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ABSTRACT

Learning to converge to an efficient, i.e., Pareto-optimasiNequi-
librium of the repeated game is an open problem in multiagent
learning. Our goal is to facilitate the learning of efficiemit-
comes in repeated plays of incomplete information gamesiwhe
only opponent’s actions but not its payoffs are observaldle.use

a two-stage protocol that allows a player to unilaterallynoat to

an action, allowing the other player to choose an action kmgw
the action chosen by the committed player. The motivatidiirte
commitment is to promote trust between the players and pteve
them from mutually harmful choices made to preclude woeastec
outcomes. Our agents learn whether commitment is beneéicial
not. Interestingly, the decision to commit can be thoughaoéx-
panding the action space and our proposed protocol can be inc
porated by any learning strategies used for playing refdesmes.
We show the improvement of the outcome efficiency of standard
learning algorithms when using our proposed commitmentopro
col. We propose convergence to Pareto optimal Nash equitibr

of repeated games as desirable learning outcomes. Therperfo
mance evaluation in this paper uses a similarly motivatetticme
that measures the percentage of Nash equilibria for reppgarmes
that dominate the observed outcome.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence ]: Distributed Atrtificial Intelligence—
Multiagent systems.2.6 [Artificial Intelligence ]: Learning

General Terms
Algorithms
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1. INTRODUCTION

A rational agent, playing an iterated games, tries to mazerek-
pected utility. In a two-player, general-sum game, this msetaat
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the players need to systematically explore the joint acsipace
before settling on an action combination. Both agents cakema
concessions from greedy strategies to improve their iddadi pay-
offs in the long run [12]. Reinforcement learning schemes! ia
particular, Q-learning [17] have been widely used in siragent
learning situations. In the context of multi-player gamiésne
agent plays a stationary strategy, the stochastic gamartsscan
MDP and techniques like Q-learning can be used to learn foga
optimal response against such a static opponent. When tertsag
learn to play concurrently, however, the stationary assiomploes
not hold any longer. In addition, it is no longer clear whaiogrti-
mal strategy is. Researchers have focused on convergehtzsto
equilibrium (NE) in self-play, where each player is playiadpest
response to the opponent strategy and does not have anyivecen
to deviate from his strategy.

Convergence is a desirable property in multiagent systénts,
converging just to any NE is not the preferred outcome singes\
not guaranteed to be Pareto optimal (an outcome is Pardtoalpt
if no agent can improve its payoff without decreasing itsapmmnt's
payoff). For example, the widely studied Prisoner’s Dileangame
(PD in Table 1(b)) has a single pure strategy NE that is defect
defect, which is dominated by the cooperate-cooperateomecA
Pareto Optimal outcome may not be appealing to playerstibiita
come is also not a NE, i.e., there might be incentives for genta
to deviate and obtain higher payoff. For example, each dgant
the incentive to deviate from the cooperate-cooperatet®ame
tima in PD. In repeated games, folk theorems[9] ensure wizan
players are “patient enough”, any payoff dominating a nestésn
payoff can be sustained by a NE. Hence, in repeated games, the
are Pareto Optimal outcomes that are also NE outcomes.

It is evident that the primary goal of a rational agent, l@agn
or otherwise, is to maximize utility. Though we, as systersigie-
ers, want convergence and corresponding system stalbiibge
considerations are necessarily secondary for a ratioredtad he
question then is what kind of outcomes are preferable fanisgn-
gaged in repeated interactions with an uncertain horizen,with-
out knowledge of how many future interactions will happen.

Learning goal in repeated play: The goal of learn-
ing agents in repeated self-play with an uncertain hori-
zon should be to reach a Pareto-optimal Nash equilib-
ria (PONE).

