
BDI programming

Stéphane Airiau1

1LAMSADE – Université Paris Dauphine

Later slides on JACK by Sebastian Sardina
RMIT University, Melbourne

Stéphane Airiau (Dauphine) - BDI programming 1

An intelligent (software) agent is an autonomous entity, existing
over time in a dynamic environment, that is able to rationally
balance pro-active and reactive behavior.

autonomous: does not require continuous external control;
pro-active: pursues goals over time; goal directed behavior;
situated: observe & act in the environment;
reactive: perceives the environment and responds to it.
Other features: flexible, robust, social, etc.

Stéphane Airiau (Dauphine) - BDI programming 2

The Intentional Stance

Two major ideas:
1 Rational behavior can be understood in terms of mental

properties (i.e., propositional attitude):
beliefs (“he thinks that Peter is wise”);
desires & goals (“she wants that piece of cake”);
fear (“Alex is afraid of spiders”);
hopes (“she hopes that he is on time today”);
. . .

2 Rational behavior relies on a special kind of “thinking”
practical reasoning

Dennett coined the term intentional system to describe entities
“whose behavior can be predicted by the method of attributing
belief, desires and rational acumen.”

Stéphane Airiau (Dauphine) - BDI programming 3

What is Practical Reasoning?

Practical reasoning is reasoning directed towards actions –
the process of figuring out what to do.
Principles of practical reasoning applied to agents largely
derive from work of philosopher Michael Bratman (1990):

Practical reasoning is a matter of weighting
conflicting considerations for and against
competing options, where the relevant
considerations are provided by what the agent
desires/values/cares about and what the agent
believes.

Stéphane Airiau (Dauphine) - BDI programming 4

The Components of Practical Reasoning

Human practical reasoning consists of two activities:
Deliberation: deciding what state of affairs we want to
achieve.

considering preferences, choosing goals, etc.;
balancing alternatives (decision-theory);
the outputs of deliberation are intentions;
interface between deliberation and means-end reasoning.

Means-ends reasoning: deciding how to achieve these
states of affairs:

thinking about suitable actions, resources and how to
“organize” activity;
building courses of action (planning);
the outputs of means-ends reasoning are plans.

Fact: agents are resource-bounded & world is dynamic!
Key: To appropriately combine deliberation & means-ends rea-
soning.

Stéphane Airiau (Dauphine) - BDI programming 5

Deliberation

How does an agent deliberate?
Begin by trying to understand what the options available to
you are:

options available are desires.
Choose between them, and commit to some:

chosen options are then intentions.

Desires
choose

&
Commit

Intentions

Stéphane Airiau (Dauphine) - BDI programming 6

Desires

Desires describe the states of affairs that are considered for
achievement, i.e., basic preferences of the agent.
Desires are much weaker than intentions; not directly
related to activity:

“My desire to play basketball this afternoon is
merely a potential influence of my conduct this
afternoon. It must vie with my other relevant
desires [...] before it is settled what I will do. In
contrast, once I intend to play basketball this
afternoon, the matter is settled: I normally need
not continue to weigh the pros and cons. When
the afternoon arrives, I will normally just proceed
to execute my intentions.”

– (Bratman 1990)

Stéphane Airiau (Dauphine) - BDI programming 7

Intentions

In ordinary speech: intentions refer to actions or to states
of mind;

here we consider the latter!
E.g., I may adopt/have the intention to be an academic.

Focus on future-directed intentions i.e. pro-attitudes
leading to actions.

Intentions are about the (desired) future.
We make reasonable attempts to fulfill intentions once we
form them, but they may change if circumstances do.

Behavior arises to fulfill intentions.
Intentions affect action choice.

Stéphane Airiau (Dauphine) - BDI programming 8

Intentions drive means-end reasoning.
Intentions constrain future deliberation
Intentions persist.
Intentions influence beliefs concerning future practical
reasoning.
Agents believe their intentions are possible.
Agents do not believe they will not bring about their
intentions.
Under certain circumstances, agents believe they will bring
about their intentions
Agents need not intend all the expected side effects of their
intentions.
So, intentions are not closed under implication!
This last problem is known as the side effect or package
deal problem: “ I may believe that going to the dentist involves
pain, and I may also intend to go to the dentist but this does not
imply that I intend to suffer pain!”

Stéphane Airiau (Dauphine) - BDI programming 9

Plans

Human practical reasoning consists of two activities:
Deliberation: deciding what to do. Forms intentions.
Means-ends reasoning: deciding how to do it. Forms
plans. Forms plans.

Intentions drive means-ends reasoning: If I adopt an intention, I
will attempt to achieve it, this affects action choice.

Stéphane Airiau (Dauphine) - BDI programming 10

Means-End Reasoning: Obtaining Plans & Actions

How does the agent obtain plans/actions to realize our inten-
tions?

