Lecture 10

Outside of the traditional games

10.1 Games with a priori unions
— a different interpretation of a coalition structure

So far, a coalition has represented a set of agents that worked on its own. In a CS,
the different coalitions are intended to work independently of each other. We can
also interpret a coalition to represent a group of agent that is more likely to work
together within a larger group of agents (because of personal or political affinities).
The members of a coalition do not mind working with other agents, but they want to
be together and negotiate their payoff together, which may improve their bargaining
power. This is the idea used in games with a priori unions. Formally, a game with a
priori unions is similar to a game with CS: it consists of a triplet (N, v, .S) when (V, v)
is a TU game and S is a CS. However, we assume that the grand coalition forms. The
problem is again to define a payoff distribution.

10.1.1. DEFINITION. [Game with a priori unions] A game with a priori unions is a
triplet (N, v, .S), where (N,v) is a TU game, and S is a particular CS. It is assumed
that the grand coalition forms.

Owen [8] proposes a value that is based on the idea of the Shapley value. The
agents forms the grand coalition by joining one by one. In the Shapley value, all
possible joining orders are allowed. In the Owen value, an agent ¢ may join only when
the last agent that joined is a member of i’s coalition or when the last agents (jq, . . ., ji)
that joined before formed a coalition in S. This is formally captured using the notion
of a consistency with a CS:

10.1.2. DEFINITION. [Consistency with a coalition structure] A permutation 7 is con-
sistent with a CS S when, for all (i,j) € C?,C € Sandl € N, 7(i) < n(l) < 7(j)
implies that [ € C.
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104 Lecture 10. Outside of the traditional games

We denote by [Is(N) the set of permutations of N that are consistent with the
CS S. The number of such permutations is m [, 4 [C|! where m is the number of
coalitions in S. The Owen value is then defined as follows:

10.1.3. DEFINITION. Owen value Given a game with a priori union (N, v,.S), the
Owen value O;(N, v, S) of agent i is given by

ON.0:8) = D )

TI'EHs(N)

In Table 10.1, we present the example used for the Shapley value and compute
the Owen value. The members of the coalition of two agents improve their payoff by
forming an union.

N =1{1,2,3}
v({1}) =0 v({2}) =0 v({3}) =0
o({1,2) =90  o({1,3})) =80 v({2,3}) =70
v({1,2,3}) = 120

52 = {{1’ 2}7 {3}} 52 = {{173}7 {2}}

1 2 3 1 2 3
1+2+3 0 90 30 1+2+3 X
13«2 X 1+ 3«2 0 40 80
21«3 90 0 30 213 90 0 30
2+ 3«1 X 2+ 3«1 50 0 70
31«2 80 40 O 312 80 40 0
3+ 2«1 50 70 0 3+ 2«1 X
total 220 200 60 total 220 80 180
Owen value O;(N,v,S;) 55 50 15 Owen value O;(N,v,S2) 55 20 45

Table 10.1: Example of the computation of an Owen value

10.2 Games with externalities

A traditional assumption in the literature of coalition formation is that the value of a
coalition depends solely on the members of that coalition. In particular, it is indepen-
dent of on non-members’ actions. In general, this may not be true: some externalities
(positive or negative) can create a dependency between the value of a coalition and
the actions of non-members. [10] attribute these externalities to the presence of shared
resources (if a coalition uses some resource, they will not be available to other coali-
tions), or when there are conflicting goals: non-members can move the world farther
from a coalition’s goal state. [9] state that a “recipe for generating characteristic func-
tions is a minimax argument”: the value of a coalition C is the value C gets when the
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non-members respond optimally so as to minimise the payoff of C. This formulation
acknowledges that the presence of other coalitions in the population may affect the
payoff of the coalition C. As in [4, 9], we can study the interactions between different
coalitions in the population: decisions about joining forces or splitting a coalition can
depend on the way the competitors are organised. For example, when different compa-
nies are competing for the same market niche, a small company might survive against
a competition of multiple similar individual small companies. However, if some of
these small companies form a viable coalition, the competition significantly changes:
the other small companies may now decide to form another coalition to be able to suc-
cessfully compete against the existing coalition. Another such example is a bargaining
situation where agents need to negotiate over the same issues: when agents form a
coalition, they can have a better bargaining position, as they have more leverage, and
because the other party needs to convince all the members of the coalition. If the other
parties also form coalition, the bargaining power of the first coalition may decrease.
Two main types of games with externalities are described in the literature, both are
represented by a pair (N, v), but the valuation function has a different signature.

