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Abstract

Evolutionary tournaments have been used as a tool for com-
paring game-playing strategies. For instance, in the late
1970’s, Axelrod organized tournaments to compare strate-
gies for playing the iterated prisoner’s dilemma (PD) game.
While these tournaments and later research have provided
us with a better understanding of successful strategies for
iterated PD, our understanding is less clear about strategies
for playing iterated versions of arbitrary single-stage games.
While solution concepts like Nash equilibria has been pro-
posed for general-sum games, learning strategies like ficti-
tious play may be preferred for playing against sub-rational
players. In this paper, we discuss the relative performance of
both learning and non-learning strategies in different popula-
tion distributions including those that are likely in real-life.
The testbed used to evaluate the strategies includes all pos-
sible structurally distinct 2×2 conflicted games with ordinal
payoffs. Plugging head-to-head performance data into an an-
alytical finite-population evolution model allows us to eval-
uate the evolutionary dynamics of different initial strategy
distributions. Two key observations are that (a) the popular
Nash strategy is ineffective in most tournament settings, (b)
simple strategies like best response benefit from the presence
of learning strategies and we often observe convergence to a
mixture of strategies rather than to a single dominant strat-
egy. We explain such mixed convergence using head-to-head
performance results.

Introduction
Learning and reasoning in single or multistage games have
been an active area of research in multiagent systems (Bowl-
ing & Veloso 2001; Claus & Boutilier 1998; Littman 1994).
In particular, iterative versions of single-stage bimatrix
games have been used to evaluate learning strategies by
multiagent researchers. Particular games like the Prisoner’s
Dilemma (PD) have received widespread attention both in
game theory and in multiagent systems. Solution concepts
like Nash Equilibria (NE) has been propounded as desired
goals for rational play though there exists several criticism
of this view. Though it follows from its definition that an
opponent of a Nash player cannot do better than playing its
component of NE, playing a Nash strategy is not necessar-
ily the best option against a non-Nash player. A learning
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strategy that tries to predict the move of the opponent and
optimally responds to that may be a better option against
sub-rational players.

We are interested in comparing learning and non-learning
strategies on a standardized set of games against a possible
collection of opponents. The testbed we adopted is a set of
all structurally distinct conflicting 2x2 games with ordinal
payoffs (Brams 1994). We assume that players have com-
plete information, i.e. each player is aware of both its own
and its opponent’s payoff matrix. We described the testbed
in our earlier paper where we focused on evaluating strate-
gies in a round robin tournament (Airiau & Sen 2003). The
results presented then clearly showed that learning strate-
gies are outperforming non-learning strategy. Each strategy
was represented by one player, assuming the strategy distri-
bution over a population is static and uniform, which was
unrealistic. To address this problem, we study the results
of evolutionary tournaments in a potentially large, but finite,
population. We consider a fixed population of agents. In
each generation, the agents are playing a round robin tour-
nament using a fixed strategy. Based on the results of the
tournament, each agent can change strategy for the next gen-
eration. This evolutionary setting reflects the desire of a ra-
tional agent to adopt a better performing strategy. We de-
velop a finite-population analytical model for capturing this
evolutionary process and study the population dynamics for
different initial agent strategy distributions.

In this paper, we are first going to present the represen-
tative strategies chosen. Then, we present the evolutionary
tournament in which round robin matches are played to eval-
uate head to head performance and after, a selection mech-
anism is used to generate strategy distribution of the next
generation. In the next section, we present an analytical
model of our selection mechanism. Finally, we discuss the
outcome of evolutionary tournaments with different initial
strategy distributions, making different assumptions about
the sophistication of the agents in the population.

Strategies
We chose the strategies used in our tournament from well-
known learning and non-learning strategies (and one that
was the winner in a local competition between students):
Random: The action played is chosen from an uniform dis-

tribution over its action space. The use of this strategy can



also model a collection of other strategies represented in
the population.

MaxiMin(M): The action chosen is the one that produces
maximum lower bound payoff.