Planning: design a course of action that will achieve the
goal. Given:

(representation of) goal/intention to achieve;
(representation of) actions it can perform; and
(representation of) the environment;

. . . have it generate a plan to achieve the goal. This is
automatic programming This is hard (PSPACE-complete)!
High-level programming (e.g., Golog, ConGolog, IndiGolog).
This is semi-automatic/hybrid programming.
BDI-style programming (e.g., AgentSpeak, CAN, Jason,
JACK, etc.) This is implicit programming.

Stéphane Airiau (Dauphine) - BDI programming 11

Commitments

We may think that deliberation and planning are sufficient to
achieve desired behavior, unfortunately things are more com-
plex...
Questions:

how long should an intention persist?
what is the commitment on?
Commitments to Ends and Means.
when to reconsider a commitment?
(costly but necessary).

An agent has commitment both to ends (intentions), and means
(plans).

Stéphane Airiau (Dauphine) - BDI programming 12

Agent theory

Formal specifications of agent properties – what kind of mental
states they have and how they are related to each other and to
action; should support reasoning about agents.

Two major seminal works:
Cohen & Levesque: “Intentions = Choice + Commitment”
Rao & Georgeff’s BDI logics: non-classical logics with
modal connectives for representing beliefs, desires, and
intentions.

Stéphane Airiau (Dauphine) - BDI programming 13

Belief: knowledge about the world and its own internal
state
Desires (or goals): what the agent has decided to work
towards achieving
Intentions: how the agents has decided to tackle these
goals.
No planning from first principles: agents use a plan
library (library of partially instantiated plans to be used to
achieve the goals)

Practical reasoning agents: quickly reason and react to asyn-
chronous events.

Stéphane Airiau (Dauphine) - BDI programming 14

Definition (Plan)
A plan is e :ψ← P where

e is an event that triggers the plan
ψ is the context for which the plan can be applied
P is the plan body (succession of actions and/or sub-goals)

Definition (Goal-Plan tree)

G

P1

SG1

P3

SG2

P4

P2

SG3

P5

OR

AND

Pi: plan
Gi: goals
SGi: sub-goals

Definition (Failure recovery)
When a plan fails, an alterna-
tive plan is tried ex: P1 and
P2 are both applicable. When
P4 fails, P2 can be tried.

Stéphane Airiau (Dauphine) - BDI programming 15

BDI execution algorithm
Take the next event (internal/external)

Update any goal, belief, intention
(new event may cause an update of the
belief ëcascading effect on goals or
intentions)

Select an applicable plan to
respond to this event
Place this plan in the intention
base
Take the next step on a selected
intention (execute an action or generate
a new event)

dynamic static

Beliefs Event Queue

plan libraryIntentions

actions

input

Reasoning
Deliberation

BDI agents are well suited for
complex application with soft
real-time reasoning and control
requirements.

Stéphane Airiau (Dauphine) - BDI programming 16

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Detailed BDI Architecture

SENSORS

ACTUATORS

Beliefs

E
n
vi
ro
n
m
en

t

Pending Events

Intention Stacks

BDI engine

actions

events

Plan

library

goals/desires
to resolveinformation

about the
world

recipes for
handling

goals-eventspartially
uninstantiated
programs with
commitment

reasoner

Rational behavior arises due
to the agent committing to
some of its desires, and se-
lecting actions that achieve

its intentions given its beliefs.

Desires
to resolve

Deliberation

Mean-ends
reasoning

Committed
options

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 34 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The BDI Execution Cycle [Rao&Georgeff 92]

Event

Beliefs
Plan

library

Select plan

based on situation

Current Intentions

Step on

some

intention
Action

sub-goal generation

update

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 17 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The BDI Execution Cycle [Rao&Georgeff 92]

Event

Beliefs
Plan

library

Select plan

based on situation

Current Intentions

Step on

some

intention
Action

sub-goal generation

update

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 17 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The BDI Execution Cycle [Rao&Georgeff 92]

Event

Beliefs
Plan

library

Select plan

based on situation

Current Intentions

Step on

some

intention
Action

sub-goal generation

update

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 17 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The BDI Execution Cycle [Rao&Georgeff 92]

Event

Beliefs
Plan

library

Select plan

based on situation

Current Intentions

Step on

some

intention

Action

sub-goal generation

update

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 17 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The BDI Execution Cycle [Rao&Georgeff 92]

Event

Beliefs
Plan

library

Select plan

based on situation

Current Intentions

Step on

some

intention
Action

sub-goal generation

update

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 17 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The BDI Execution Cycle [Rao&Georgeff 92]

Event

Beliefs
Plan

library

Select plan

based on situation

Current Intentions

Step on

some

intention
Action

sub-goal generation

update

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 17 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The JACK BDI Programming Language

1 JACK Agent Language
I Used to describe an agent-oriented software system.
I Super-set of Java (agent-oriented features extensions).