Games in partition function form [11]: v : 2V x .%, — R. This is an extension of
the valuation function of a TU game by providing the value of a coalition given
the current coalition structure (note that v(C, S) is meaningful when C € S).

Games with valuations : v : N x ., — R. In this type of games, the valuation
function directly assigns a value to an agent given a coalition structure. One
possible interpretation is that the problem of sharing the value of a coalition to
the members has already been solved.

The definitions of superadditivity, subadditivity and monotonicity can be adapted
to games in partition functions [3]. As an example, we provide the definition for su-
peradditivity.

10.2.1. DEFINITION. [superadditive games in partition function] A partition function
v is superadditive when, for any CS S and any coalitions C; and C; in S, we have
’U(Cl U CQ,S \ {Cl, 02} U {Cl U CQ}) Z U(Cl,S) + ’U(B,S)

The partition function may also have some regularities when two coalition merge:
either they always have a positive effect on the other coalition, or they always have a
negative one. More precisely, a partition function exhibits positive spillovers when for
any CS S and any coalitions C; and C; in S, we have v(C, S\ {Cy, Co} U{C UCy}) >
v(C,S) for all coalitions C # C;,Cy in S.

We now turn to considering solution concepts for such games. The issue of extend-
ing the Shapley value has a rich literature in game theory. We want the Shapley value
to represent an average marginal contribution, but there is a debate over which set of
coalition structures. Michalak et al. [S] provide references on different solutions and
present three solutions in more details.
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Airiau and Sen [2] considers the issue of the stability of the optimal CS and dis-
cusses a possible way to extend the kernel for partition function games. In [1], they
consider coalition formation in the context of games with valuations and propose a
solution for myopic agents (an agent will join a coalition only when it is beneficial,
without considering long-terms effect).

Michalak et al. [7] tackle the problem of representing such games and propose three
different representations that depends on the interpretation of the externalities. The first
representation considers the value of a coalition in a CS: the value of a coalition can
be decomposed into on term that is free of externality and another term that models
the sum of the uncertainty due to the formation of the other coalitions. The two other
representations consider that the contribution of a coalition in a CS: either by providing
the mutual influence of any two coalitions in a CS (outward operational externalities)
or by providing the influence of all the other coalitions on a given coalition (inward
operational externalities). Michalak et al. (in [5] and [6]) extend the concept of MC-
nets to games with partition function.
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Lecture 11

Coalition Structure Generation problem and
related issues

In the previous sections, the focus was on individual agents that are concerned with
their individual payoff. In this section, we consider TU games (V, v) in which agents
are concerned only about the society’s payoft: the agents’ goal is to maximise utilitar-
ian social welfare. The actual payoff of the agent or the value of her coalition is not
of importance in this setting, only the total value generated by the population matters.
This is particularly interesting for multiagent systems designed to maximise some ob-
jective functions. In the following, an optimal CS denotes a CS with maximum social
welfare. This may model multiagent systems that are designed to optimise an objective
function.

More formally, we consider a TU game (N, v), and we recall that a coalition struc-
ture (CS) s = {S1,- -+, S, } is a partition of N, where S, is the i" coalition of agents,
andi # j = S§;NS; = 0 and Ujcp . S; = N. .7 denotes the set of all CSs. The goal
of the multiagent system is to locate a CS that maximises utilitarian social welfare, in
other words the problem is to find an element of argmax,c » Y 5., v(S).

The space . of all CSs can be represented by a lattice, and an example for a
population of four agents is provided in Figure 11.1. The first level of the lattice
consists only of the CS corresponding to the grand coalition N = {1,2,3,4}, the
last level of the lattice contains CS containing singletons only, i.e., coalitions con-
taining a single member. Level 7 contains all the CSs with exactly ¢ coalitions. The
number of CSs at level i is S(|N|,7), where S is the Stirling Number of the Second
Kind!. The Bell number, 2% (n), represents the total number of CSs with n agents,
B(n) =Y ¢ ,S(n, k). This number grows exponentially, as shown in Figure 11.2,
and is O(n") and w(n?) [15]. When the number of agents is relatively large, e.g.,
n > 20, exhaustive enumeration may not be feasible.

The actual issue is the search of the optimal CS. Sandholm et al. [15] show that
given a TU game (NN, v), the finding the optimal CS is an NP-complete problem. In
the following, we will consider centralised search where a single agent is performing

18 (n,m) is the number of ways of partitioning a set of n elements into 1 non-empty sets.

