On the emergence of social conventions

Michael Repplinger

January 24, 2010

Michael Repplinger On the emergence of social conventions

イロン イヨン イヨン イヨン

Introduction

Classical Games

Stochastic Games

Experimental Results

Discussion

・ロン ・回 と ・ヨン ・ヨン

3

What we are interested in

- We want to model systems of agents trying to achieve different goals
- In such systems, rules helps promote cooperative behavior, increasing efficiency
- Rules could be agreed upon beforehand, or emerge during the process

・ロン ・回 と ・ ヨ と ・

How to model it

- Classical (static) framework of game theory; social laws in this framework
- Rationality as individual advantage
- Stochastic setting in which certain conventions emerge through repeated interaction
- Analytic and empirical considerations regarding emergence of conventions

イロト イポト イヨト イヨト

The static game

- k-person games, as Normal-form game
- Only symmetric games:
 - Agents have same strategies
 - Identical play, identical payoff
 - Invariant under permutation, i.e. payoff does not depend on role
- Further restriction: 2-person 2-choice games

- 4 回 2 - 4 回 2 - 4 回 2

2-person 2-choice game, general form

$$\left(\begin{array}{cc} x, x & u, v \\ v, u & y, y \end{array}\right)$$

Coordination game (e.g driving conventions)

$$\left(egin{array}{ccc} 1,1&-1,-1\\ -1,-1&1,1 \end{array}
ight)$$

Cooperation game (Prisoner's dilemma)

$$\left(egin{array}{ccc} 1,1&-3,3\ 3,-3&-2,-2 \end{array}
ight)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Strategies and results

- Rational agents are maximizers of individual utility. (*)
- Maximin strategy: highest minimal payoff (find worst payoff, decide on best response). Makes sense if other players might be imbeciles.
- Nash equilibrium is sensible if other players know the game as well and are rational as defined above (as they will not chose a bad payoff for themselves).
- Pareto optimality: if no joint action exists that improves one player while the others stay at least as good.

イロン 不同と 不同と 不同と

Applied to our examples

- Coordination: maximin value is -1, both strategies are maximin strategies; 1,1 and 2,2 are Nash equilibria and Pareto optimal.
- Cooperation: maximin value is -2, 2,2 is maximin strategy and Nash equilibrium. Everything *but* 2,2 is Pareto optimal.

イロト イヨト イヨト イヨト

Central authority

- Without a central authority, it seems plausible that players defect (even though they suffer).
- Constraints that benefit society as a whole, or each individual could be introduced by an authority.
- The interesting question: can such (globally beneficial) constraints emerge from individual interaction? If so, only if all (or most) players accept a constraint as individually rational.

イロト イヨト イヨト イヨト

Definitions

- ► A social law is a restriction on the set of actions of the agents.
- ► Game variables: V(g) is the value (or set of values) that can be achieved by a certain strategy wrt. a game g.
- Rational social law wrt. g and V: if V(g) < V(g_{sl}). NB: Ordering simple for maximin.
- Social convention: a social law that restricts players to one particular strategy.

Applied to our examples

- Coordination: two rational conventions wrt. maximin value: 1,1 and 2,2.
- Cooperation: unique rational convention: cooperate.

・ロト ・回ト ・ヨト ・ヨト

æ

Outline of the model

- Repeated games of individual interaction, with limited information. (*)
- Despite restrictions, potential convergence to global, rational state as if players had complete information.

n-k-g stochastic social game

 n agents, k-person game g, unbounded sequence of tuples of k selected players (out of the n agents).

Selection function

- Which information can agents rely on? Two principles:
 - Obliviousness: identity of agents or names of agents are inaccessible.
 - Locality: selection function based on personal history.
- Local selection function: based on the history of actions and payoffs of the agent alone.
- Semi-local selection function: based on the history of actions and payoffs of the agent and the agents he encountered.

・ロン ・回と ・ヨン ・ヨン

Intuitions behind the formal properties

- Coordination problem could be trivially solved, ahead of time, by reference to "left" or "right", if we would not demand obliviousness.
- Better example: specifying assembly robot behavior in general terms, without reference what they should use, but only how they should react given their (payoff) observations.

イロト イポト イヨト イヨト

Highest cumulative reward rule

- An agent switches to a new action iff the total payoff from that action in the last *m* iterations was greater than the total payoff of the current action in the same time period.
- NB: cannot be pure *locality*, otherwise agents would never switch (since there is no random mutation or error). According to their own definition, it should be considered *semi-local*, I believe, or, equivalently, with some knowledge of the game (i.e. payoff for actions not taken).