2 The JACK Agent Compiler
I Converts JACK Agent Language into pure Java.
I Java source can be compiled into Java VM code.

3 The JACK Agent Kernel
I Runtime engine for programs written in the JACK

Agent Language.
I Set of classes that give JACK Agent Language

programs their agent-oriented functionality.
I Run behind the scenes.
I Implement the underlying infrastructure and

functionality for agents.

JACK source code
JACK Agent Lang.

Java source code

JACK compiler

Java machine code

Java compiler
(javac)

Execution

Java +
JACK Agent Kernel

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 20 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The JACK BDI Programming Language

1 JACK Agent Language
I Used to describe an agent-oriented software system.
I Super-set of Java (agent-oriented features extensions).

2 The JACK Agent Compiler
I Converts JACK Agent Language into pure Java.
I Java source can be compiled into Java VM code.

3 The JACK Agent Kernel
I Runtime engine for programs written in the JACK

Agent Language.
I Set of classes that give JACK Agent Language

programs their agent-oriented functionality.
I Run behind the scenes.
I Implement the underlying infrastructure and

functionality for agents.

JACK source code
JACK Agent Lang.

Java source code

JACK compiler

Java machine code

Java compiler
(javac)

Execution

Java +
JACK Agent Kernel

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 20 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The JACK BDI Programming Language

1 JACK Agent Language
I Used to describe an agent-oriented software system.
I Super-set of Java (agent-oriented features extensions).

2 The JACK Agent Compiler
I Converts JACK Agent Language into pure Java.
I Java source can be compiled into Java VM code.

3 The JACK Agent Kernel
I Runtime engine for programs written in the JACK

Agent Language.
I Set of classes that give JACK Agent Language

programs their agent-oriented functionality.
I Run behind the scenes.
I Implement the underlying infrastructure and

functionality for agents.

JACK source code
JACK Agent Lang.

Java source code

JACK compiler

Java machine code

Java compiler
(javac)

Execution

Java +
JACK Agent Kernel

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 20 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

The JACK BDI Programming Language

1 JACK Agent Language
I Used to describe an agent-oriented software system.
I Super-set of Java (agent-oriented features extensions).

2 The JACK Agent Compiler
I Converts JACK Agent Language into pure Java.
I Java source can be compiled into Java VM code.

3 The JACK Agent Kernel
I Runtime engine for programs written in the JACK

Agent Language.
I Set of classes that give JACK Agent Language

programs their agent-oriented functionality.
I Run behind the scenes.
I Implement the underlying infrastructure and

functionality for agents.

JACK source code
JACK Agent Lang.

Java source code

JACK compiler

Java machine code

Java compiler
(javac)

Execution

Java +
JACK Agent Kernel

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 20 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Agent Components

agent

event

plan

beliefsets

handles
posts

has

has

handles
posts

uses

posts

event

plan

beliefsets

capabilities

event

plan

beliefsets

has

has

agent

event

plan

beliefsets

capabilities

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 23 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Agent Components

agent

event

plan

beliefsets

handles
posts

has

has

handles
posts

uses

posts

event

plan

beliefsets

capabilities

event

plan

beliefsets

has

has

agent

event

plan

beliefsets

capabilities

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 23 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Making Use of the BDI Framework

1 Provide alternative plans where possible.

2 Break things down into subgoal steps.

3 Use subgoals and alternative plans rather than if... then in code.

4 Keep plans small and modular.

5 Plans are abstract modules - don’t chain them together like a flowchart!

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 30 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Plan Structure: Which one is better?

Attend Conference

Pay registration
Book flight
Book hotel
Travel

Contact agent
Request options
Make choice
Pay

Book flight thru agent

Search deals
Compare prices
Decide hotel
Make reservation

Book hotel thru web

Hierarchical Structure
each plan complete at its level of abstraction

Attend Conference

Pay registration
Contact agent
Make choice
Pay
Book Hotel

Search deals
Compare prices
Make reservation
Travel

Chained Structure
do stuff and call next step

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 31 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Plan Structure: Which one is better?

Attend Conference

Pay registration
Book flight
Book hotel
Travel

Contact agent
Request options
Make choice
Pay

Book flight thru agent

Search deals
Compare prices
Decide hotel
Make reservation

Book hotel thru web

Hierarchical Structure
each plan complete at its level of abstraction

Attend Conference

Pay registration
Contact agent
Make choice
Pay
Book Hotel

Search deals
Compare prices
Make reservation
Travel

Chained Structure
do stuff and call next step

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 31 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Plan Structure: Which one is better?

