Modele d’"un neurone : le perceptron

Fonction
d’activation

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels ’



Apprendre pour un perceptron linéaire

o On veut apprendre un vecteur de poids w

o on va utiliser le principe la descente de gradient (la plus grande
pente)

o L'erreur d’apprentissage est souvent mesurée par

E@)=3 Y tt—oi)

deD

ou
o D estl’ensemble de exemples d’apprentissage
o ty estla vraie classification de l'instance d
o 0y est la réponse du peceptron pour l'instance d

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels ’



Descente de gradient de I’erreur

wl[0]

w(2]
w(3]

w(4]

le gradient indique la direction de la pente la plus forte
La regle de mise a jour sera donc :
ﬁ(—i))JrAi)) w; < w; + Aw;
0l AW = -—nVE(W) Aw;j=-—n2E
o 1 est le taux d’apprentissage qui determine la taille du pas que I'on
fait en descendant

o le signe négatif indique que 'on veut descendre

Heureusement, calculer la dérivée est facile ici!

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels ’



Descente de gradient avec fonction d’activation linéaire

;)_Z]li = a%h(lZ(fd—Od))

deD

3 Z 30, (tg—04)?

deD

—ZZ ta—04)3 (td 04)

deD

D (ta—04)s— td_w )

6
deD

Z(td_od)(_xi,d)

deD

o
awi

La regle de mise a jour est donc

Awi=m) (ts—04)xiq
deD

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels ’



Algorithme de descente de gradient avec fonction d’activation linéaire

initialise chaque w; avec une valeur au hasard
tant que l'erreur est trop grande
Pour chaque i €{1,...,n}
Aw,- =0
Pour chaque example (?,t) eD
calculer la sortie o
Pour chaque i €{1,...,n}
Aw; = Aw;+n(t—0)x;
Pour chaque i €{1,...,n}
w; — w; + Aw;

1
2
3
4
5
6
7
8
9
0

1

Algorithme pour une unité avec une fonction d’activation linéaire

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels ’



Descente de gradient stochastique

o la descente peut étre lente

o s’il y a plusieurs minimaux locaux, on n’a pas de garantie de trouver
le minimum global

On utilise souvent une variante qui consiste a mettre & jour les poids apres
I'examen de chaque point (et pas apreés de les avoir tous examinés)

o c’est souvent une bonne approximation

o demande un peu moins de calculs

o permet parfois d’éviter de tomber dans un minimum local
= plus de chances de tomber dans me minimum global

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels ’



On veut apprendre des fonctions non linéaires

o on veut représenter des fonctions non linéaires

o avec la discontinuité du perceptron, on ne peut pas calculer de
dérivées

o on remplace la fonction d’activation par une fonction sigmoide (ou
fonction logistique) qui est un approximation continue et
différentiable de la fonction seuil

oly) = 1te v
o on peut aussi utiliser la fonction tangente hyperbolique
ey —e ¥
eV eV
On peut refaire les calculs précédents pour calculer la nouvelle fonction
de mise a jour pour ces fonctions d’activation.

tanh(y)

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels ’



11 faut passer au réseau de neurones!

Le deep learning consiste a avoir beaucoup de couches de neurones (ex
DeepMind utilise des réseaux de 13 couches).

On va avoir des réseaux multi-couches
une couche pour avoir les données

couche cachée 1 : une couche de neurones connectés aux neurones
de la couche d’entrée

couche cachée 2 : couche de neurones connectés aux neurones de la
couche d’entrée ou au neurones de la couche cachée 1

couche cachée k : couche de neurones connectés aux neurones de la
couche d’entrée, des couches 1, 2, ..., k-1

couche de sortie

Probléme : on sait mesurer I'erreur pour la couche de sortie (en comparant
avec les étiquettes)

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels !



Fonction d’erreurs

L'erreur d’apprentissage est mesurée par

E(£)=%Z > (ta—oka)

deD kéesorties

ol
o D est l'ensemble des exemples d’apprentissage
o t 4 est la vraie classification de l'instance d pour la sortie k
o 0y 4 est la valeur de la sortie k pour l'instance 4

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels ’



Backpropagation

Entrées Sorties

couche cachée

on peut calculer I’erreur aux sorties
mais il faut calculer une erreur pour les neurones de la couche interne !

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels !




Backpropagation

Entrées Sorties

couche cachée

idée : on partage l’erreur en fonction des poids

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels !



Backpropagation

Entrées Sorties

couche cachée

o z3 contribue a la décision sur y, avec un poids de wy
<son attribue a z3 une partie de l’erreur de y, avec un poids de wy

o z3 contribue a la décision sur y; avec un poids de wg
=son attribue a z3 une partie de l’erreur de y; avec un poids de wg

L'erreur de z3 sera donc wy x erreur(y,) +ws *erreur(yy)

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels !



Backpropagation algorithm

o xj; est 'entrée du noeud j venant du noeud i we wj; est le poids
correspondant.

o 5, est I'erreur associée a 1'unité n. Cette erreur joue le role du terme
t—o dans le cas d'une seule unité.
initialise chaque w; avec une valeur au hasard
tant que lerreur est trop grande
Pour chaque example (?,t) €D
1- calcul de I'état du réseau par propagation
2- rétro propagation des erreurs
a- pour chaque unité de sortie k, calcul du terme d’erreur
8 < o (1 —ox) (tx —ox)
b- pour chaque unité cachée h, calcul du terme d’erreur
Sy —op(1—04) Y wendy
kesorties
c- mise a jour des poids wj;
Wjj <= Wji +n5jxﬁ

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels !



Propriétés

o backpropagation converge vers un minimum local (aucune garantie
que le minimum soit global)

o en pratique, il donne de tres bons résultats
dans la pratique, le grand nombre de dimensions peut donner des
opportunités pour ne pas étre bloqué dans un minimum local

o pour le moment, on n’a pas assez de théorie qui explique les bons
résultats en pratique

o ajouter un terme de "momentum"

o entrainer plusieur RNA avec les mémes données mais différents poids
de départ
(boosting)

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels !



Quelles fonctions peut on représenter avec un RNA ?

o fonctions booléennes

o fonctions continues (théoriquement : toute fonction continue peut
étre approximée avec une erreur arbitraire par un réseau avec deux
niveaux d’unités)
fonctions arbitraires (théoriquement : toute fonction peut étre
approximée avec une précision aribitraire par un réseau avec 3
niveaux d’unités)

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels !



Exemple : reconnaissance de forme

20 personnes, environ 32 photos par personnes, leur téte peut étre de
face, tournée a gauche, droite, regardant en haut, différentes expressions
(content, triste, en colére, neutre), avec ou sans lunettes de soleil. image
de 120x128 pixels, noire et blanc, intensité entre 0 et 255.

taux de réussite de 90% pour apprendre l'orientation de la téte et recon-
naitre une des 20 personnes

2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels (16



2= M1 Miage 2017-2018 Intelligence Artificielle- (Stéphane Airiau) Réseaux de Neurones Artificiels !