109



110 Lecture 11. Coalition Structure Generation problem and related issues
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Figure 11.1: Set of CSs for 4 agents.

the search as well as the more interesting case of decentralised search where all agents
make the search at the same time on different parts of the search space. Before doing
so, we review some work where the valuation function v is not known in advance.
In a real application, these values need to be computed; and this may be an issue on
its own if the computations are hard, as illustrated by an example in [14] where the
computation of a value requires to solve a traveling salesman problem.

11.1 Sharing the computation of the coalition values

Thus far, when we used a TU game, the valuation function was common knowledge.
For a practical problem though, one needs to compute these values. We said that the
value of a coalition was the worth that could be achieved through cooperation of the
coalition’s members. In many cases, computing the value of a coalition will be an
optimization problem: find the optimal way to cooperate to produce the best possible
worth. In some cases, such a problem may be computationaly hard. The following
example is given by Sandholm and Lesser [14]: we are in a logistics application and
the computing the value of a coalition requires to solve a travelling salesman problem,
a problem known to be N'P-complete. Before being able to compute an optimal CS,
one needs to compute the value of all coalitions. Since agents are cooperative (i.e. they
want to work together to ensure the best outcome for the society), we are interested in
a decentralised algorithm that computes all the coalition values in a minimal amount
of time, and that requires minimum communication between the agents.

Shehory and Kraus were the first to propose an algorithm to share the computation
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Figure 11.2: Number of CSs in a population of n agents.

of the coalition values [19]. In their algorithm, the agents negotiate which computa-
tion is performed by which agent, which is quite demanding. Rahwan and Jennings
proposed an algorithm where agents first agree on an identification for each agent par-
ticipating in the computation (an index between 1 and n the number of agents). Then,
each agent use the same algorithm that determines which coalition values they need
to compute, removing the need of any further communication, except announcing the
result of the computation. The index is used to compute a set of coalitions and ensures
that the values of all the coalitions are computed exactly once. This algorithm, called
DCVC [7] outperforms the one by Shehory and Kraus. To minimize the overall time of
computation, it is best to balance the work of all the agents. The key observation is that
in general, it should take longer to compute the value of a large coalition compared to a
small coalition (i.e., the computational complexity is likely to increase with the size of
the coalition since more agents have to coordinate their activities). Their method im-
proves the balance of the loads by distributing coalitions of the same size to all agents.
By knowing the number of agents n participating in the computation an index number
(i.e., an integer in the range {0..n}), the agents determine for each coalition size which
coalition values to compute. The algorithm can also be adapted when the agents have
different known computational speed so as to complete the computation in a minimum
amount of time.
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11.2 Searching for the optimal coalition structure

Once the value of each coalition is known, the agents needs to search for an optimal
CS. The difficulty of this search lies in the large search space, as recognised by existing
algorithms, and this is even more true in the case where there exists externalities (i.e.,
when the valuation of a coalition depends on the CS). For TU games with no external-
ities, some algorithms guarantee finding CSs within a bound from the optimum when
an incomplete search is performed. Unfortunately, such guarantees are not possible for
games with externalities. We shortly discuss these two cases in the following.

11.2.1 Games with no externalities

Anytime algorithms

Sandholm et al. [15] proposed a first algorithm that searches through a lattice as
presented in Figure 11.1. Their algorithm guarantees that the CS found, s, is within
a bound from the optimal s* when a sufficient portion of the lattice has been visited.
To ensure any bound, it is necessary to visit a least 2"~! CSs (Theorems 1 and 3 in
[15]) which corresponds to the first two levels of the lattice, i.e., the algorithm needs
to visit the grand coalition and all the CSs composed of 2 coalitions. Let S’ be the
best CS found in the first two levels, then we have v(s*) < n - v(S’). To see this,
let Cy,q, a coalition with the highest value (i.e. Cpq, € argmaxiecyy v(C). Tt is clear
that v(s*) < n X v(Cpae) as each coalition forming the CS s* has a most the value of
v(Cinaz) and there are at most n coalitions in s*. Since all coalitions are part of these
levels, it is clear that we have v(Cyue.) < v(S’). Finally, we have v(s*) < n x v(§’),
which was what we wanted.

The bound improves each time a new level is visited. An empirical study of differ-
ent strategies for visiting the other levels is presented in [4]. Three different algorithms
are empirically tested over characteristic functions with different properties: 1) sub-
additive, 2) superadditive, 3) picked from a uniform distribution in [0, 1] or in [0, |S]]
(where |S| is the size of the coalition). The performance of the heuristics differs over
the different type of valuation functions, demonstrating the importance of the proper-
ties of the characteristic function in the performance of the search algorithm.