Attend Conference

Pay registration
Book flight
Book hotel
Travel

Contact agent
Request options
Make choice
Pay

Book flight thru agent

Search deals
Compare prices
Decide hotel
Make reservation

Book hotel thru web

Hierarchical Structure
each plan complete at its level of abstraction

Attend Conference

Pay registration
Contact agent
Make choice
Pay
Book Hotel

Search deals
Compare prices
Make reservation
Travel

Chained Structure
do stuff and call next step

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 31 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Structuring Plans and Goals

1 Make each plan complete at a particular abstraction level.
I A high-level but complete plan for Attend Conference.

2 Use a subgoal - even if only one plan choice for now.
I Decouple a goal from its plans.

3 Modular and easy to add other plan choices later.
I Booking a flight can now be done with the Internet, if available!

4 Think in terms of subgoals, not function calls.
I What way-points do we need to achieve so as to realize a goal?

5 Learn to pass information between subgoals.
I How are these way-points inter-related w.r.t. data?

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 32 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Defining Agents in JACK: Player.agent

Base class: aos.jack.jak.agent.Agent

p u b l i c agent P l a y e r e x t e n d s Agent {
#has c a p a b i l i t y C l i m a T a l k i n g cap ;
#h a n d l e s e v e n t P e r c e i v e C l i m a S e r v e r ;
#h a n d l e s e v e n t EExecuteCLIMAaction ;
#h a n d l e s e v e n t EAct ;
#p o s t s e v e n t EExecuteCLIMAaction e v e x e c u t e A c t i o n ;
#s e n d s e v e n t EInformLoc e v i n f o r m L o c ;

. . .
#u s e s p l a n MoveRandomly ;
#u s e s p l a n PickGo ld ;
#u s e s p l a n H a n d l e P e r c e p t ;

. . .
#p r i v a t e data GoldAt b e l g o l d A t () ;
#p r i v a t e data C u r r e n t P o s i t i o n b e l c u r r P o s i t i o n () ;
#p r i v a t e data NumCarryingGold b e l n o C a r r G o l d () ;
. . . .

}

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 36 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Beliefsets

I Used to maintain an agent’s beliefs about the world.

I Represents these beliefs in a first order, tuple-based relational model.

I Designed specifically to work within the agent-oriented programming
paradigm & integrated with the other JACK Agent Language classes:

1 Automatic maintenance of logical consistency and key constraints.

2 Either OpenWorld or ClosedWorld logic semantics.

3 Ability to post events automatically when a beliefset changes.
I initiate action within the agent based on a change of beliefs.

4 Ability to support beliefset cursor statements: multiple query bindings.

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 39 / 50

Practical Reasoning BDI Programming Hierarchical Plan Design Beliefsets

Beliefset Definitions

b e l i e f s e t Relat ionName e x t e n d s <ClosedWor ld | OpenWorld > {
// Zero o r more #key f i e l d d e c l a r a t i o n s .
// Zero o r more #v a l u e f i e l d d e c l a r a t i o n s
// One o r more q u e r i e s

}

1 Type of beliefset:
I CloseWorld: close-world-assumption; standard databases.
I OpenWorld: allows for “unknown” values.

2 Fields of beliefset (i.e., columns in a database):
I #key field: uniquely identifies tuples; int, float, boolean, or String.
I #value: stores extra info. about the tuple; could be of any type.

3 Queries available:
I #indexed query: > 10 tuples
I #linear query: for small beliefsets

Sebastian Sardina (RMIT University) BDI Programming I July 26, 2012 41 / 50

BDI Programming Events Plans

Events in BDI Systems

I They encode the goals of the system at different times.

I Pending events are expected to be addressed eventually....
I by executing some plan that “solves” them...

I Events can be either:
I External: coming from outside the system (e.g., perception).
I Internal: generated by the agent itself (e.g., subgoals).

I Events are often used to represent:
I percepts: PerceiveClimaTalking
I communication: EGUIUpdateLocation
I internal goals: EAct

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 13 / 31

BDI Programming Events Plans

Events in JACK

I There are several type of events that can be defined:
1 BDIFactEvent
2 BDIGoalEvent
3 BDIMessageEvent
4 InferenceGoalEvent
5 PlanChoice
6 ...

I Different type of events depend on:
I Allow meta-level reasoning: can we tweak plan choices?
I Allow plan-failure recovery: what happens when a plan fails for an event?

I Events can carry data inside:
I GoTo(destination)
I PerceiveClimaTalking events carries a whole object depending on the

XML message sent by the game server!

I Events can be posted/generated by plans:
I @subtask(...): agent handles it synchronously as part of the same task.
I @post(...): agent handles it asynchronously by the current task execution

thread.