Nash(N): One of the Nash equilibrium strategies (Nash
1951) is played. A strategy combination(π1, . . . , πn) is
in Nash Equilibria (NE) if∀i, ri(π1, . . . , πi, . . . , πn) ≥
ri(π1, . . . , π

′
i, . . . , πn), whererk(π1, . . . , πn) is the pay-

off of player k and π′
i is any other valid strategy fori.

This means at NE, no player has incentive to unilaterally
deviate from its current strategy. For non-communicating
rational players a strategy combination at NE is stable. To
compute the different Nash equilibria for the games, we
used Gambit1. Out of the 57 games used in the testbed, 6
games have multiple Nash equilibria. Since it is unclear
how non-communicating Nash players will choose from
multiple equilibria, we randomly selected the Nash equi-
librium played.

Tit for tat (TFT): This strategy is famous in the context of
the prisoner’s dilemma and the tournament ran by Axel-
rod (in this strategy, the player will play cooperate if and
only if the opponent played cooperate in the previous it-
eration, hence the name “tit for tat”). In the context of our
tournament, a player using the tit for tat strategy will play
the action that the opponent played during the previous
iteration. This strategy is purely reactive and takes into
account only the previous decision of the opponent.

Best Response to previous action (BR):A (BR) player
can be viewed as a sophisticated TFT player: instead of
playing the last actioni of the opponent, the player re-
sponds with the best response toi. In other words, the
player playing the best response strategy assumes that its
opponent is playing a pure strategy and answers optimally
to it. BR is also purely reactive and models the opponent
as a player either using a pure strategy or one with a strong
sense of inertia, i.e. aversion to change.

Fictitious Play (FP): This is the basic learning approach
well-known in game theory literature (Fudenberg &
Levine 1998). The player keeps a frequency count of its
opponent’s decisions from a history of past moves and
computes the mixed strategy being played by its oppo-
nent. It then chooses its best response to that mixed strat-
egy, with the goal of maximizing expected payoff. This
player models its opponent’s behavior and tries to respond
in an optimal way. If the opponent is playing a fixed pure
or mixed strategy, FP will be able to respond optimally.

Best response to Fictitious play (BRFP):This strategy
assumes that the population is composed of many learn-
ing agents using the FP strategy. The player models its
opponent as a FP player: knowing its own history of
actions, it can determine what an agent using FP would
do, and it computes the best response to this action. We
incorporated this strategy assuming that given that FP is a
reasonable learning strategy to play, a player can choose
to adopt a strategy to respond optimally to FP.

1http://www.hss.caltech.edu/gambit

Saby: The last strategy that we have used was the one that
won a local tournament between students in a multia-
gent systems course. This learning strategy assumes that
the opponent is likely to respond to my moves and tries
to model the probability distribution of the opponent’s
moves given my last move. This is akin to a 2-level player
compared to a 1-level player in our prior work (Mundhe &
Sen 2000). For its own actioni, in the last time period, the
agent first calculates the conditional probability of action
k of the opponent to be proportional to the average util-
ity the opponent received for choosing actionk the lastt
times it playedk when this player playedi in the previous
time step. These numbers are normalized to obtain the
conditional probabilities the opponent are expected to use
in choosing action in the next iteration. The agent then
plays a best response to that probability distribution.

We believe that probably not all of these strategies would
be used in an open environment. It seems reasonable to as-
sume that simple strategies such as R, TFT, BR and M would
be used. Because of the popularity of the concept of the
Nash equilibrium and as the basic learning approach, Nash
and FP are also likely to be used. We consider Saby as strat-
egy that is used by a minority of players. We did not con-
sider pure strategy players, i.e., players who always chose a
specific action, as the semantics of any action varies consid-
erably over the different games.

In our study, we are interested in two criteria for compar-
ing the strategies: the complexity of the strategy and whether
learning is used.

