
Modèle d’un neurone : le perceptron
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Apprendre pour un perceptron linéaire

On veut apprendre un vecteur de poids −→w
on va utiliser le principe la descente de gradient (la plus grande
pente)
L’erreur d’apprentissage est souvent mesurée par

E(−→w ) =
1
2

∑
d∈D

(td − od)
2

où
D est l’ensemble de exemples d’apprentissage
td est la vraie classification de l’instance d
od est la réponse du peceptron pour l’instance d
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Descente de gradient de l’erreur

w[0]

w[1]

w[2]

w[3]

w[4]

le gradient indique la direction de la pente la plus forte
La règle de mise à jour sera donc :
−→w ←−→w +∆−→w wi← wi +∆wi
où ∆−→w =−η∇E(−→w ) ∆wi =−η ∂E

∂wi

η est le taux d’apprentissage qui determine la taille du pas que l’on
fait en descendant
le signe négatif indique que l’on veut descendre

Heureusement, calculer la dérivée est facile ici !
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Descente de gradient avec fonction d’activation linéaire

∂E
∂wi

=
∂

∂wi

(
1
2

∑
d∈D

(td − od)
2

)

=
1
2

∑
d∈D

∂

∂wi
(td − od)

2

=
1
2

∑
d∈D

2(td − od)
∂

∂wi
(td − od)

=
∑
d∈D

(td − od)
∂

∂wi
(td −

−→w ·−→x d)

∂E
∂wi

=
∑
d∈D

(td − od)(−xi,d)

La règle de mise à jour est donc

∆wi = η
∑
d∈D

(td − od)xi,d
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Algorithme de descente de gradient avec fonction d’activation linéaire

1 initialise chaque wi avec une valeur au hasard
2 tant que l’erreur est trop grande
3 Pour chaque i ∈ {1, . . . ,n}
4 ∆wi = 0
5 Pour chaque example (

−→x , t) ∈D
6 calculer la sortie o
7 Pour chaque i ∈ {1, . . . ,n}
8 ∆wi = ∆wi +η(t− o)xi
9 Pour chaque i ∈ {1, . . . ,n}

10 wi← wi +∆wi

Algorithme pour une unité avec une fonction d’activation linéaire
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Descente de gradient stochastique

la descente peut être lente
s’il y a plusieurs minimaux locaux, on n’a pas de garantie de trouver
le minimum global

On utilise souvent une variante qui consiste à mettre à jour les poids après
l’examen de chaque point (et pas après de les avoir tous examinés)

c’est souvent une bonne approximation
demande un peu moins de calculs
permet parfois d’éviter de tomber dans un minimum local
ë plus de chances de tomber dans me minimum global
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On veut apprendre des fonctions non linéaires

on veut représenter des fonctions non linéaires
avec la discontinuité du perceptron, on ne peut pas calculer de
dérivées
on remplace la fonction d’activation par une fonction sigmoïde (ou
fonction logistique) qui est un approximation continue et
différentiable de la fonction seuil

σ(y) =
1

1+ e−y

on peut aussi utiliser la fonction tangente hyperbolique

tanh(y) =
ey − e−y

ey + e−y

On peut refaire les calculs précédents pour calculer la nouvelle fonction
de mise à jour pour ces fonctions d’activation.
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Il faut passer au réseau de neurones!

Le deep learning consiste à avoir beaucoup de couches de neurones (ex
DeepMind utilise des réseaux de 13 couches).

On va avoir des réseaux multi-couches
une couche pour avoir les données
couche cachée 1 : une couche de neurones connectés aux neurones
de la couche d’entrée
couche cachée 2 : couche de neurones connectés aux neurones de la
couche d’entrée ou au neurones de la couche cachée 1
. . .
couche cachée k : couche de neurones connectés aux neurones de la
couche d’entrée, des couches 1, 2, . . . , k-1
. . .
couche de sortie

Problème : on sait mesurer l’erreur pour la couche de sortie (en comparant
avec les étiquettes)
ë comment mesurer l’erreur pour les neurones des couches cachées ?
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Fonction d’erreurs

L’erreur d’apprentissage est mesurée par

E(−→w ) =
1
2

∑
d∈D

∑
k∈sorties

(tk,d − ok,d)
2

où
D est l’ensemble des exemples d’apprentissage
tk,d est la vraie classification de l’instance d pour la sortie k
ok,d est la valeur de la sortie k pour l’instance d
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Backpropagation

couche cachée

Entrées Sorties

x1

x2

z1

z2

z3

y2

y1

on peut calculer l’erreur aux sorties
mais il faut calculer une erreur pour les neurones de la couche interne !
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Backpropagation

couche cachée

Entrées Sorties

x1

x2

z1

z2

z3

y2

y1

idée : on partage l’erreur en fonction des poids
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Backpropagation

couche cachée

Entrées Sorties

x1

x2

z1

z2

z3

y2

y1
w0

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

z3 contribue à la décision sur y2 avec un poids de w7
ëon attribue à z3 une partie de l’erreur de y2 avec un poids de w7

z3 contribue à la décision sur y1 avec un poids de w8
ëon attribue à z3 une partie de l’erreur de y1 avec un poids de w8

L’erreur de z3 sera donc w7× erreur(y2)+w8 ∗ erreur(y1)
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Backpropagation algorithm

xji est l’entrée du noeud j venant du noeud i we wji est le poids
correspondant.
δn est l’erreur associée à l’unité n. Cette erreur joue le rôle du terme
t− o dans le cas d’une seule unité.

1 initialise chaque wi avec une valeur au hasard
2 tant que l’erreur est trop grande
3 Pour chaque example (−→x , t) ∈D
4 1- calcul de l’état du réseau par propagation
5 2- rétro propagation des erreurs
6 a- pour chaque unité de sortie k, calcul du terme d’erreur
7 δk← ok(1− ok)(tk − ok)
8 b- pour chaque unité cachée h, calcul du terme d’erreur
9 δh← oh(1− oh)

∑
k∈sorties

wk,hδk

10 c- mise à jour des poids wji
11 wj,i← wj,i +ηδjxji
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Propriétés

backpropagation converge vers un minimum local (aucune garantie
que le minimum soit global)
en pratique, il donne de très bons résultats
dans la pratique, le grand nombre de dimensions peut donner des
opportunités pour ne pas être bloqué dans un minimum local
pour le moment, on n’a pas assez de théorie qui explique les bons
résultats en pratique

ajouter un terme de "momentum"
entrainer plusieur RNA avec les mêmes données mais différents poids
de départ
(boosting)
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Quelles fonctions peut on représenter avec un RNA ?

fonctions booléennes
fonctions continues (théoriquement : toute fonction continue peut
être approximée avec une erreur arbitraire par un réseau avec deux
niveaux d’unités)
fonctions arbitraires (théoriquement : toute fonction peut être
approximée avec une précision aribitraire par un réseau avec 3
niveaux d’unités)
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Exemple : reconnaissance de forme

... ...

20 personnes, environ 32 photos par personnes, leur tête peut être de
face, tournée à gauche, droite, regardant en haut, différentes expressions
(content, triste, en colère, neutre), avec ou sans lunettes de soleil. image
de 120x128 pixels, noire et blanc, intensité entre 0 et 255.

taux de réussite de 90% pour apprendre l’orientation de la tête et recon-
naître une des 20 personnes
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