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 15 / 31

BDI Programming Events Plans

Events in JACK

I There are several type of events that can be defined:
1 BDIFactEvent
2 BDIGoalEvent
3 BDIMessageEvent
4 InferenceGoalEvent
5 PlanChoice
6 ...

I Different type of events depend on:
I Allow meta-level reasoning: can we tweak plan choices?
I Allow plan-failure recovery: what happens when a plan fails for an event?

I Events can carry data inside:
I GoTo(destination)
I PerceiveClimaTalking events carries a whole object depending on the

XML message sent by the game server!

I Events can be posted/generated by plans:
I @subtask(...): agent handles it synchronously as part of the same task.
I @post(...): agent handles it asynchronously by the current task execution

thread.

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 15 / 31

BDI Programming Events Plans

Events in JACK

I There are several type of events that can be defined:
1 BDIFactEvent
2 BDIGoalEvent
3 BDIMessageEvent
4 InferenceGoalEvent
5 PlanChoice
6 ...

I Different type of events depend on:
I Allow meta-level reasoning: can we tweak plan choices?
I Allow plan-failure recovery: what happens when a plan fails for an event?

I Events can carry data inside:
I GoTo(destination)
I PerceiveClimaTalking events carries a whole object depending on the

XML message sent by the game server!

I Events can be posted/generated by plans:
I @subtask(...): agent handles it synchronously as part of the same task.
I @post(...): agent handles it asynchronously by the current task execution

thread.
Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 15 / 31

BDI Programming Events Plans

Events in JACK (cont.)
p u b l i c e v e n t EAct e x t e n d s BDIGoalEvent {

p u b l i c d o u b l e d e a d l i n e ; // how q u i c k l y we need to a c t

#p o s t e d as p o s t W i t h D e a d l i n e (d o u b l e x) {
d e a d l i n e = x ;

}
#p o s t e d as anyt ime () {

d e a d l i n e = 0 ; // no d e a d l i n e
}

}

p u b l i c p l a n XXXXX e x t e n d s Plan {
. . .

#p o s t s e v e n t EAct ev doSometh ing ;
. . .

#r e a s o n i n g method body () {
. . .
@subtask (ev doSometh ing . p o s t W i t h D e a d l i n e (2 0 0)) ;
@post (ev doSometh ing . anyt ime ()) ;

}
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 16 / 31

BDI Programming Events Plans

Events in JACK (cont.)
p u b l i c e v e n t EAct e x t e n d s BDIGoalEvent {

p u b l i c d o u b l e d e a d l i n e ; // how q u i c k l y we need to a c t

#p o s t e d as p o s t W i t h D e a d l i n e (d o u b l e x) {
d e a d l i n e = x ;

}
#p o s t e d as anyt ime () {

d e a d l i n e = 0 ; // no d e a d l i n e
}

}

p u b l i c p l a n XXXXX e x t e n d s Plan {
. . .

#p o s t s e v e n t EAct ev doSometh ing ;
. . .

#r e a s o n i n g method body () {
. . .
@subtask (ev doSometh ing . p o s t W i t h D e a d l i n e (2 0 0)) ;
@post (ev doSometh ing . anyt ime ()) ;

}
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 16 / 31

BDI Programming Events Plans

Plans

Plans can be thought of as pages from a operational manual, or even as being
like methods and functions from more conventional programming languages.

They describe “exactly” what an agent should do when a given event occurs.

Agent is equipped with a set of plans, describing the agent’s set of skills.

When the event that a plan addresses occurs, the agent can execute this plan
to handle it.

So, suppose the agent has the following BDI event:

// Prompts t h e p l a y e r to a c t towards t h e game s e r v e r
p u b l i c e v e n t EAct e x t e n d s BDIGoalEvent {

#p o s t e d as p o s t () { }
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 21 / 31

BDI Programming Events Plans

Plans

Plans can be thought of as pages from a operational manual, or even as being
like methods and functions from more conventional programming languages.

They describe “exactly” what an agent should do when a given event occurs.

Agent is equipped with a set of plans, describing the agent’s set of skills.

When the event that a plan addresses occurs, the agent can execute this plan
to handle it.