Simple Vs Complex strategies:Random (R), Tif For Tat
(TFT), Best Response (BR) and MaxiMin (M) are con-
sidered to be simple strategies. The random strategy can
be interpreted as the ensemble of behavior of a collection
of different lesser known strategies as well as behavior
exhibited by inconsistent players. On the other hand, We
hypothesize that playing Nash equilibrium (N) is a com-
plex strategy since computation of a Nash is NP complete.
Also, fictitious play (FP), Best Response to FP and Saby
are considered to be complex strategy

Learning Vs Non-learning strategies: Random, Nash and
MaxiMin are static strategies which do not respond to the
opponent. TFT and BR are simple, purely reactive strate-
gies, that can be considered as a primitive learning strate-
gies: an agent using TFT mimics the last action of the
opponent. Instead of mimicking the last action, an agent
using BR plays the best response to this action. The re-
maining strategies are learning strategies. The strategy
FP is the basic learning approach. If we assume that many
agents are using this basic learning approach, it is possible
to use a strategy which plays optimally against FP, hence
the use of BRFP. We introduced Saby strategy which also
uses learning.

Tournament Structure

In this section, we describe the underlying tournament struc-
tures given the set of matrices and a selection of strategies.



Round Robin Play

Each player has complete information about the game, in-
cluding the payoff matrices of its own as well as that of its
opponent. The players are not allowed any other means of
communication apart from expressing their action at each
iteration.

All agents in the population play with all other agents.
This round robin form of play allows us to obtain a head-
to-head performance between any two strategies and also to
compute relative performance of any agent given an arbi-
trary strategy mix in the population. In round robin play,
each player plays with each of the other players and itself
over all 57 matrices of the testbed. The exhaustive set of
57 possible type of matrices represent all the distinct con-
flicting situation with ordinal payoffs. 51 of these games
have a unique Nash equilibrium (9 of these games have a
mixed strategy equilibrium and 42 have pure strategy equi-
librium), the remaining 6 have multiple equilibria (two pure
and a mixed strategy). Of the 42 games that have a unique
pure strategy Nash equlibrium, in 4 games the Nash equi-
librium is not pareto-optimal. To eliminate the bias of the
construction of the matrices (playing as a column player is
preferable), each player plays every other player both as a
column and as a row player for each of the matrices. To
collect meaningful results, each game is iterated 100 times.
Because the action space is small, we assumed that 100 iter-
ations are reasonable for players that use a learning approach
to adapt their strategies. To evaluate the stable performance
of the players, we accumulate the payoffs of the players only
over the last 50 iterations of the game. The score of one
player is the cumulative score obtained over all the games
played against all other players.

Evolutionary Tournament

The evolutionary tournament is run over a fixed population
of agents. During each generation, agents in the population
engage in round robin play and do not change their strat-
egy. We assume that players have no prior knowledge of
the strategy used by its opponent during a game. However,
at the end of round robin play, the players can observe the
strategy used by all the other players and their scores. Based
on this information, the agents can then decide to change
their strategy. We assume that they have knowledge of and
can execute all strategies. We have used a modification of
the tournament selection algorithm (Deb & Goldberg 1991)
to determine new strategies to be used by the agents in the
next generation. As described in Algorithm 1, each agent
picks two agents with a probability proportionate to their
score (which has a flavor of fitness proportionate selection),
and then it decides to adopt the strategy of the better of the
two (tournament selection). This variant promotes strategies
which are doing well in the population and corresponds to
realistic scenarios where it is more likely that relatively suc-
cessful agents will be noticed and their behavior imitated by
others in the population. Note that this particular form of
selection produces an even stronger selection bias for higher
performing individuals than produced by fitness proportion-
ate (because it does not allow head to head comparisons,

small absolute differences are not recognized) or tournament
(because parents are picked randomly rather than being bi-
ased by performance) selection alone.

Algorithm 1 Tournament Selection Algorithm.

strat(i) denotes the strategy of playeri
score(i) denotes the cumulative results obtained by
playeri during one instance of the tournament
for N iterationsdo

for every player kdo

Prob(pick k) =
score(k)∑
i score(i)

for every player kdo
pick randomlyρ0 according to Prob
pick randomlyρ1 according to Prob
newstrat(k)← strat(argmaxi∈{0,1}(score(ρi)))

for every player kdo
strat(k) = newstrat(k)

A strategy which performed well in a generation is likely
to increase in proportion at the expense of below-average
strategies,

Analytical model of the selection mechanism
We have developed an analytical model for a finite popula-
tion which outputs the strategy distribution of the next gen-
eration, given the current strategy distribution, the head to
head results between the strategies and the number of agents.
The model saves us the cost of running Algorithm 1 to ob-
tain the dynamics of the system.