We are interested in developing mechanisms by which agants ¢
produce PONE outcomes. [13] provides a solution under cetapl
knowledge. This assumption is unrealistic in most casego-op
nent valuation is in general intrinsic and private. Moreopayoff
communication opens the door for deceptive behavior. Hemee
believe that not observing the opponent payoff is a mordstéal
assumption. We are interested in two-person, general-aumesg



where each agent only gets to observe its own payoff and thtanac
played by the opponent, but opponent’s payoff is unknowndegn
these conditions, it may be difficult to guarantee convergen a
PONE. In order to compare the performance of different dligms
that are trying to converge to a PONE, we introduce a new metri
given an outcome of the game, the metric relates to the velati
number of outcomes dominating the current outcome.

2. RELATED WORK

Researchers have focused on convergence to NE in self-play.
This emphasis on convergence of learning to Nash equitibigu
rooted in the literature in game theory [8] where technidikesfic-
titious play and its variants lead to NE convergence unddgice
conditions. More recently, multiagent learning researsh@ve
also adopted convergence to NE as the desired goal for aahtio
learner [6, 13]. By modeling the opponent, Joint-Action trea
ers [5] converge to a NE in cooperative domains. By using & var
able rate, WoLF [3] is guaranteed to converge to a Nash édqiuifh
in a two-person, two-actions repeated general-sum gane;@mn
verges empirically on a number of single-state, multipdeestzero-
sum, general-sum, two-player and multi-player stochagimes.
Finally, in any repeated game AWESOME [6] is guaranteedamle
to play optimally against stationary opponent and to caywéo NE
in self-play.

In [15], Powers and Shoham propose new criteria for learners
in a MAS: converging to near best response against any istaio
players, converging to a PONE in self play, and close to méxim
payoff against any other players. They propose an algorittah
meets these criteria. It requires, however, knowledge efapr
ponent’s payoff. This is not the case in [7] where Crandal an
Goodrich have a similar goal to our work. They propose an-algo
rithm that guarantees an outcome that is not lower than themai
outcome (this outcome can be sustained by a NE). Moreowy, th
propose that a learner should learn to accept compromiaeth
crease their average payoff (Compromise/cooperate pdyopé-
though they cannot guarantee this property, they presepirieal
results showing convergence to Pareto efficient outcomeanym
games (e.g. PD, Stag Hunt, Chicken).

We had previously proposed a modification on the simultasieou
move game playing protocol that allowed an agent to comnataic
to the opponent its irrevocable commitment to an action §]., [f
an agent makes such a commitment, the opponent can choose an
action in response, essentially mirroring a sequential gikation.

At each iteration of the play, then, agents can choose to iy
multaneous move game or a sequential move game. Our use 0
commitment is different from the use of commitment in [11]ex
players cannot observe the actions of other players, aydctire-

mit to play the same action for a sequence of time slots. Inj#]
compared the outcome obtain by an had hoc learner with the out
come of a NE of the stage game (or one shot game). In this paper,
we show that the commitment protocol can be used with arlitra
multiagent reinforcement learning algorithms and thaadilftates
convergence to near-efficient Nash equilibria of the regmbgames

and not just to efficient Nash equilibria of single-stage gamin
addition, under the assumption that players are greedyyoxde

a correspondence between learning in the traditional pobtand
learning in the commit protocol. Finally, we propose a nudtased

on the folk theorem that relates to the relative number of@ues
dominating the reservation outcome and the current outcome

3. EQUILIBRIUM IN REPEATED GAMES

To motivate our metric and the importance of considering-equ
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(a) Battle of the Sexes (b) Prisoners’ dilemma

Table 1: Prisoner’s dilemma and Battle of Sexes games

librium of the repeated game in multiagent learning, weaewhe
equilibrium concepts in the context of repeated games. \Weénar
terested in repeated games where the agents play a normal for
game (called the stage game), infinitely and try to optimieeav-
erage payoff receivedNotation: In the following, we consider an
n X n two-player game that can be represented by two matrices.
andR (respectivelyc andC) denote the row player and its payoff
matrix (resp the column player and its payoff matrix), andresp
pe) is the mixed strategy of the row (resp column) player. We wil
useR(ar, ac) (respR(pr, pc)) to denote the payoff received by the
row player whenr playsa, andc playsa. (resp the expected util-
ity of the row player when it uses the stratggyand its opponent
plays strategy.).