The algorithm by Dang and Jennings [3] improves the one of [15] for low bounds
from the optimal. For large bounds, both algorithms visit the first two levels of the
lattice. Then, when the algorithm by Sandholm et al. continues by searching each
level of the lattice, the algorithm of Dang and Jennings only searches specific subset of
each level to decrease the bound faster. This algorithm is anytime, but its complexity
is not polynomial.

These algorithms were based on a lattice as the one presented in Figure 11.1 where
a CS in level ¢ contains exactly ¢ coalitions. The best algorithm to date has been
developed by Rahwan et al. and uses a different representation called integer-partition
(IP) of the search space. It is an anytime algorithm that has been improved over a series
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of paper: [11, 12, 8, 9, 13]. In this representation the CSs are grouped according to
the sizes of the coalitions they contain, which is called a configuration. For example,
for a population of four agents, the configuration {1, 3} represents CSs that contain a
coalition with a singleton and a coalition with three agents. A smart scan of the input
allows to search the CSs with two coalitions the grand coalition and the CS containing
singletons only. In addition, during the scan, the algorithm computes the average and
maximum value for each coalition size. The maximum values can be used to prune the
search space. When constructing a configuration, the use of the maximum values of a
coalition for each size permits the computation of an upper bound of the value of a CS
that follows that configuration, and if the value is not greater than the current best CS,
it is not necessary to search through the CSs with that configuration, which prunes the
search tree. Then, the algorithm searches the remaining configurations, starting with
the most promising ones. During the search of a configuration, a branch and bound
technique is used. In addition, during the search, the algorithm is designed so that no
CS is evaluated twice. Empirical evaluation shows that the algorithm outperforms any
other current approach over different distributions used to generate the values of the
coalitions.

dynamic programming

Another approach is to use dynamic programming technique. The key idea is pro-
vided in the following lemma: in order to compute the optimal value of a CS, it suffices
to consider partitions of NV into two disjoints coalitions and apply the argument recur-
sively. To help us, let us recall the definition of the supeadditive cover (N, v) of a
TU game (N, v). The valuation function 9 is #(C) = maxpe .y, {> pep v(T)} for all
C C N\ () and 6(0) = 0. The set of optimal CSs can now be noted argmax 9(N). Let
us now state the key lemma:

11.2.1. LEMMA. For any C C N, we have
9(C) = max {max {0(C") +o(C") | C'UC" =CAC'NC"=0AC',C"#0},v(C)}.

Proof. Clearly, 0(C) > v(C'). Take two disjoint non-empty coalitions C" and C” such
that C’ UC"” = C. Let &’ and S” be two partitions of C’ and C” such that 0(C") = v(S’)
and 0(C") = v(S"). Then S’ US" is a CS over C with v(S§'US") = v(S’) +v(S8”), so
we must have 0(C) > v(C’) + v(C").

Now, let S be a partition of C such that 0(C) = v(S). If S = {C}, then we are
done. Otherwise, let C’ be a coalitionin S, C” = C'\ ¢’ and &' be S \ {C'}. Since &'
is a CS over C”, we have 0(C") > v(S’) = v(S) — v(C’). On the other hand, we have
0(C") > v(C"). Hence 0(C") + 0(C") > v(S) = 0(C). O

More recently, [17, 18] designed an algorithm that uses dynamic programming and
that guarantees a constant factor approximation ratio r in a given time. In particular,
the latest algorithm [17] guarantees a factor of % in O(2").
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Other approaches

Some algorithms are now trying to combine an anytime approach and an dynamics
programming. Other researchers try to use different techniques. For example, Silaghi
et al [20] propose to use a different representation, assuming that the value of a coali-
tion is the optimal solution of a distributed constraint optimization problem (DCOP).
The algorithm uses a DCOP solver and guarantees a bound from the optimum.

The algorithms above assume that the TU game is represented in a naive way. There
exists some algorithms that take advantage of compact representation. For example,
[6] proposes algorithms in the case where the game is represented using an MC-nets
and in the case where the synergy coalition group is used. Another example is [1] for
skill games.

