
Lecture 8
A Special Class of TU games: Voting Games

The formation of coalitions is usual in parliaments or assemblies. It is therefore in-
teresting to consider a particular class of coalitional games that models voting in an
assembly. For example, we can represent an election between two candidates as a vot-
ing game where the winning coalitions are the coalitions of size at least equal to the
half the number of voters.

8.1 Definitions
We start by providing the definition of a voting game, which can be viewed as a special
class of TU games. Then, we will formalize some known concepts used in voting. We
will see how we can define what a dictator is,

8.1.1. DEFINITION. [voting game] A game (N, v) is a voting game when

• the valuation function takes only two values: 1 for the winning coalitions, 0
otherwise.

• v satisfies unanimity: v(N) = 1

• v satisfies monotonicity: S ⊆ T ⊆ N ⇒ v(S) ≤ v(T ).

Unanimity and monotonicity are natural assumptions in most cases. Unanimity
reflects the fact that all agents agree; hence, the coalition should be winning. Mono-
tonicity tells that the addition of agents in the coalition cannot turn a winning coalition
into a losing one, which is reasonable for voting: more supporters should not harm
the coalition. A first way to represent a voting game is by listing all winning coali-
tions. Using the monotonicity property, a more succinct representation is to list only
the minimal winning coalitions.

8.1.2. DEFINITION. [Minimal winning coalition] A coalition C ⊆ N is a minimal
winning coalition iff v(C) = 1 and ∀i ∈ C v(C \ {i}) = 0.
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For example, we consider the game ({1, 2, 3, 4}, v) such that v(C) = 1 when
|C| ≥ 3 or (|C| = 2 and 1 ∈ C) and v(C) = 0 otherwise. The set of winning coali-
tions is {{1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. We
can represent the game more succinctly by just writing the set of minimal winning
coalitions, which is {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}.

We can now see how we formalize some common terms in voting. We can first
express what a dictator is.

8.1.3. DEFINITION. [Dictator] Let (N, v) be a simple game. A player i ∈ N is a
dictator iff {i} is a winning coalition.

Note that with the requirements of simple games, it is possible to have more than
one dictator! The next notion is the notion of veto player, in which a player can block
a decision on its own by opposing to it (e.g. in the United Nations Security Council,
China, France, Russia, the United Kingdom, and the United States are veto players).

8.1.4. DEFINITION. [Veto Player] Let (N, v) be a simple game. A player i ∈ N is a
veto player if N \ {i} is a losing coalition. Alternatively, i is a veto player iff for all
winning coalition C, i ∈ C.

It also follows that a veto player is member of every minimal winning coalitions.
Another concept is the concept of a blocking coalition: it is a coalition that, on its own,
cannot win, but the support of all its members is required to win. Put another way, the
members of a blocking coalition do not have the power to win, but they have the power
to lose.

8.1.5. DEFINITION. [blocking coalition] A coalition C ⊆ N is a blocking coalition iff
C is a losing coalition and ∀S ⊆ N \ C, S \ C is a losing coalition.

We can start by studying what it means to have a stable payoff distribution in these
games. The following theorem characterizes the core of simple games.

8.1.6. THEOREM. Let (N, v) be a simple game. Then

Core(N, v) =
{
x ∈ Rn x is an imputation xi = 0 for each non-veto player i

}

Proof.

⊆ Let x ∈ Core(N, v). By definition x(N) = 1. Let i be a non-veto player.
x(N \ {i}) ≥ v(N \ {i}) = 1. Hence x(N \ {i}) = 1 and xi = 0.

⊇ Let x be an imputation and xi = 0 for every non-veto player i. Since x(N) = 1,
the set V of veto players is non-empty and x(V ) = 1.

Let C ⊆ N . If C is a winning coalition then V ⊆ C, hence x(C) ≥ v(C).
Otherwise, v(C) is a losing coalition (which may contain veto players), and
x(C) ≥ v(C). Hence, x is group rational.
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�

We can also study the class of simple convex games. The following theorem shows
that they are the games with a single minimal winning coalition.

8.1.7. THEOREM. A simple game (N, v) is convex iff it is a unanimity game (N, vV )
where V is the set of veto players.

Proof. A game is convex iff ∀S, T ⊆ N v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ).

⇒ Let us assume (N, v) is convex.

