,2,3}

Table 2.1: Example of a balanced map for n = 3

2.3.3. DEFINITION. [Balanced game] A game is balanced iff for each balanced map
λ we have

∑
C⊆N,C6=∅ λ(C)v(C) ≤ v(N).

2.3.4. THEOREM (BONDAREVA-SHAPLEY THEOREM). A TU game has a non-empty
core iff it is balanced.

This theorem completely characterizes the set of games with a non-empty core.
However, it is not always easy or feasible to check that it is a balanced game.

Given a TU game (N, v), the core is defined as follows: Core(N, v) = {x ∈
Rn | x(C) ≥ v(C) for all C ⊆ N}. Under this definition, the core is defined by a set
of linear constraints. The idea is to use results from linear optimization to characterize
the class of games with a non-empty core. We will use V(N) = V to represent the set
of all valuation functions on 2N and VCore = {v ∈ V |Core(N, v) 6= ∅} is the set of
games with non-empty core.
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A problem: Imagine you can do a project alone, or with
friends. Which friend to choose?
• Talented, hard working, easy to work with, etc.
• But your friends are having the same reasoning.
A condition for a coalition to form:

all agents prefer to be in it.
i.e., none of the participants wishes she were in a
different coalition or by herself ë Stability
Stability is a necessary but not sufficient condition,
(e.g., there may be multiple stable coalitions).
The core is a stability concepts where no agents prefer
to deviate to form a different coalition.
For simplicity, we will only consider the problem of the
stability of the grand coalition:

ë Is the grand coalition stable ⇔ Is the core non-empty

Stéphane Airiau (ILLC) - Cooperative Games Lecture 2: The core 2



Today

Definition of the core
Some geometrical representation of the core for games
with up to three agents
Convex games and the core
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Definition (valuation or characteristic function)
A valuation function v associates a real number v(C) to
any subset C, i.e., v : 2N→ R

Definition (TU game)
A TU game is a pair (N,v) where N is a set of agents
and where v is a valuation function.

Definition (Imputation)
An imputation is a payoff distribution x that is efficient
and individually rational, i.e.:∑

i∈N xi = v(N) (efficiency)
for all i ∈N, xi > v({i}) (individual rationality)

Definition (Group rationality)
∀C⊆N,

∑
i∈C x(i)> v(C)

Stéphane Airiau (ILLC) - Cooperative Games Lecture 2: The core 4



The core relates to the stability of the grand coalition:
No group of agents has any incentive to change coalition.

Definition (core of a game (N,v))
Let (N,v) be a TU game, and assume we form the grand
coalition N.
The core of (N,v) is the set:

Core(N,v) = {x ∈ Rn | x is a group rational imputation}

Equivalently,

Core(N,v) = {x ∈ Rn | x(N)6 v(N) ∧ x(C)> v(C) ∀C⊆N}

Stéphane Airiau (ILLC) - Cooperative Games Lecture 2: The core 5

Weighted graph games

N = {1,2}
v({1}) = 5, v({2}) = 5

v({1,2}) = 20

core(N,v) = {(x1,x2) ∈ R2 | x1 > 5, x2 > 5, x1 +x2 = 20}

x1

x2

0 5 10 15 20
0

5

10

15

20

The core may not be fair: the core only considers stability.
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three-player majority game

N = {1,2,3}
v({i}) = 0

v({C}) = α for |C|= 2
v(N) = 1

(x1,x2,x3) ∈ Core(N,v)⇔




∀i ∈N, xi > 0
∀(i, j) ∈N2 i 6= j, xi +xj > α∑

i∈N xi = 1

⇔
{
∀i ∈N 0 6 xi 6 1−α (1)∑

i∈N xi = 1 (2)

Core(N,v) is nonempty iff α6 2
3

(by summing (1) for all i∈N and using (2))

what happens when α > 2
3 and the core is empty?
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Example with barycentric coordinate

v({1}) = 1 v({1,2}) = 4
v(∅) = 0 v({2}) = 0 v({1,3}) = 3 v({1,2,3}) = 8

v({3}) = 1 v({2,3}) = 5

set of imputations I=

{
3∑

i=1

xi = 8, x1 > 1, x2 > 0, x3 > 1

}

I is a triangle with ver-
tices: (7,0,1), (1,6,1),
(1,0,7).
On the plane:
x1 +x2 +x3 = 8