11.2.2 Games with externalities

The previous algorithm explicitly uses the fact that the valuation function only depends
on the members of the coalition, i.e., has no externalities. When this is not the case,
1.e., when the valuation function depends on the CS, it is still possible to use some al-
gorithms, e.g., the one proposed in [4], but the guarantee of being within a bound from
the optimal is no longer valid. Sen and Dutta use genetic algorithms techniques [16] to
perform the search. The use of such technique only assumes that there exists some un-
derlying patterns in the characteristic function. When such patterns exist, the genetic
search makes a much faster improvement in locating higher valued CS compared to
the level-by-level search approach. One downside of the genetic algorithm approach
is that there is no optimality guarantee. Empirical evaluation, however, shows that the
genetic algorithm does not take much longer to find a solution when the value of a
coalition does depend on other coalitions.

More recently, Rahwan et al. and Michalak et al. consider the problem for some
class of externalities and modify the IP algorithm for the games with externalities [5,
10], however, they assume games with negative or positive spillovers. [2] introduce a
representation to represent games in partition function games using types: each agent
has a single type. They make two assumptions on the nature of the externalities (based
on the notions of competition and complementation) and they show that games with
negative or positive spillovers are special cases. They provide a branch and bound
algorithm for the general setting. They also provide a worst-case initial bound.
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Lecture 12
Issues for applying cooperative games

We now highlight issues that have emerged from the different types of applications
(e.g. resource or task allocation problem or forming a buying group). Some of the
issues have solutions while others remain unsolved, for example, dealing with agents
that can enter and leave the environment at any time in an open, dynamic environment.
None of the current protocols can handle these issues without re-starting computation,
and only few approaches consider how to re-use the already computed solution [6, 13].

12.1 Stability and Dynamic Environments

Real-world scenarios often present dynamic environments. Agents can enter and leave
the environment at any time, the characteristics of the agents may change with time,
the knowledge of the agents about the other agents may change, etc.

The game-theoretic stability criteria are defined for a fixed population of agents and
the introduction of a new agent in the environment requires significant computation to
update a stable payoff distribution. For example, for the kernel, all the agents need to
check whether any coalition that includes the new agent changes the value of the max-
imum surplus, which requires re-evaluating O(2") coalitions. Given the complexity
of the stability concept, one challenge that is faced by the multiagent community is to
develop stability concepts that can be easily updated when an agent enters or leaves
the environment.

In addition, if an agent drops during the negotiation, this may cause problems for
the remaining agents. For example, a protocol that guarantees a kernel stable payoff
distribution is shown not to be ‘safe’ when the population of agents is changing: if an
agent ¢ leaves the formation process without notifying other agents, the other agents
may complete the protocol and find a solution to a situation that does not match the
reality. Each time a new agent enters or leaves the population, a new process needs to
be restarted [9].

In an open environments, manipulations will be impossible to detect: agents may
use multiple identifiers (or false names) to pretend to be multiple agents, or the other
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way around, multiple agents may collude and pretend to be a single agents, or agents
can hide some of their skills. Hence, it is important to propose solution concepts that
are robust against such manipulations. We will come back later to some of the solution
that have been proposed: the anonymity-proof core [44] and anonymity-proof Shapley
value [35].

12.2 Uncertainty about Knowledge and Task

In real-world scenario, agents will be required to handle some uncertainty. Different
sources of uncertainty have been considered in the literature:

o the valuation function is an approximation [38] and agents may not use the same
algorithm. Hence, the agents may not know what is the true value.

e agents may not know some tasks [9] or the value of some coalitions. In such
cases, the agents play a different coalitional game that may reduce the payoff of
some agents compared to the solution of the true game.

e some information is private, i.e., an agent knows some property about itself, but
does not know it for other agents. In [28], it is the cost incurred by other agents
to perform a task that is private. In [16, 17], agents have a private type, and the
valuation function depends on the types of the coalition’s members.

e uncertainty about the outcome of an action [16]: when a coalition makes an
action, some external factors may influence the outcome of the actions. This can
be captured by a probability of an outcome given the action taken and the type
of the members of the coalition.

o there are multiple possible worlds [24], which models the different possible out-
comes of the formation of a coalition. Agents know a probability distribution
over the different worlds. In addition, an agent may not able to distinguish some
worlds as it lacks information and they know a partition of the worlds (called
information sets), each set of the partition represent worlds that appears as indis-
tinguishable.

Some authors also consider that there is uncertainty in the valuation function with-
out modeling a particular source, for example in [25], each agent has an expectation
of the valuation function. In [10, 11] fuzzy sets are used to represent the valuation
function. In the first paper, the agents enters bilateral negotiations to negotiate Shapley
value, in the second paper, they define a fuzzy version of the kernel.