Social agreement games

(The class of games to which their results apply)

$$\left(\begin{array}{cc} x, x & u, v \\ v, u & y, y \end{array}\right)$$

with $x, y, u, v \neq 0$; x > 0 or y > 0; u < 0 or v < 0; if both x > 0and y > 0, then x = y.

・ロン ・回と ・ヨン・

Convergence result

- Probability of social convention being reached approaches 1.
- This social convention is stable.
- Every agent receives at least initial maximin value (i.e. maximin in the unrestricted game)
- If a rational social convention exists wrt. the maximin value, it will be reached.

What it means

- Local rule brings about emergence of globally reasonable stable convention. (*)
- Emergence of *cooperation* and *coordination* by local update rule.

・ロト ・回ト ・ヨト ・ヨト

Efficiency, analytic

- Section is a complete mess, but probably: lower bound (= minimal number of iterations) in the order of n * log(n) (where n is the total number of agents).
- Upper bound is not stated explicitly at all (as far as I can see), but probably in the order of xⁿ.

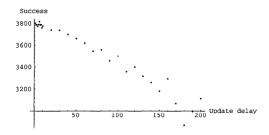
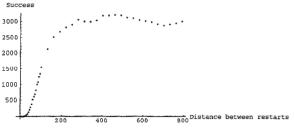
Efficiency, empirical

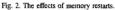
- Despite identical framework, coordination is much faster than cooperation. In fact, cooperation seems to be untenable.
- Coordination game convergence approaches lower bound.
- Assumptions for the following results (unless noted otherwise): unlimited memory, 100 agents

・ロト ・回ト ・ヨト ・ヨト

Update delay

95% goal. 1600 iterations. Out of 4000 trials. Result: high update frequency is good.


Fig. 1. The effects of update frequency.

э

Memory restart

85% goal. 800 iterations. Out of 4000 trials. Result: At least for now, full memory is good.

→

Combined delay and restart

95% goal. 1600 iterations. Out of 4000 trials.

Result: linked restart and update are better than full memory and update delays.

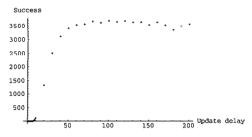


Fig. 3. The case in which update frequency = memory restart frequency.

→

Limited memory window, observations

85% goal. 800 iterations. Out of 4000 trials. Result: (Somewhat) limited (continuous) memory is beneficial. NB: Difference to Fig. 1 probably due to number of iterations.

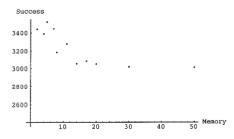
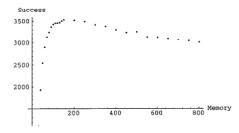
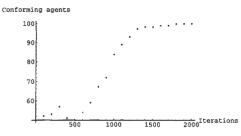


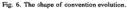
Fig. 4. Limited memory (latest observations).

< □ > < □ > < □ >

Limited memory window, iterations 85% goal. 800 iterations. Out of 4000 trials. Result: Same as for Fig. 4.




Fig. 5. Limited memory (latest iterations).


- 4 回 2 - 4 □ 2 - 4 □

æ

Convergence behavior

Full memory. Result: Slow in the beginning and the end.

- 4 回 2 - 4 □ 2 - 4 □

æ

Extended coordination game

Definition: payoff for both agents is x > 0 iff the coordinate, -x otherwise.

Result: Number of potential conventions (i.e. more possible actions for players) decreases efficiency, but relatively slowly.

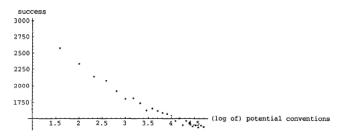


Fig. 7. The effects of the number of potential conventions.

 ∃ >

Results, according to the authors

- Interesting because local update rules plus global interaction yields global advantages through stable conventions.
- "Some of our results refer to the emergence of social conventions that are not Nash equilibria". That's great, why didn't you show us those (practical) results?

イロト イポト イヨト イヨト

Comparison to previous frameworks

- Young, "Evolution of Conventions"
 - Similarities: stochastic process (repeated games); classic game theoretical setting
 - Differences: Nash equilibria; best response (global knowledge, but error and limited memory)
- Axelrod "Evolutionary Approach to Norms":
 - Similarities: stochastic process; evolutionary setting
 - Differences: no analytic results (stable states are neither named nor proven), perhaps because they are more complex

イロト イヨト イヨト イヨト

Suggestions for discussion

- "Rational agents are maximizers of individual utility" (Always true?)
- "Repeated games of individual interaction, with limited information" (How little do they know; the game, other players' decisions, etc?)
- "Local rule brings about emergence of globally reasonable stable convention." (But only wrt. maximin value.)
- What is the idea behind the class of social agreement games?
- ▶ No mutation or error assumed in this approach.