Let I denote the number of strategies in the domain. In
our paper, we haveI = 8. Let Ni be the number agents
of type i, and we haveN =

∑I
i=1 Ni, is the total number

of agents. LetUi,j denotes the average payoff received by
agent of typej playing against agent of typei. This average
is computed over 10 round robin tournaments over a popula-
tion containing one agent per strategy (see Section ). Given
this result, we can compute the average payoffSi received
by an agent of typei playing against all other agents includ-
ing itself:

Si =
∑

1≤j≤I

Nj

N
∗ Ui,j .

Let P (l, i) denote the probability that agentl will choose
to evolve to an agent of typei in the next generation and
N1(i) denote the number of agents of typei in the next gen-
eration. Then, since the agent’s decision is not dependent of
other agent’s decision, we have

N1(i) =
N∑

l=1

P (l, i) = N × P (l, i).

P (l, i), the probability that agentl will choose strategy
i, is the sum of two probabilities in the tournament selec-
tion. The first is the probability thatl picks two agents of
the same typei in the tournament selection, in which case
the ith strategy will be chosen with certainty. The second



Rank Player
average score

per game
1 Saby 2.99
2 BRFP 2.98
3 FP 2.96
4 BR 2.94
5 Nash 2.94
6 MaxMin 2.81
7 TFT 2.75
8 R 2.44

Table 1: Strategy ranking from round robin play, one player
per strategy. Average score is the average over all games
played with other players.

is the probability of choosing one agent with strategyi and
the other agent with strategyj such thatj 6= i andSi > Sj .
If Si = Sj theni is chosen with probability0.5. Hence we
have:

P (l, i) = C(i, i)× 1 +
I∑

j=1, 6=i

C(i, j)× {P (Si > Sj)

+P (Si = Sj)× 0.5}
where,C(i, j) is the probability that an agent with strategy
i and an agent with strategyj are chosen.

C(i, j) =




Nifi×(Ni−1)fi

N(N−1)f
2 if j = i

2×Nifi×Njfj

N(N−1)f
2 otherwise,

wherefi andf̄ are average score by the agents with strategy
i and average score of the all agents.

We defineP (Si > Sj) to be the probability that an agent
with strategyi will have better score compared to an agent
with strategyj. We approximate it as the proportion of
times agents with strategyi have done better compared to
the agents with strategyj. Using the valuesSi computed,
we can find the values of the probabilitiesP (Si = Sj) and
P (Si > Sj) .

Among other things the analytical model provides us the
following capabilities:

• It enables us to greatly reduce the cost of calculating the
outcome of the evolutionary process by substituting actual
tournaments with simple calculations.

• It enables us to compute outcomes for arbitrary initial
configurations and arbitrary strategies given head-to-head
results between these strategies.

Results
Head to Head results among the strategies
The results of round robin play in a population with one
player per strategy provides us with an unbiased relative
performance of the strategies. The rankings of the differ-
ent strategies together with their payoffs, averaged over all

interactions, are presented in Table 1. Learning strategies
are performing better than non learning strategies in this set-
ting. Analysis of comparable results (without the MinMax
player) can be found in (Airiau & Sen 2003). Though these
results are interesting, they do not provide significant insight
about the dynamics of a population when agents are allowed
to change strategies, leading to a non-uniform distribution
of agents.

To better understand the dynamics of the evolutionary
tournaments, we present in Table 2 the head to head results.
Each entry is the average score of the row player when it
played against the column player. An entry in the diagonal is
the result of self play, which is critical in a population where
many agents use the same strategy. The relative head-to-
head performance of the strategies are recorded in Table 3.
Each entry is the difference between the row player and the
column player: if the entry is positive, the row player wins
the head to head confrontation.

Evolutionary Tournament results
We have studied the evolution of various populations with
different strategy distribution. We have focused on two main
population types based on the constituent strategies: the first
contains agents with only simple strategies, the second con-
tains all of the representative strategies.

We have also studied the effect of adding more sophisti-
cated agents (N and FP for the simple population, and BRFP
and Saby for the other population) to these populations. We
believe that in the real-world, at least at the outset, more so-
phisticated strategies are likely to be used by only a minority
of players.