So, suppose the agent has the following BDI event:

// Prompts t h e p l a y e r to a c t towards t h e game s e r v e r
p u b l i c e v e n t EAct e x t e n d s BDIGoalEvent {

#p o s t e d as p o s t () { }
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 21 / 31

BDI Programming Events Plans

Handling EAct BDI Event: Random Movement

p u b l i c p l a n MoveRandomly e x t e n d s Plan {
f i n a l s t a t i c S t r i n g []

a c t i o n s = { ” l e f t ” , ” r i g h t ” , ”up ” , ”down” } ;
Random random = new Random () ;
#h a n d l e s e v e n t EAct e v a c t ;
#p o s t s e v e n t E E x e c u t e A c t i o n e v e x e c ;

s t a t i c b o o l e a n r e l e v a n t (EAct ev) {
r e t u r n t r u e ;

}

c o n t e x t () {
t r u e ;

}

#r e a s o n i n g method body () {
@post (e v e x e c . p o s t (a c t i o n s [random . n e x t I n t (4)])) ;

}
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 22 / 31

BDI Programming Events Plans

Handling EAct BDI Event: Random Movement

p u b l i c p l a n MoveRandomly e x t e n d s Plan {
f i n a l s t a t i c S t r i n g []

a c t i o n s = { ” l e f t ” , ” r i g h t ” , ”up ” , ”down” } ;
Random random = new Random () ;
#h a n d l e s e v e n t EAct e v a c t ;
#p o s t s e v e n t E E x e c u t e A c t i o n e v e x e c ;

s t a t i c b o o l e a n r e l e v a n t (EAct ev) {
r e t u r n t r u e ;

}

c o n t e x t () {
t r u e ;

}

#r e a s o n i n g method body () {
@post (e v e x e c . p o s t (a c t i o n s [random . n e x t I n t (4)])) ;

}
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 22 / 31

BDI Programming Events Plans

BDI Plan Selection

1 Identify the plans which handle the event type: #handles event ..
I syntactic relevance.

2 Use the relevant() method to check additional information regarding the
event.

I inspect data carried on in the event.

3 Use the context() method to check information stored as part of the
agent’s beliefs.

I defines the set of all applicable plans (types & instances).

4 All applicable plans are collected at this point.

5 If there are still multiple plans left in the applicable plan set, additional
means are used to select one of them:

I declaration order;
I prominence w.r.t. plan ranks;
I meta-level reasoning via PlanChoice handling.

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 23 / 31

BDI Programming Events Plans

Pick A Block I

p u b l i c p l a n P i c k B l o c k e x t e n d s Plan {

#h a n d l e s e v e n t EPickObject e v p i c k O b j ;

s t a t i c b o o l e a n r e l e v a n t (EPickObject ev) {
t r u e ;

}

c o n t e x t () {
t r u e ;

}

#r e a s o n i n g method body () {
grabObj (e v p i c k O b j . x , e v p i c k O b j . y) ;

}
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 24 / 31

BDI Programming Events Plans

Pick A Block II

p u b l i c p l a n P i c k B l o c k e x t e n d s Plan {

#h a n d l e s e v e n t EPickObject e v p i c k ;
#p o s t s e v e n t E E x e c u t e A c t i o n e v e x e c ;

s t a t i c b o o l e a n r e l e v a n t (EPickObject ev) {
r e t u r n (ev . d i s t a n c e < 3 0) ;

}

c o n t e x t () {
t r u e ;

}

#r e a s o n i n g method body () {
@post (e v e x e c . p o s t (grab , e v p i c k . x , e v p i c k . y)) ;

}
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 25 / 31

BDI Programming Events Plans

Pick A Block III

p u b l i c p l a n P i c k B l o c k e x t e n d s Plan {

#h a n d l e s e v e n t EPickObject e v p i c k ;
#p o s t s e v e n t E E x e c u t e A c t i o n e v e x e c ;
#u s e s data H o l d i n g b e l h o l d i n g ;

s t a t i c b o o l e a n r e l e v a n t (EPickObject ev) {
r e t u r n (ev . w e i g h t < 3 0) ;

}
l o g i c a l i n t $noObj ;
c o n t e x t () {

(b e l h o l d i n g . g e t ($noObj) && $noObj . a s i n t ()<3) ;
}

#r e a s o n i n g method body () {
@subtask (e v e x e c . p o s t (grab , e v p i c k . x , e v p i c k . y)) ;

}
}

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 26 / 31

BDI Programming Events Plans

The Reasoning Method body()

Special kind of method in the JACK Language called a reasoning method.

Reasoning methods are quite different from ordinary methods in Java.

Each statement in a reasoning method is treated as a logical statement.
I Failure of a plan statement will cause the body() method to fail.
I If execution proceeds to the end, the body() method succeeds.

#p o s t s e v e n t E E x e c u t e A c t i o n e v e x e c u t e ;
. . .

#r e a s o n i n g method body () {
. . .
@subtask (e v e x e c u t e . do (a c t i o n s [”up”])) ;
. . .
@post (e v e x e c u t e . do (a c t i o n s [” p i c k ”])) ;

}

The body() method can call other reasoning methods as it executes.
∴ Describe logical behavior that the reasoning method should adhere to.

Reasoning methods execute as Finite State Machines (FSMs).