In the uncertainty model of [24], the definition of the core depends on the time
one reasons about it. They proposed three different definitions of the core that de-
pend on the timing of the evaluation: before the world is drawn or ex-ante, not much
information can be used; after the world is drawn but before it is known, also called
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ex-interim, an agent knows to which set of its information set the real world belongs,
but does not know which one; finally when the world is announced to the agent or
ex-post, everything is known.

The model of [16] combines uncertainty about the agent types and uncertainty
about the outcome of the action taken by the coalition. Each agent has a probabilistic
belief about the types of the other agents in the population. Chalkiadakis and Boutilier
propose a definition of the core, the Bayesian core (introduced in [14]) in which no
agent has the belief that there exists a better coalition to form. As it may be difficult to
obtain all the probabilities and reason about them, [17] propose to use a “point” belief:
an agent guesses the type of the other agents and reason with these guesses. The paper
analyses the core, simple games (proving that the core of a simple game is non-empty
iff the game has a veto player) and some complexity result in this games with belief.

12.3 Safety and Robustness

It is also important that the coalition formation process is robust. For instance, com-
munication links may fail during the negotiation phase. Hence, some agents may miss
some components of the negotiation stages. This possibility is studied in [9] for the
KCA protocol [27]: coalition negotiations are not safe when some agents become
unavailable (intentionally or otherwise). In particular, the payoff distribution is not
guaranteed to be kernel-stable. [6] empirically studies the robustness of the use of a
central algorithm introduced in [5]: the cost to compute a task allocation and payoff
distribution in the core is polynomial, but it can still be expensive. In the case of agent
failure, the computation needs to be repeated. Belmonte et al. propose an alterna-
tive payoff division model that avoids such a re-computation, but the solution is no
longer guaranteed to be in the core, it is only close to the core. There is a trade-off
between computational efficiency and the utility obtained by the agent. They conclude
that when the number of agents is small, the loss of utility compared to the optimal is
small; hence, the improvement of the computational efficiency can be justified. For a
larger number of agents, however, the loss of utility cannot not justify the improvement
in computational cost.

12.3.1 Protocol Manipulation

When agents send requests to search for members of a coalition or when they accept to
form a coalition, the protocol may require disclosure of some private information [36].
When the agents reveal some of their information, the mechanism must ensure that
there is no information asymmetry that can be exploited by some agents [7]. To protect
a private value, some protocol [9] may allow the addition of a constant offset to the
private value, as long as this addition does not impact the outcome of the negotiation.
Belmonte et al. study the effect of deception and manipulation of their model
in [6]. They show that some agents can benefit from falsely reporting their cost. In



122 Lecture 12. Issues for applying cooperative games

some other approaches [9, 20], even if it is theoretically possible to manipulate the
protocol, it is not possible in practice as the computational complexity required to
ensure higher outcome to the malevolent agent is too high. For example, [20] show that
manipulating marginal-contribution based value division scheme is NP-hard (except
when the valuation function has other properties, such as being convex).

Other possible protocol manipulations include hiding skills, using false names, col-
luding, etc. The traditional solution concepts can be vulnerable to false names and to
collusion [44]. To address these problems, it is beneficial to define the valuation func-
tion in terms of the required skills instead of defining it over the agents: only skills,
not agents, should be rewarded by the characteristic function. In that case, the solution
concept is robust to false names, collusion, and their combination. But the agents can
have incentive to hide skills. A straight, naive decomposition of the skills will increase
the size of the characteristic function, and [45] propose a compact representation in
this case.

12.4 Communication

While one purpose of better negotiation techniques may be to improve the quality of
the outcome for the agents, other goals may include decreasing the time and the number
of messages required to reach an agreement. For example, learning is used to decrease
negotiation time in [41]. The motivation Lerman’s work in [30] is to develop a coalition
formation mechanism that has low communication and computation cost. In another
work, the communication costs are included in the characteristic function [42].

The communication complexity of some protocols has been derived. For instance,
the exponential protocol in [40] and the coalition algorithm for forming Bilateral Shap-
ley Value Stable coalition in [26] have communication complexity of O(n?), the nego-
tiation based protocol in [40] is O(n?2"), and it is O(n*) for the protocol in [39] (where
k is the maximum size of a coalition). The goal of [37] is to analyse the communica-
tion complexity of computing the payoff of a player with different stability concepts:
they find that it is ©(n) when either the Shapley value, the nucleolus, or the core are
used.