3.1 Outcome candidates for equilibrium

For any (infinite) history of play, we can compute the propor-
tion of each pair of payoffs obtained by the players. The ayer
payoff obtained is a convex combination of the pairs of pisyof
the game:V(H) = {(R(i,4),C(4,4))|(i,4) € [1..n]*}. Hence,
all possible payoffs of the repeated game can be represbntibe
convex hullH with vertices inV(H).

If no communication is allowed during the play of the game,
the players choose their strategies independently. Nateaththe
points of the convex hull cannot be produced by independémdn
strategy. The concept of correlated equilibrium [2] pesni¢pen-
dencies between the strategies. For example, before thietpéa
players can adopt a strategy according to the joint obgervaf a
public random variable. [10] introduces algorithms thapémally
converge to a correlated equilibrium in a testbed of Markamgs.
Consider the example of a Battle of Sexes game represenied in

le 1(a). The game models the dilemma of a couple deciding on
he next date: they are interested in going to differentgdabut
both prefer to be together than being alone. The best (and&du-

dion would consists in alternating between (CoordinatéeBg and

(Defect, Coordinate) to obtain an average payoff of 3.5. el@w,
playing independent uniform strategy leads to an averagefipa
of 2.5. To avoid bad outcomes, players can use the obsemvattio
a public random variable to coordinate their actions. Thaver
hull containing all possible payoff of the repeated game tisaa-
gle represented in Figure 1. The shaded area inside thegl&ian
Figure 1(a) is the payoff pairs that can be obtained by pkaysing
independent mixed strategies. In this game, a large poofibigh
payoffs for the row and the column player cannot be reachiedus
independent mixed strategies.

Each player can guarantee a minimum payoff by playingas-
min strategy. The payoff of the minimax equilibrium is defined by

{

{max C(pe, pr)} for the column player
Pe

max R(pr, pc)

Pr

v, = min
Pec

} for the row player

Ve = min
Pr
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Figure 1: Payoff of Battle of sexes

Hence, not all points irt{ are candidates to be equilibrium out-

comes: only outcomes that dominates the minimax value are of

interest. The region of feasible paydffis defined by
‘7: = {(‘T:y) € H|ZL’ 2 Ur, y 2 UC}~

In the example of the Battle of Sexes, the minimax value fahbo
player isg and occur when both players play the mixed strategy
(%, i). The feasible payoff§ are represented by the shaded area
in Figure 1(b). Note that most of these points are not redehab
when both players play independent mixed strategy.

3.2 Pareto and Nash Equilibrium

A Pareto optimal outcomis one such that there is no other out-
come where some agent’s utility can be increased withoutdse
ing the utility of some other agent. An outcom& strongly domi-
natesanother outcom@” if all agents receive a higher utility in X
compared td@”. An outcomeX weakly dominateor simplydom-
inate9 another outcomé&” if at least one agent receives a higher
utility in X and no agent receives a lesser utility compared to out-
comeY. A non-dominated outcome is Pareto optimal. In the 2-
dimensional representation, if there are no points “abavef “on
the right” of a pointz, x is Pareto optimal. The Pareto optimal
outcomes are located at the eddesf the convex hultH. The
set of Pareto optimal points of the battle of sexes is repteden
Figure 1(a).