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 27 / 31

BDI Programming Events Plans

The Reasoning Method body()

Special kind of method in the JACK Language called a reasoning method.

Reasoning methods are quite different from ordinary methods in Java.

Each statement in a reasoning method is treated as a logical statement.
I Failure of a plan statement will cause the body() method to fail.
I If execution proceeds to the end, the body() method succeeds.

#p o s t s e v e n t E E x e c u t e A c t i o n e v e x e c u t e ;
. . .

#r e a s o n i n g method body () {
. . .
@subtask (e v e x e c u t e . do (a c t i o n s [”up”])) ;
. . .
@post (e v e x e c u t e . do (a c t i o n s [” p i c k ”])) ;

}

The body() method can call other reasoning methods as it executes.
∴ Describe logical behavior that the reasoning method should adhere to.

Reasoning methods execute as Finite State Machines (FSMs).
Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 27 / 31

BDI Programming Events Plans

Some Reasoning Methods

I @subtask(event);

I @post(event);

I @send(agent name, message event);

I @wait for(wait condition);

I @action(parameters) <body>;

I @maintain(logical condition, event);

I @reply(original event, reply event);

I @sleep(timeout);

I @achieve(condition, goal event);

I @insist(condition, goal event);

I @test(test condition, goal event);

I @determine(binding condition, goal event);

I @parallel(parameters) <body>;

Sebastian Sardina (RMIT University) BDI Programming II August 2, 2012 28 / 31

Example of enhancement of BDI tool

Stéphane Airiau (Dauphine) - BDI programming 55

BDI agents lack learning capabilities to modify their
behavior (e.g. in case of frequent failures)
Plans and context conditions are programmed offline by a
user. Context conditions may be hard to capture precisely in a
complex environment

too loose: plan is applicable when it is not ëfailures
too tight: plan is not applicable when it actually is ëa goal
may not appear achievable when it is

Research goal: Add learning capabilities to adapt and to refine
context conditions of plans to the particular environment where
the agent acts.

A first step: Use a decision tree (DT) in addition to the context
condition
ëEach plan has a decision tree telling whether it is applicable

Stéphane Airiau (Dauphine) - BDI programming 56

Example of a decision tree
The environment is described by three Boolean attributes a, b and c .

b

a

40+, 10- 4+,25-

c

a

110+, 0- 1+, 50-

a

1+ 35- 20+ 5-

tru
e false

tru
e false tru

e false

tru
e false tru
e false

Context condition converted from the decision tree :
(a∧b)∨ (a∧¬b∧ c)∨ (¬a∧¬b∧¬c).

Stéphane Airiau (Dauphine) - BDI programming 57

Induction of a decision tree
Use a DT when

Instances describable by attribute-value pairs
Target function is discrete valued
Disjunction hypothesis may be required
Possibly noisy data

Inductive bias: preference of a shorter tree
Induction is performed offline
Basic algorithm (AD3): top down, greedy
algorithm (no search of an optimal tree)
Algorithm 1: ID3 main loop
while exists a node n not marked do

mark n;
choose the best attribute att ;
for each value of att do

create a new child of n;
distribute the corresponding instance to
each child of n;

if training instances well classified then
mark all children of n;

a b c outcome
> > ⊥ 4

> ⊥ ⊥ 8

> ⊥ > 4

.
⊥ ⊥ > 8

b

a

40+, 10- 4+,25-

??

tru
e false

tru
e false a, c?

or done?

Stéphane Airiau (Dauphine) - BDI programming 58

Issues with learning

Incremental induction: algorithms exist but our current work uses
offline algorithm and re-build a DT after a new instance is added
to the dataset.
When to collect data? A failure occurred during execution of P12
and propagates up (failure recovery OFF). Was the failure due to

a bad choice of plan for G0 (P01 vs. P02)? ëCorrect data
a bad choice after P01 was chosen (P11 vs. P12) ëIncorrect data

G0

P01

SG1

P11 P12

SG2

P21 P22

SG3

P31

P02

SG4

P41

SG5

P51

OR

AND AND

OR OR

Pi: plan
Gi: goals
SGi: sub-goals

When to start using the decision tree?

Stéphane Airiau (Dauphine) - BDI programming 59

Assumptions

Failure recovery is turned OFF.
Do not consider effects of conflicting interactions between
sub-goals.
Domain described by Boolean attributes
Domain may be stochastic (experiments involve actions that fail
with a probability of 0.1)

Stéphane Airiau (Dauphine) - BDI programming 60

Contributions

Techniques developed:
Using a probabilistic plan selection for which plans are
selected according to the frequency of success provided by
the decision tree:
trust the decision tree
ëcarefully use of the data to induce a decision tree: add a
failure in the dataset when we have some confidence that
DT under are correct.
Using a confidence degree about a decision tree for plan
selection, and be less careful about the data to induce the
decision tree.