12.5 Scalability

When the population of heterogeneous agents is large, discovering the relevant agents
to perform a task may be difficult. In addition, if all agents are involved in the coalition
formation process, the cost in time and computation will be large. To alleviate this
scalability issue, a hierarchy of agents can be used [1]. When an agent discovers a
task that can be addressed by agents below this agent in the hierarchy, the agent picks
the best of them to perform the task. If the agents below cannot perform the task, the
agent passes the task to the agent above it in the hierarchy and the process repeats. The
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notion of clans [22] and congregations [12], where agents gather together for a long
period have been proposed to restrict the search space by considering only a subset of
the agents (see Section 12.6).

12.6 Long Term vs. Short Term

In general, a coalition is a short-lived entity that is “formed with a purpose in mind
and dissolve when that need no longer exists, the coalition ceases to suit its designed
purpose, or critical mass is lost as agents depart” [23]. It can be beneficial to consider
the formation of long term coalitions, or the process of repeated coalition formation
involving the same agents. [43] explicitly study long term coalitions, and in particular
the importance of trust in this content. [12] refer to a long term coalition as a con-
gregation. The purpose of a congregation is to reduce the number of candidates for
a successful interaction: instead of searching the entire population, agents will only
search in the congregation. The goal of a congregation is to gather agents, with similar
or complementary expertise to perform well in an environment in the long run, which
is not very different from a coalition. The only difference is that group rationality is
not expected in a congregation. The notion of congregation is similar to the notion of
clans [22]: agents gather not for a specific purpose, but for a long-term commitment.
The notion of trust is paramount in the clans, and sharing information is seen as another
way to improve performance.

12.7 Fairness

Stability does not necessarily imply fairness. For example, let us consider two CSs S
and 7 with associated kernel-stable payoff distribution xs and x7. Agents may have
different preferences between the CSs. It may even be the case that there is no CS
that is preferred by all agents. If the optimal CS is formed, some agents, especially if
they are in a singleton coalition, may suffer from the choice of this CS. [3] propose
a modification of the kernel to allow side-payment between coalitions to compensate
such agents.

[2] consider partition function games with externalities. They consider a process
where, in turns, agents change coalition to improve their immediate payoff. They
propose that the agents share the maximal social welfare, and the size of the share is
proportional to the expected utility of the process. The payoff obtained is guaranteed
to be at least as high as the expected utility. They claim that using the expected utility
as a base of the payoff distribution provides some fairness as the expected utility can
be seen as a global metric of an agent performance over the entire set of possible CSs.



124 Lecture 12. Issues for applying cooperative games

12.8 Overlapping Coalitions

It is typically assumed that an agent belongs to a single coalition; however, there are
some applications where agents can be members of multiple coalitions. For instance,
the expertise of an agent may be required by different coalitions at the same time,
and the agent can have enough resources to be part of two or more coalitions. In
a traditional setting, the use of the same agent ¢ by two coalitions C; and C; would
require a merge of the two coalitions. This larger coalition U is potentially harder to
manage, and a priori, there would not be much interaction between the agents in C;
and C,, except for agent i. Another application that requires the use of overlapping
coalition is tracking targets using a sensor networks [21]. In this work, a coalition is
defined for a target, and as agents can track multiple targets at the same time, they can
be members of different coalitions.

The traditional stability concepts do not consider this issue. One possibility is for
the agent to be considered as two different agents, but this representation is not satis-
factory as it does not capture the real power of this agent. Shehory and Kraus propose
a setting with overlapping coalition [39]: Each agent has a capacity, and performing a
task may use only a fraction of the agent’s capacity. Each time an agent commits to a
task, the possible coalitions that can perform a given task can change. A mapping to
a set covering problem allows to find the coalition. However, the study of the stability
is not considered. Another approach is the use of fuzzy coalition [8]: agents can be
members of a coalition with a certain degree that represents the risk associated with
being in that coalition. Other work considers that the agents have different degree of
membership, and their payoff depends on this degree [4, 31, 34]. The protocols in [29]
also allow overlapping coalitions.