Strategies are iNash equilibriumwhen they are mutual best re-
sponses. Assuming that the opponent plays its componeihieof t
Nash equilibrium, the player cannot do better than playiagin
component. For any single shot game, there exists at leaisteal m
strategy NE. For the battle of sexes, there are two pure NEtwhi
are (Cooperate, Defect) and (Defect, Cooperate) and a retrad
egy NE which is the minimax equilibriung2, 1). For infinitely
repeated games, the situation is very different since tisee infi-
nite number of Nash equilibria. A set of “folk theorems” eresthat
if players are sufficiently patient, for each feasible payoft 7,
there is a NE of the repeated game with payoffThe idea behind
the theorem is exploited by Littman and Stone in [13] wheryth
introduce an algorithm to converge to a Pareto-optimal NEhéir
approach, if a player deviates from the equilibrium withcmuhe
v € F, it will be punished by playing the minimax strategy long

enough. The punishment is designed so as to make it irrdtiona
deviate from the chosen equilibrium.

Hence, in the repeated game, any poinfiris an outcome of a
NE. Points inF and not Pareto optimal are by definition dominated,
which make them poor candidate for good equilibrium poifitse
NE that are also Pareto optimal, hence pointSioneg = F N
P # ( are preferable. A bargaining argument found in [14] high-
lights a best candidate, and their algorithm converge topamgc-
ular NE on the Pareto frontier.

3.3 Metric for a two-player game

To compare two equilibrium outcomes, we can use the concept
of dominance. However, when there is no dominance betwesen th
outcomes, additional metrics are needed. Investigatiagtm of
the payoff of the player (a measure of the social welfareXher
product of the payoff (a measure of fairness) provides hisig
the equilibrium properties of the learning algorithms. #rer ap-
proach is to consider the number of equilibria that domiriage
current equilibrium: the fewer outcomes that dominate tireent
outcome, the closer this outcome is to a Pareto Optimum. dlke f
theorems [9] ensure that when an outcome dominates the @anim
outcome, it can be sustained by a NE of the repeated game. For
an outcomer, let d(x) denotes the area containing all points that
dominatese in the payoff space. Ifi(z) = 0 andz dominates the
minimax outcome, them is a PONE.

Definition 1. Performance metric of an equilibrium outcome

o(x) = d&(j;) wherez,m = (vr, vc) is the minimax outcome.

0(x) represents the proportion of NE outcomes of the repeated
games that dominates The smalled(x), the better the outcome

x is with respect to convergence to a PONE. When one outcome
dominates an outcomg 6(z) < 6(y). The opposite is not true:
when there is no dominance betweemndy, §(z) may be less,
equal, or greater thad(y).

4. COMMITMENT

We now present our proposed commitment protocol that can be
added onto any stage game playing algorithm. The motivdtén
hind the protocol is for agents to improve payoffs by buitgtrust
via up-front commitment to “cooperating” moves that can he m
tually beneficial, e.g., a cooperate move in PD. If the oppbngy-
opically chooses an exploitative action, e.g., a defectemowD,
the initiating agent would be less likely to repeat such esagion
commitments, leading to outcomes that are less desiraldetto
parties than mutual cooperation. But if the opponent regtse
temptation to exploit and responds cooperatively, them saatu-
ally beneficial cooperation can be sustained.

We use an augmented game playing protocol where the players
are allowed to announce the action they are going to play. The
first effect of this modification of the simultaneous play tocol
is to increase the space of possible payoff since playergplean
some correlated equilibrium For example, in the battle of the
sexes game, it is possible to reach the fair equilibrium whwth
players gets a reward of 3.5. Commitment to an action can also
reduce some uncertainty and can help players to reach loeitter
come. In the remaining of this paper, we show that myopic ex-
ploitation of a commitment can improve the outcome of the gam
but non-myopic solutions are needed to reach a PONE.