How to test these strategies?
ëusing three representatives goal-plan tree.

Stéphane Airiau (Dauphine) - BDI programming 61

Algorithm 2: Probabilistic plan selection
Current world state is described by valued pair vector ~s;
for each applicable plan Pi do

retrieve the leaf node n corresponding to ~s;
n⊕← number of positive outcomes contained in n;
n	← number of negative outcomes contained in n;
pi←

n⊕
n⊕+n	

;

Select plan Pi with a probability proportional to pi;
Allows exploration.
A successful plan is more likely to be selected.

Stéphane Airiau (Dauphine) - BDI programming 62

Algorithm 3: RecordTrace(λ,k ,ε)

Requires: λ= G0[P0 : w0] · · · · ·Gn[Pn : wn]; k > 0; ε > 0;
Ensures: Propagation of updates in the goal-plan tree.;
RecordWorldDT (Pn,wn, fail) ; // leaf node of gp-tree
if StableGoal(Gn,wn,k ,ε) then // this decision was well-informed

// select relevant part of the trace
λ ′← G0[P0 : w0] · · · · ·Gn[Pn−1 : wn−1];
// call to the parent in the GP-tree
RecordTrace(λ ′,k ,ε)

StableGoal(G,w ,k ,ε) is true when the frequency of success of
goal G in state w has not changed by more than ε over the last
k times G was used.

BUL (small and large k): cautious approach
(in the experiments k = 3, ε= 0.3) Aggressive
Concurrent Learning (ACL) (k = 0, ε = 1): always record, ag-
gressive approach.
Initially designed to understand the benefits of BUL.

Stéphane Airiau (Dauphine) - BDI programming 63

Goal-plan trees for testing
G

Pi

GA
i

√ √ ×

×8
GB

i

√ √ ×

×8

×3
P ′i

G ′i

× × ×

×3

×17

Structure T1: ACL� BUL
G

P1 Pi

GA

PA

GA1

√ ×

×3
GA2

√ ×

×3

×

×3
GB

×

×3
PB

GB1

√ ×

×3
GB2

PB2
√

P ′B2
×

×3

P4.

Structure T3: ACL≈ BUL

G
P

√ ×

×2
×2 ×

×2
×2 ×

×2
×2

P ′i

× ×

×2

×

×3

×2

Structure T2: BUL� ACL

Stéphane Airiau (Dauphine) - BDI programming 64

Results for Probabilistic Plan Selection

BUL • ACL ×

500 1000 1500
0.0

0.2

0.4

0.6

0.8

1.0
Success

Iterations

Structure T1

500 1500 2500
0.0

0.2

0.4

0.6

0.8

1.0
Success

Iterations

Structure T2

1000 2500 4000
0.0

0.2

0.4

0.6

0.8

1.0
Success

Iterations

Structure T3

Stéphane Airiau (Dauphine) - BDI programming 65

Plan selection with a degree of confidence of the DT

coverage ci(w) of a plan Pi in state w : proportion of paths
below Pi already visited from world state w .
ëinitially ci(w) = 0
ëci(w)→ 1: when more and more paths are tried
ëci(w) = 1: all paths have been tried.
In a deterministic environment, behavior for w is known.

Weight for plan Pi: ωi(w) =
1
2 +

(
ci(w) ·

(
pi(w)−

1
2

))
ëinitially ωi(w) = 1

2
ëweak recommendation pi(w)≈ 1

2 ëωi(w)≈ 1
2

ëlow coverage/confidence ci(w) small ëωi(w)≈ 1
2 with

slight bias towards recommendation
ëhigh coverage/confidence ci(w) large ëωi(w)≈ pi(w)

Select plan Pi with probability proportional to ωi .
Aggressive approach for recording data: ACL approach

Stéphane Airiau (Dauphine) - BDI programming 66

Results ACL with coverage vs. BUL with prob. plan selection

BUL • ACL × ACL with coverage �
Structure T2

500 1500 2500
0.0

0.2

0.4

0.6

0.8

1.0
Success

Iterations

ε= 0.3
500 1500 2500

−0.25

0.00

0.25

0.50

0.75

1.00

1.25
Success

Iterations

ε= 0.2
ACL with coverage performs as well as BUL with probabilistic selection.

Stéphane Airiau (Dauphine) - BDI programming 67

Conclusion

We proposed two techniques for tailoring context conditions
to the environment where the agent resides
Both BUL with probabilistic selection and ACL with
coverage-based selection perform well on all tested
structures
ACL with coverage based is simpler

Future Work
Using learning with recovery failure mode.
Experiments with more difficult Decision trees to learn

Stéphane Airiau (Dauphine) - BDI programming 68