More recently, [19]! have studied the notion of the core in overlapping coalition
formation. In their model, each agent has one resource and the agent contributes a
fraction of that resource to each coalition it participates in. The valuation function v
is then [0, 1] — R. A CS is no longer a partition of the agents: a CS S is a finite
list of vectors, one for each ‘partial’ coalition, i.e., S = (r',...,7"). The size of S
is the number of coalitions, i.e., k. The support of r¢ € S (i.e., the set of indices
i € N such that 7§ # 0) is the set of agents forming coalition C. For all i € N
and all coalition C € S, r¢ € [0, 1]" represents the fraction of resource that agent i
contributes to coalition C; hence, ZCE S ric < 1 (i.e., agent 7 cannot contributes more
than 100% of its resource). A payoff distribution for a CS S of size k is defined by
a k-tuple z = (x',...,2%) where 2€ is the payoff distribution that the agents obtain
for coalition C. If an agent is not in the coalition, it must not receive any payoff for
this coalition, hence (1§ = 0) = (2¢ = 0). The total payoff of agent i is the sum of
its payoffs over all coalitions p;(C'S, z) = 22:1 1. The efficiency criterion becomes
vré e S, Y ieN 2§ = v(r®). An imputation is an efficient payoff distribution that is
also individually rational. We denote by /(.S) the set of all imputations for the CS S.

I An earlier version is [18]
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We are now ready to define the overlapping core. One issue is the kind of permis-
sible deviations: when an agent deviates, she can completely leave some coalitions,
reduce her contribution in other coalitions, or contributes to new coalitions. If she
stills contribute to a coalition containing non-deviating agents, how should they be-
have? They first may refuse to give any payoff to the deviating agent, as she is seen as
not trustworthy. Agents that are not affected by the deviation may, however, consider
that the deviators agents did not fail them, and consequently, they may continue to
share payoffs with the deviators. A last case occurs when the deviators are decreasing
their implication in a coalition. This coalition may no longer perform the same tasks,
but it can still perform some. If there is enough value to maintain the payoff of the
non-deviators, the deviators may be allowed to share the surplus generated. Each of
these behaviors give raise to different types of deviations, and consequently, different
definition of a core: the conservative core, the refined core and the optimistic core.
The paper also provides a characterization of conservative core, properties of the dif-
ferent core, including a result showing that convex overlapping coalitional games have
a non-empty core.

12.9 Trust

The notion of trust can be an important metric to determine whom to interact with. This
is particularly important when the coalition is expected to live for a long term. In [7],
an agent computes a probability of success of a coalition, based on a notion of trust
which can be used to eliminate some agents from future consideration. This probability
is used to estimate the value of different coalitions and help the agent in deciding which
coalition to join or form. In [43], the decision to leave or join a coalition is function of
the trust put in other agents. In this paper, the concept of trust is defined as a belief that
agents will have successful interaction in the future; hence, trust is used to consider a
subset of the entire population of agents for the formation of future coalitions. Trust is
used to compute coalitions, but agents do not compute a payoff distribution. Another
work that emphasises trust is [22] which introduces the concept of clans. A clan is
formed by agents that trust each other with long-term commitments. Given the trust
and an estimate of local gain, agents can accept to join a clan. The idea behind this
work 1is that agents that trust each other will be collaborative. Moreover, when an
agent needs to form a coalition of agents, it will only search partners in the clan, which
reduces the search space. Trust can therefore be very effective for scaling up in large
society of agents.

12.10 Learning

When agents have to repeatedly form coalitions in the presence of the same set of
agents, learning can be used to improve performance of the coalition formation process
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both in terms of speed of the process and in terms of better valuation.

A basic model of iteratively playing many coalitional games is presented in [32]:
at each time step, a task is offered to agents that are already organised into coalitions.
The task is awarded to the best coalition. The model is made richer in [33] where the
agents can estimate the value of a coalition and have a richer set of actions: as the
agents can fire members from a coalition, join a different coalition, or leave a coalition
to replace some agents in a different coalition. However, in both works, the agents are
not learning, they have a set of static strategies. Empirical experiments compare the
results over populations using either the same strategy or a mix of strategies.

Chalkiadakis and Boutilier also consider a repeated coalition formation problem [14,
15, 16]. The setting is a task allocation problem where agents know their own types
(i.e., skill to perform some type of tasks), but do not know the ones of other agents in
the population. Each time a coalition is formed, the agents will receive a value for that
coalition. From the observation of this value, the agents can update a belief about the
types of other agents. When an agent is reasoning about which coalition to form, it
uses its beliefs to estimate the value of the coalition. This problem can be formulated
using a POMPD (Partially observable Markov Decision Process) where the agents are
maximising the long-term value of their decision over the repetition of the coalition for-
mation process. Solving a POMPD is a difficult task, and the POMPD for the coalition
formation problem grows exponentially with the number of agents. In [14], a myopic
approach is proposed. More recently, Chalkiadakis and Boutilier propose additional
algorithms to solve that POMPD, and empirically compare the solutions [15].
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