Ywe have not proved that all possible outcome are possibteitan
is not clear whether all correlated equilibrium can be redchith
these assumptions



4.1 Protocol

We build on the simultaneous revelation protocol [1, 16]eAt
repeatedly play amn x n bimatrix game. At each iteration of the
game, each player firstannounces whether or not it wantstonio
to an action. If both players want to commit at the same time,
one is chosen randomly. If no player decides to commit, thath b
players simultaneously announce their action, as in thdititvaal
simultaneous play protocol. When one player commits to dommc
the other can choose any action given its opponent’s ackach
agent can observe which agent actually revealed, and whtana
the opponent played. In this paper we consider two-playereza
where agents play best response action to opponent’s ctedmit
action. We believe that this protocol can be easily exterideal
n-player game witn > 2 when only one player commits to an
action.
commit O

commit 1
no commitment

Initial State)

Actions:

(Commitl (Opp Commit0 ( Opp Commjt 1 ( NoCommituue

play O

Actions: play 1

Figure 2: Game tree for a two-action game.

0 1 0 1
02341 0]24]|43
111234 111132
(a) Game 27 (b) Game 50

Table 2: Payoffs Matrices of Two games in Brams’ Testbed

tion 0 with an outcome of2, 3). Note that the NE is dominated by
the pure strategy™ where both agents play action 1 with outcome
(3,4). Assume that the column player plays the stratégy0).
The row player can get 3 by playir(g, 0) or (0, —). More inter-
estingly, if the column player plays a best response to thenaiv-
ted action, the row player can obtain 4 by committing to actio
(i.e. playing(1,—)). Note that this solution is also beneficial for
the row player that gets 3. For this game, the myopic exgloita
results in a beneficial outcome for both players.

The second example is the battle of the sexes of Table 1(&). Th
strategies where both players pl@y —) is in NE. Half of the time,
a player receives 3, and half of the time, it receives 4. Thing
exploits the possibility to play a coordinated equilibrium

For Game 50 represented in Table 2(b), there is a single pkre N
of the stage game where both players play action 0. Note hfsat t
solution is a PONE. The row player gets only its third prefdrout-

Such games can be represented by game trees, e.g., Figure $0me, when the column player gets its most preferred one.nWhe

presents the tree for a two-action game. In the initial sttite
agents have + 1 actions: it can plan to commit to any of theac-
tions of the game, or decide not to commit. The transitiomftbe
root of the tree depends on the decision of the opponentcdime

the players are allowed to commit and are myopic (they wipleit
the commitment of the opponent by playing a best responise), t
row player can get a payoff of 3 by playiri@, —), since the my-
opic column player will respond by playing action 1. Thisiation

mit states are reached when the player commits and the opponenfloes not benefit the column player that, with the same argymen

does not, or when both players are willing to commit, but tiager
wins the toss. From theommitstate, no further decision is needed,
and the payoff received depends on the play of the opponeimenW
the player decides not to commit, the transition can leathyoome

can get 4 by playing0, —). By playing myopically, the agents will
be in a correlated equilibrium where they gets (2,4) and) (®jth
equal probability. Note that this equilibrium is not a PONIfice
the correlated equilibrium is strongly dominated by thatstgies

of the n states where the opponent commits or to the state where (7, 0) for the row and(—, 1) for the column. In this case, com-

no players is willing to commit. In both cases, the player hag-
tions available. From thepp commistates, the transition depends
only on the current players’ decision. From the state whieeeet
is no commitment, the transition also depends on the oppateen
cision. Any multiagent learning algorithm can be used tineste
the utility of different actions, including the commitmesattions,
from repeated play against an opponent.

Definition 2. A pure strategy has one of the following form:
e “does not want to commit, when other player does not annqunce
play actionk” that we denote by, k).
e “want to commit to actiork” that we denote byk, -).

4.2 Examples

The following examples illustrate the possible effects tafyp
ing with the possibility to announce. We used matrices from t
testbed introduced by Brams in [4]. These examples showsrtha
some cases, playing with announce is beneficial, and in otsss,
different equilibrium can be reached. In the first two exaesphe
show that one or both player announcing its play can be bedefit

mitting to an action improves the outcome of the row playet, b
decreases the payoff of the column.