If S and T are winning coalitions, S ∪T is a winning coalition by monotonicity.
Then, we have 2 ≤ 1 + v(S ∩ T ) and it follows that v(S ∩ T ) = 1. The
intersection of two winning coalitions is a winning coalition. Moreover, from
the definition of veto players, the intersection of all winning coalitions is the set
V of veto players. Hence, v(V ) = 1. By monotonicity, if V ⊆ C, v(C) = 1.
Otherwise, V * C. Then there must be a veto player i /∈ C, and it must be the
case that v(C) = 0. Hence, for all coalition C ⊆ N , v(C) = 1 iff V ⊆ C.

⇐ Let (N, vV ) a unanimity game. Let us prove it is a convex game. Let S ⊆ N and
T ⊆ N , and we want to prove that v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

– case V ⊆ S ∩ T : Then V ⊆ S and V ⊆ T , and we have 2 ≤ 2

– case V * S ∩ T ∧ V ⊆ S ∪ T :

∗ if V ⊆ S then V * T and 1 ≤ 1

∗ if V ⊆ T then V * S and 1 ≤ 1

∗ otherwise V * S and V * T , and then 0 ≤ 1

– case V * S ∪ T : then 0 ≤ 0

For all cases, v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), hence a unanimity game is
convex. In addition, all members of V are veto players.

�

8.2 Weighted voting games
We now define a class of voting games that has a more succinct representation: each
agent has a weight and a coalition needs to achieve a threshold (i.e. a quota) to be
winning. This is a much more compact representation as we only use to define a vector
of weights and a threshold. The formal definition follows.
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8.2.1. DEFINITION. [weighted voting game] A game (N, v, q, w) is a weighted voting
game when

• w = (w1, w2 . . . , wn) ∈ Rn
+ is a vector of weights, one for each voter

• A coalition C is winning (i.e., (v(C) = 1) iff
∑

i∈C wi ≥ q, it is losing otherwise
(i.e., (v(C) = 0)

• v satisfies monotonicity:
∑

i∈N wi ≥ q

The fact that each agent has a positive (or zero) weight ensures that the game is
monotone. We will note a weighted voting game (N,wi∈N , q) as [q; w1, . . . , wn]. In its
early days, the European Union was using a weighted voted games. Now a combination
of weighted voting games are used (a decision is accepted when it is supported by 55%
of Member States, including at least fifteen of them, representing at the same time at
least 65% of the Union’s population).

Weighted games can be succinctly represented, this is not a complete representation
as there are some voting games that cannot be represented as a weighted voting game.
For example, consider the voting game ({1, 2, 3, 4}, v) such that the set of minimal
winning coalitions is {{1, 2}, {3, 4}}. Let us assume we can represent (N, v) with a
weighted voting game [q; w1, w2, w3, w4]. We can form the following inequalities:

v({1, 2}) = 1 then w1 + w2 ≥ q
v({3, 4}) = 1 then w3 + w4 ≥ q
v({1, 3}) = 0 then w1 + w3 < q
v({2, 4}) = 0 then w2 + w4 < q

But then, w1 +w2 +w3 +w4 < 2q and w1 +w2 +w3 +w4 ≥ 2q, which is impossible.
Hence, (N, v) cannot be represented by a weighted voting game.

We now turn to the question about the meaning of the weight. One intuition may
be that the weight represents the importance or the strength of a player. Let us consider
some examples to check this intuition.

• [10; 7, 4, 3, 3, 1]: The set of minimal winning coalitions is {{1, 2}{1, 3}{1, 4}{2, 3, 4}}.
Player 5, although it has some weight, is a dummy. Player 2 has a higher weight
than player 3 and 4, but it is clear that player 2, 3 and 4 have the same influence.

• [51; 49, 49, 2]: The set of winning coalition is {{1, 2}, {1, 3}, {2, 3}}. It seems
that the players have symmetric roles, but it is not reflected in their weights.

These examples shows that the weights can be deceptive and may not represent the
voting power of a player. Hence, we need different tools to measure the voting power
of the agents, which is the goal of the following section.
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8.3 Power Indices
The examples raise the subject of measuring the voting power of the agents in a vot-
ing game. Multiple indices have been proposed to answer these questions, and we
now present few of them. One central notion is the notion of pivotal player: we say
that a voter i is pivotal for a coalition C when it turns it from a losing to a wining
coalition, i.e., v(C) = 0 and v(C ∪ {i}) = 1. Let w be the number of winning coali-
tions. For a voter i, let ηi be the number of coalitions for which i is pivotal, i.e.,
ηi =

∑

S⊆N\{i}
v(S ∪ {i})− v(S).

