Game Theory - Repeated Games

Stéphane

today:-)

Outline

- Basic Game Theoretic Concept
 - Basic Concepts
 - Properties
 - Equilibrium concepts
- Repeated Game

Outline

- Basic Game Theoretic Concept
 - Basic Concepts
 - Properties
 - Equilibrium concepts
- Repeated Game

What is a normal form game?

Definition

a *n*-player game can be represented by a mapping $R: A_1 \times A_2 \times ... \times A_n \mapsto \mathbb{R}^n$

where A_i denotes the discrete set of action available to player i

- $a = (a_1, a_2, \dots, a_n)$ is the joint action of the players
- R(a) is the payoff for each player (R_i(a) is the payoff of the ith player, i.e. the ith component of R(a))

For a 2-player game, R can be represented by 2 matrices.

What is a strategy?

Definition

A pure strategy is a synonym for an action $a \in A_i$

Definition

A mixed strategy π_i is a probability distribution over the action space A_i

examples

Example (Battle of the sexes)

	D	С
D	2,2	4,3
C	3,4	1,1

Problem: Where to go on a date:

Soccer or Opera?

Requirements:

avoid to be alone

2 be at the best place

	D	С
D	2,2	4,1
С	1,4	3,3

- Problem: me and my buddy got busted!
- Cooperate: I shut my mouth
- Defect : I blame my buddy

Game Theory is a big field

other concepts

- simultaneous or sequential: play simultaneously: each player makes a decision in turn (game tree).
- complete/incomplete information: complete information: knowledge of the structure of the games (payoffs matrices).
- **one stage/multistage game:** the outcome of a joint action can be a new game

Game Theory is a big field

other concepts

- simultaneous or sequential: play simultaneously: each player makes a decision in turn (game tree).
- complete/incomplete information: complete information: knowledge of the structure of the games (payoffs matrices).
- one stage/multistage game: the outcome of a joint action can be a new game

Game Theory is a big field

other concepts

- simultaneous or sequential: play simultaneously: each player makes a decision in turn (game tree).
- complete/incomplete information: complete information: knowledge of the structure of the games (payoffs matrices).
- **one stage/multistage game:** the outcome of a joint action can be a new game

Properties of the payoffs

stochastic game: payoff can be stochastic

Bayesian game: incomplete information game: at the start of the game, some player have private information that others do not(example: bargaining game)

constant/general sum game: for each joint action $a \in \prod_i A_i$, the sum of the payoff $\sum_i R_i(a)$ can be constant. ex: Zero-sum game, purely adverserial game.

Team Game or Cooperative game: all the players receive the same payoff for a joint action.

Dominance

Definition

An outcome X strongly dominates another outcome B if all agents receive a higher utility in X compared to Y.

$$a > b \iff \forall i \in [1..n]R_i(a) > R_i(b)$$

An outcome X weakly dominates (or simply dominates) another outcome B if at least one agent receives a higher utility in X and no agent receives a lesser utility compared to outcome Y.

$$a \ge b \iff \exists j | R_i(a) > R_i(b) \text{ and } \forall i \in [1..n], i \ne j \ R_i(a) \ge R_i(b)$$

Pareto Optimality

Definition

A Pareto optimal outcome is one such that there is no other outcome where some players can increase their payoffs without decreasing the payoff of otherplayers. A non-dominated outcome is Pareto optimal.

Properties

Regret

measures how much worse an algorithm performs to the best static strategy.

Definition

the external regret is the difference that a player would receive if it were to play the pure strategy j instead of playing according to π .

Definition

the internal regret is the benefit that player i would get by switching all of its plays of action j to action k instead.

Definition

the total internal (external) regret is the max of the internal (external) regret.

Equilibrium

Definition

An equilibrium is a self-reinforcing distribution over strategy profile.

- Assumption: players are rational (issue with bounded rationality)
- Different natures of equilibrium.

Minimax equilibrium for constant-sum games

minimize the payoff of the opponent: If deviation from equilibrium, the opponent gets an advantage.

Minimax value of a game for player 1

$$\min_{y} \max_{x} R_1(x, y)$$

Properties

- There exists at least one minimax equilibrium in constant sum game.
- set of minimax equilibrium is convex, all have the same value

Nash equilibrium: rationality

mutual best response

if the strategy of the opponent remains fix, the player does not benefit by changing its strategy

Properties

- existence:
 - pure strategy Nash equilibrium may not always exist
 - but there always exists a mixed strategy Nash equilibrium
- complexity to find a Nash equilibrium: there exists exponential time algorithms to compute it, but nobody proved it is NP-Complete.