Finally, we consider the Prisoners’ dilemma game in Tabtg.1(
In this game, if the agents are myopic, a commitment doesnoet p
vide any advantage: if a player commits to play cooperatepfh
ponent greedily exploits the situation by playing defecheTor-
related equilibrium where both agents reveals cooperateides
better results than the NE, but it is still dominated by the C)
(=, C) payoff. If a players commits to play defect, the best re-
sponse is also to play defect. Hence, if the players aredutid
play a best response when an agent reveals its action, thagnea
prove on the NE, but the equilibrium reached is not a PONEs&he
last two games illustrate that non-myopic exploitation ocbenmit-
ment is needed to improve the payoff of both players.

5. ESTIMATING PAYOFFS

Learning in repeated games can be viewed as a reinforcement
learning task where, at each repetitiorof the stage game, the

In the last two examples, we show that announcing may improve player chooses a course of actions and gets a rewdad it. Play-
on the outcome of the NE of the stage game, but the equilibrium ers discount the future utilities using a discount faefoe [0, 1]

may not be a PONE.

and try to maximize the sum = > 72 ~'r;. A simple, model-

For game 27 presented in Table 2(a), there is a unique Nashfree online technique for reinforcement learning is Qhéag [17].

equilibrium in the single shot game where both players pay a

The update rule for Q-learning when a learner played actiam



stateS, and observe the rewardand the new stat§’ is

Qa.5) = aQ(@. )+ (1-0) (r+7,_ max  Q0.5)).
The parametet is the learning rate that controls the importance of
the new information compared to past information.

Q-learning can learn payoff in a Markov Decision Process BD
When both players are learning, the Markovian assumptiatir is
olated. Because Q-learning updates has been used in neuitiag
learning, we use this method to estimate the payoff online.

In learning the game tree of Figure 2, the reward provideti¢o t
players are the payoffs of the stage game. For the termiatdsst
which are successors of the stafiygp Commit, the utility of these
states can be learned. For any other state, the payoff demend
the policy of the opponent. Assume that both players playtcst
strategy and that the Q-values have converged. If the Heamer
no longer exploring, greedy exploitation of these valuesiits in
playing a best response, since the player will try to optantteir
expected values. In particular, when players use a grequlpita¢
tion, they will play a best response to a commitment. Expiona
schemes such as thegreedy, the use of Boltzmann probability
distribution, or the use of probability distribution leathby WoLF
will learn to play a best response to a commitment. In the fol-
lowing, we will use this hypothesis to reason about the plhe
game. Yet we recognize that to avoid myopic behavior, a Earn
should not use a greedy exploitation.

If we assume that the opponent plays a best response to a com

mitted action, given an x n gameG.. played in the protocol with
commitment, it is possible to build a garég, played with the tra-
ditional simultaneous game protocol: each player can tjretay
one of the2n pure strategies available. An example whege= 2

is provided in Table 3 and can be extended to anyNote that if
we relaxed the assumption of playing a best response to a temm
ted action, the payoff of all cells where at least one agentrit
would depend on the action of the opponent. In this caseradea
could still use this table to learn its expected payoff.

0 1

0 | @o0,0,b0,0 | ao,1,b0,1
1 a1,0, b1,0 aii, b1,1
equivalent to

| [ &0 [ &0 [0 [ (o) ]

(—,0) || a0,0,bo,0 | @o,1,b0,1 | BR(-,0) | BR(-,1)
(—,1) || a0,0,bo,0 | a0,1,b0,1 | BR(-,0) | BR(-,1)
(0,-) [ BR(O,) | BR(O,) | BR(0,0)| BR(O,1)
(1,0) | BR() | BR(L- | BR(LO) | BR(,I)

where:

e BR(i,-) is the pair of payoff where row commits t@and col-
umn plays the best responseito

e BR(-,)) is the pair of payoff where column commits t@and
row plays the best responsejto

e BR(i,j) is the average pair of payoff of BR(i,-) and BR(-,))