Shapley-Shubik index: it is the Shapley value of the voting game, its interpretation
in this context is the percentage of the permutations of all players in which i is
pivotal.

ISS(N, v, i) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

n!
(v(C ∪ {i})− v(C)) .

“For each permutation, the pivotal player gets one more point.”. One issue is
that the voters do not trade the value of the coalition, though the decision that the
voters vote about is likely to affect the entire population.

Banzhaff index: For each coalition, we determine which agent is a swing agent (more
than one agent may be pivotal). The raw Banzhaff index of a player i is

βi =

∑
C⊆N\{i} v(C ∪ {i})− v(C)

2n−1
.

For a simple game (N, v), v(N) = 1 and v(∅) = 0, at least one player i has a
power index βi 6= 0. Hence, B =

∑
j∈N βj > 0. The normalized Banzhaff index

of player i for a simple game (N, v) is defined as

IB(N, v, i) =
βi
B
.

Coleman index: Coleman defines three indices [5]: the power of the collectivity to act
A = w

2n
(A is the probability of a winning vote occurring); the power to prevent

action Pi = ηi
w

(it is the ability of a voter to change the outcome from winning
to losing by changing its vote); the power to initiate action Ii = ηi

2n−w (it is the
ability of a voter to change the outcome from losing to winning by changing its
vote, the numerator is the same as in P , but the denominator is the number of
losing coalitions, i.e., the complement of the one of P )

We provide in Table 8.1 an example of computation of the Shapley-Schubik and
Banzhaff indices. This example shows that both indices may be different. There is
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{1, 2, 3, 4} {3, 1, 2, 4}
{1, 2, 4, 3} {3, 1, 4, 2}
{1, 3, 2, 4} {3, 2, 1, 4}
{1, 3, 4, 2} {3, 2, 4, 1}
{1, 4, 2, 3} {3, 4, 1, 2}
{1, 4, 3, 2} {3, 4, 2, 1}
{2, 1, 3, 4} {4, 1, 2, 3}
{2, 1, 4, 3} {4, 1, 3, 2}
{2, 3, 1, 4} {4, 2, 1, 3}
{2, 3, 4, 1} {4, 2, 3, 1}
{2, 4, 1, 3} {4, 3, 1, 2}
{2, 4, 3, 1} {4, 3, 2, 1}
In red and underlined, the pivotal agent

1 2 3 4
Sh 7

12
1
4

1
12

1
12

winning coalitions:
{1, 2}
{1, 2, 3}
{1, 2, 4}
{1, 3, 4}
{1, 2, 3, 4}
In red and underlined, the pivotal agents

1 2 3 4

β 5
8

3
8

1
8

1
8

IB(N, v, i) 1
2

3
10

1
10

1
10

Table 8.1: Shapley-Schubik and the Banzhaff indices for the weighted voting game
[7; 4, 3, 2, 1].

a slight difference in the probability model between the Banzhaf βi and Coleman’s
index Pi: in Banzhaf’s, all the voters but i vote randomly whereas in Coleman’s, the
assumption of random voting also applies to the voter i. Hence, the Banzhaf index can
be written as βi = 2Pi · A = 2Ii · (1− A).

When designing a weighted voting game, for example to decide on the weights for
a vote for the European Union or at the United Nations, one needs to choose which
weights are to be attributed to each nation. The problem of choosing the weights so
that they corresponds to a given power index has been tackled in [7]. If the number
of country changes, you do not want to re-design and negotiate over a new game each
time. Each citizen vote for a representative and the representatives for each country
vote. It may be desirable that each citizen, irrespective of her/his nationality, has the
same voting power. If βx is the normalized Banzhaf index for a person in a country i
in EU with population ni, and βi is the normalized Banzhaf index of a representative
for country i, then Felsenthal and Machover have shown that βx ∝ βi

√
2
πni

. Thus the
Banzhaf index of each representative βi should be proportional to ni for each person
in the EU to have equal power.

The computational complexity of voting and weighted voting games have been
studied in [9, 10]. For example, the problem of determining whether the core is empty
is polynomial. The argument for this result is the following theorem: the core of a
weighted voting game is non-empty iff there exists a veto player. When the core is
non-empty, the problem of computing the nucleolus is also polynomial, otherwise, it
is an NP-hard problem.
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