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Nash equilibrium D,C and C,D and one mixed strategy $(\frac{3}{4},\frac{1}{4})$ Pareto Opimal D,C and C,D

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Nash equilibrium D,C and C,D and one mixed strategy $(\frac{3}{4},\frac{1}{4})$

Pareto Opimal D,C and C,D

	D	С
D	2,2	4,1
С	1,4	3,3

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Nash equilibrium D,C and C,D and one mixed strategy $(\frac{3}{4},\frac{1}{4})$

Pareto Opimal D,C and C,D

	D	С
D	2,2	4,1
С	1,4	3,3

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Nash equilibrium D,C and C,D and one mixed strategy $(\frac{3}{4},\frac{1}{4})$

Pareto Opimal D,C and C,D

	D	С
D	2,2	4,1
С	1,4	3,3

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Nash equilibrium D,C and C,D and one mixed strategy $(\frac{3}{4},\frac{1}{4})$

Pareto Opimal D,C and C,D

	D	С
D	2,2	4,1
С	1,4	3,3

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Nash equilibrium D,C and C,D and one mixed strategy $(\frac{3}{4},\frac{1}{4})$

Pareto Opimal D,C and C,D

	D	С
D	2,2	4,1
С	1,4	3,3

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

Nash equilibrium D,C and C,D and one mixed strategy $(\frac{3}{4},\frac{1}{4})$

Pareto Opimal D,C and C,D

Example (Prisoners' dilemma)

	D	С
D	2,2	4,1
С	1,4	3,3

Nash equilibrium (D, D) is the only Nash equilibria of the game.

Pareto Optimal (D, C), (C, D) and (C, C)

N.B. A Nash equilibrium may not be Pareto Optimal

Correlated equilibrium

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

- both agents play mixed strategy $(\frac{1}{2}, \frac{1}{2})$: average payoff is 2.5
- how to avoid bad outcome?

Correlated equilibrium

Example (Battle of the sexes)

	Δ	O
D	2,2	4,3
С	3,4	1,1

- both agents play mixed strategy $(\frac{1}{2}, \frac{1}{2})$: average payoff is 2.5
- how to avoid bad outcome?

Correlated equilibrium

Players can observe a public random variable and make their decision based on that observation. Player's distribution may no longer be independent. solved by linear program

Example (Battle of the sexes)

	D	С
D	2,2	4,3
С	3,4	1,1

- flip a (fair?) coin
- head: husband cooperates
- tail: wife cooperates

Example (Traffic light)

- 2 actions Stop or Go
- model the light as being randomly Green or Red. It is the public random variable
- choose life

Outline

- Basic Game Theoretic Concept
 - Basic Concepts
 - Properties
 - Equilibrium concepts
- 2 Repeated Game

Outline

- Basic Game Theoretic Concept
 - Basic Concepts
 - Properties
 - Equilibrium concepts
- Repeated Game

Repeated Game

Definition

In the repeated game a game M (called stage game) is played over and over again

- one shot game: there is no tomorrow
- repeated game: model a likelyhood of playing the game again with the same opponent
- finitely/infinitely repeated game

Strategy

What is a strategy in a repeated game?

Example

Tit for Tat strategy

- Play the action played by the opponent the last round
- Tit for tat strategy can be an equilibrium strategy in PD or Chicken.

Strategy

What is a strategy in a repeated game?

In the repeated game, a pure strategy depends also on the history of play thus far.

Example

Tit for Tat strategy

- Play the action played by the opponent the last round
- Tit for tat strategy can be an equilibrium strategy in PD or Chicken.

Strategy

What is a strategy in a repeated game?

In the repeated game, a pure strategy depends also on the history of play thus far.

Example

Tit for Tat strategy

- Play the action played by the opponent the last round
- Tit for tat strategy can be an equilibrium strategy in PD or Chicken.

Payoff criterion

Average criterion

Average payoff received throughout the game by player i:

$$\sum_{t=0}^{\infty} M_i(a^t)$$

where a^t is the joint action of iteration t.

Discounted-sum criterion

Discounted sum of the payoff received throughout the game by player *i*:

$$\sum_{t=0}^{\infty} \gamma^t M_i(a^t)$$

Payoff Space for a two-player game

- n x n two-player game
- ullet $\mathcal R$ and $\mathcal C$ are the matrices of the row and column player.
- $V = \{(\mathcal{R}(i,j), \mathcal{C}(j,i)) | (i,j) \in [1..n]^2\}$
- ullet the payoff space is the Convex Hull ${\mathcal H}$ with vertices in ${\mathcal V}$

Proof.

$$\forall (x,y) \in \mathcal{H}, \exists \lambda \in \mathbb{R}^{n^2} \mid x = \sum_{i=1}^n \lambda_i \mathcal{R}(i) \text{ and } y = \sum_{i=1}^n \lambda_i \mathcal{C}(j)$$
 with $\sum_{i=1}^n \lambda_i = 1$.

Play the joint action *i* with the proportion λ_i .

Example and payoff with independent distribution

Minimax Value

Feasible region for equilibrium

Minimax value for row and column player:

$$v_r = \min_{y} \max_{x} R(x, y)$$

$$v_c = \min_{x} \max_{y} C(x, y)$$

The minimax value security value It defines a feasible region (for an equilibrium)

$$\mathcal{F} = \{(x, y) \in \mathcal{H} | x \geq v_r, y \geq v_c\}.$$

Feasible region for Battle of Sexes and Prisoners' dilemma

Folk Theorem

Theorem

Any payoff $r \in \mathcal{F}$ can be sustained by a Nash equilibrium.

Proof.

Build strategies that converge to the desired payoff and that make it non-rational to deviate from the strategy.

Learning in Games

Desirable Properties

Convergence: a learning algorithm should converge

Rationality: play optimally against a stationary opponent

no regret: avoid regrets

Or are they?

Is it possible to find equilibrium that can be good for both players?

Questions