Table 3: Equivalence of games in the traditional protocol aa
the commit protocol when agents are greedy

Compared to NE outcome of a traditional protocol, the NE out-
come with the commit protocol may differ. We hypothesizettha
under rational play, the outcome of a game played with the-com

mit protocol is not strictly dominated by the outcome of ttaere
played with the traditional protocol. Assume that playeesia a
NE of the stage game and are provided the opportunity to com-
mit. A playeri commits only when it is beneficial, hence get-
ting a higher payoff. If the other playgris improving due to the
commitment, both players improve their respective paydiise,
j's payoffs is worse. In this casg¢,may improve by committing,
which might decrease i's payoff. If on average both playpes/-
offs decrease, the players will ultimately learn not to edv&/hen:
commits angj cannot improve its payoff by committing, e.g. com-
mitting to any action yields a lesser payoff, the player<ihea a
different equilibrium ¢ improves and; is worse off but there is
no dominance). In any case, players should only benefit fimm t
commit protocol.

6. RESULTS

We compared the use of the protocol with commitment with the
traditional protocol of simultaneous play on various setatri-
ces. We first experiment with the testbed proposed by Brar# in
which represents all the conflicted 2x2 games with ordingbffa
We then compared the results on a set of random matrices.

Any traditional algorithm for game playing can be used toriea
the game tree of Figure 2. For reason of simplicity, we use the
assumption that the players learn best response when an oppo
nent commits, and we used the equivalent matrix presentéd-in
ble 3. We chose to use WoLF-PEQWNin or Learn Fast - policy
hill climbing) [3] as the learning algorithm. The algorithiearns
mixed strategy and is guaranteed to converge to a NE in asbper
2-actions repeated game. The outcome of a play the traditmo-
tocol (resp. the commit protocol) are referred as to WoLBre
WOoLF(commit)).

6.1 Testbed of 2x2 conflicted games

We first use a neutral but extensive testbed of games intembluc
by Brams in [4]: the testbed is composed of all possible octirily
situations that can occur in a two-action two-player gamih i
total preference order over the four outcomes of the gameés Th
testbed represents a wide variety of situations, includiftgn-
studied games like PD, the chicken game, battle of the sexes,
We use the numbers 1, 2, 3, 4, as the preference of an agent for a
state in the 2x2 matrix, with 4 being the most preferred. Tou
these numbers correspond to ordinal payoff, we treat thecamls
dinal payoffs. There is no game where agents can simultahgou
obtain their most preferred outcome, which implies thahegame
represents a conflicting situation. There are 57 strudyudiffer-
ent 2x2 conflict games (no two games are identical by renathimg
actions or the players). Learners typically have accessliotheir
own payoff matrices but can observe opponent actions. Léck o
knowledge of opponent payoff is a more realistic assumptian
open environment, but puts the learners at a disadvantagesced
to the static players.

Among the game of the testbed, 51 games have a unique NE
(9 of these games have a mixed strategy equilibrium and 42 hav
pure strategy equilibrium), the remaining 6 have multigjeitbria
(two pure Nash equilibria and and a mixed strategy NE). Ofithe
games that have a unique pure strategy NE, 4 games have a pure
NE that is not Pareto-optimal (the prisoners’ dilemma, g2mhe28
and 48 have a unique NE which is dominated), and 2 games which
have a single mixed strategy NE are dominated by a pure gjrate

2WoLF-PHC settingsn(t) = ﬁ Sw = 150 00 = 40w

The games were played over 10,000 iterations, and results we
averaged over 40 runs.