Core(N,v)

(1,6,1) (1,0,7)

(7,0,1)

x1 = 1

x3 = 1 x2 = 0

(1
,5

,2
)

(1
,4

,3
)

(1
,3

,4
)

(1
,2

,5
)

(1
,1

,6
)

(2,5,1)

(3,4,1)

(4,3,1)

(5,2,1)

(6,1,1)

(2,0,6)

(3,0,5)

(4,0,4)

(5,0,3)

(6,0,2) x1 +x2 = 4

x1 +x3 = 3

x2 +x3 = 5
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Issues with the core

The core may not always be non-empty
When the core is not empty, it may not be ’fair’
It may not be easy to compute

ë Are there classes of games that have a non-empty core?
ë Is it possible to characterize the games with non-empty

core?
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Definition (Convex games)
A game (N,v) is convex iff
∀C⊆ T and i /∈ T, v(C∪ {i})−v(C)6 v(T∪ {i})−v(T).

TU-game is convex if the marginal contribution of each
player increases with the size of the coalition he joins.

Bankruptcy game (E,c) E > 0 is the estate, there are n
claimants and c ∈ Rn

+ is the claim vector (ci is the claim of
the ith claimant). v(C) = max{0, E−

∑
i∈N\C ci}

Theorem
Each bankruptcy game is convex

Theorem
A convex game has a non-empty core
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Proof for convexity of a bankruptcy market
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Proof for characterization of a convex game
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Proof for non-emptyness of the core for convex games
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Minimum cost spanning tree games

N be the set of customers
0 be the supplier
N∗ = N∪ {0}
ci,j is the cost of connecting i and j by the edge eij for
(i, j) ∈N2

∗, i 6= j
for a coalition C, TC = (C,EC) is the minimum cost
spanning tree spanning over the set of edges C∪ {0}.
the cost function is c(S) =

∑
(i,j)∈EC

cij

A minimum cost spanning tree game is the associated
cost game

Theorem
Every minimum cost spanning tree game has a non-
empty core.
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The Bondareva Shapley theorem:
a characterization of games with non-empty core.

The theorem was proven independently by
O. Bondareva (1963) and L. Shapley (1967).
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Let C ⊆ N. The characteristic vector χC of C is the member

of RN defined by χi
C =

{
1 if i ∈ C

0 if i ∈N \C

A map is a function 2N \∅ → R+ that gives a positive weight
to each coalition.
Definition (Balanced map)

A function λ : 2N \ ∅ → R+ is a balanced map iff∑
C⊆N λ(C)χC = χN

A map is balanced when the amount received over all the
coalitions containing an agent i sums up to 1.

Example: n = 3, λ(C) =
{ 1

2 if |C|= 2
0 otherwise

1 2 3
{1,2} 1

2
1
2 0

{1,3} 1
2 0 1

2
{2,3} 0 1

2
1
2

Each of the column sums up to 1.
1
2χ{1,2}+

1
2χ{1,3}+

1
2χ{2,3} = χ{1,2,3}
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Characterization of games with non-empty core

Definition (Balanced game)
A game is balanced iff for each balanced map λ we
have

∑
C⊆N,C 6=∅λ(C)v(C)6 v(N).

Theorem (Bondareva Shapley)
A TU game has a non-empty core iff it is balanced.
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Summary

We introduced the core: a stability solution concept.
We looked at some examples and geometrical
representation
We saw that the core can be empty.
We proved that convex games have a non-empty core.
We proved that Minimum Cost Spanning Tree game
have a non-empty core
We started to look at a characterization of the
Bondareva-Shapley theorem
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Coming next

Characterization of games with non-empty core
(Bondareva Shapley theorem), informal introduction to
linear programming.
Application of Bondareva-Shapley to market games.
Other games with non-empty core.
Computational complexity of the core.
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