In five games, the outcome of WoLF(commit) strictly domirsate
the outcome of WoLF. Three of them are games where the NE is

- L Result d 1000 rand tri
dominated (games 27, 28, 29 and 48). The remaining two games esulls averaged over random matrices

are the games where the NE is a mixed strategy NE dominated 04 WOLF —O—
by a pure strategy. In 9 other games, the equilibrium reached 0.35 | WolF(commit) -3
different than the NE of the stage game, but there is no damima 03
We found that the augmented mechanism fails to produce adPare '
optimal solution in only two games: the prisoner’s dilemnaang o 025
(Table 1(b)) and game 50 (Table 2(b)). g 0.2
[

6.2 Results on randomly generated matrices & 015 i///{

As shown in the previous experiments, the structure of some 0.1 )
games can be exploited by the commit protocol to improve&tyep | T
off of both players. To evaluate the effectiveness of théqual on 0.05 """
a more general set of matrices, we ran experiments on ragdoml 0
generated matrices as in [16]. We generated 1000 matricasesf 3 5 7
3x3, 5x5 and 7x7. Each matrix entry is sampled from a uniform dimension of the space
distribution in[0, 1]. We compare the outcome of WoLF(commit) . i .
and WoLE. Figure 4: Results over randomly generated matrices: metric)

In Figure 3, we plot different areas: the average area aungi  for WoLF and WoLF(commit)
all the outcome of NE (i.e. dominating the minimax outcontieg,
area that dominates the outcome of the traditional and timerdt
ment protocol. We first observe that the minimax outcome s-do
inated by more outcomes for larger games, i.e. the space of NE
is larger. When we compare with the area that dominates the ou
come found by WoLF we find that the outcome with the protocol
with commitment is dominated by less outcomes, and therdiffe
ence increases with the game size. In Figure 4, we plob onet-
ric that provides the percentage of sustainable NE of theateyl
game that dominates the outcome of the algorithm. The ptht in
cates that the outcome obtained with protocol with commitinige
dominated by at most0% of the possible NE, when the outcome
of the traditional simultaneous game is dominated by 3 timese
NE. This suggests that the commitment protocol produces meier
ficient equilibrium than the traditional simultaneous gamatocol.

of the repeated game that dominate the outcome reachedr thede
assumption that the opponent payoff matrix is unknown, ghhbe
difficult to ensure convergence to a PONE. Our proposed mistri
helpful in comparing the relative efficiency of differenttoomes.

We experiment with two-player two-action general-sum dgonfl
games where both agents have the opportunity to commit tg-an a
tion and allow the other agent to respond to it. The oppotyuni
of revealing its action should not be seen as making a coiacess
to the opponent, but rather as a means to explore the patysdfil
mutually beneficial outcomes. Any learning algorithm carabg-
mented to incorporate the commit protocol, which improves t
payoffs in most cases: we empirically show that our protacol
prove the payoffs obtained by WoLF-PHC in a variety of games.
The experiments also show shortcomings of the current commi
ment protocol in that it fails to reach PONE outcomes: thenariy

to a committed action. We are working on learning actiofityti

Results averaged over 1000 random matrices reason for this is that a player responds to a commitment aith
myopic best response.
0.25 — _

® minimax —&— We assume that a player does not know the payoff matrix of the
£ oz | WoLF(CO%?T']‘ig ff,%'ff \ opponent, which makes it difficult to estimate whether theildw
S ' rium reached is acceptable for both players. In partictiere are
3 situations where not playing a best response to a committézha
g 015 can be beneficial for both players. To find a non-myopic eluili
2 rium, an agent should not be too greedy! Currently, the ageret
E 0.14 learning only their own payoff, and learn to play a best resgo
§
©
©
1
©

0.05 -4 estimates that incorporates an estimate of the preferdrtbe op-
7777777 ISt ponent in the game tree presented in Figure 2. We expecthibat t
E%.ifffff’fffffff’f‘ff,,. [N  FUR— B [] agents will be able to more consistently discover statesfimal
0 é 5 7 for both learners, and thereby converge to PONE outcomes.
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Figure 3: Results over randomly generated matrices: area of
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