All the figures have been generated using the model pre-
sented in Section . We have compared the model with actual
runs of the evolutionary tournament and the corresponding
population dynamics match closely. The only, relatively in-
frequent, mismatches resulted from sampling of strategies
with extremely low selection probabilities.

Population of simple agents We first consider a popula-
tion of simple agents that can use either of the following
strategy: Random, TFT, BR, and M. Though one can ar-
gue, we consider TFT to be a rudimentary learning scheme
since the strategy mimics the behavior of the opponent. BR
can be seen as the next step of the logical progression and
a slightly more sophisticated ‘learning’ method since it pre-
dicts that the opponent will repeat its last move and hence
plays the best response to that. Interestingly, the population
converges to the use of this strategy, as shown in Figure 1,
even when only a single agent is playing BR and each of the
other strategies, i.e., TFT, Random and MaxMin is used by
1000 agents. The proportions of Random and TFT decrease
rapidly due to the presence of MaxMin (referring back to 3,
we find that MM gains a lot at the expense of R and TFT).
BR can exploit both R and MM agents but is exploited by
the TFT agents. Only when the TFT agents are eliminated
from the population that the proportion of BR starts to rise.
When we experimented with an initial uniform distribution
of these strategies, the convergence to BR is faster.

The above scenario conforms to the following general



R TFT N BR FP BRFP MM Saby
R 2.539766 2.5520468 2.383041 2.45731 2.4391813 2.3766081 2.3169591 2.4666667

TFT 2.5140352 2.588304 2.916959 2.8543859 2.7251463 2.888304 2.5730994 2.9538012
N 2.937427 2.9321637 2.939766 2.9444447 2.9356725 2.9614034 2.9076023 2.962573

BR 2.883041 2.732164 2.9397662 2.9157894 3.011111 2.940351 3.0695906 3.031579
FP 2.9660819 2.9883041 2.908772 2.974854 2.9532166 2.9099417 3.0391812 2.9315789

BRFP 2.8818712 2.849123 2.9245615 3.1163745 3.1777778 2.9239767 2.852047 3.097076
MM 2.9894738 3.1415205 2.7146199 2.71462 2.7479534 2.7678363 2.631579 2.7608187
Saby 2.9128656 3.0204678 2.930994 2.9988303 3.0649123 2.94269 3.0105262 3.0005846

Table 2: Head to head results.

TFT -0.03801155
N 0.55438614 0.015204668

BR 0.42573094 -0.12222195 -0.004678488
FP 0.52690053 0.26315784 -0.02690053 -0.03625703

BRFP 0.5052631 -0.039180994 -0.03684187 0.17602348 0.2678361
MM 0.6725147 0.5684211 -0.19298244 -0.35497046 -0.29122782 -0.084210634
Saby 0.44619894 0.0666666 -0.031579018 -0.0327487 0.13333344 -0.15438604 0.24970746

R TFT N BR FP BRFP MM

Table 3: Relative performance: difference between the head to head score of the row player and the column player.

trend observed in a number of other scenarios: the initial
dominance of one strategy,ID, eliminates the set of strate-
gies it exploits the most,E(ID), allowing the emergence of
some ultimately dominant strategy,UD, such that the fol-
lowing conditions hold:

• ∃S| (S ∈ E(ID))∧(UD ∈ E(S)), i.e., there exists some
strategy that is dominated byID and in turn dominates
UD.

• ID ∈ E(UD), i.e.,ID is exploited by UD,

As we typically do not have strategies that exploit all strate-
gies or are not exploited by any of the other strategies, we
do not find monotonic growth of one strategy that takes over
the population. Rather, we have the more complex scenario
of an early dominant strategy eliminating the obstacles to
the ultimate dominance of another strategy. So, the early
winner, in effect, unknowingly creates an environment con-
genial for its own failure and ultimately extinction. In some
later cases we see not an extinction but a see-saw “battle”
of survival betweenUD and ID. Such a situation arises
when one of these strategies dominates the other only when
they are in the minority in the population! In these cases,
we observe a cyclical behavior in the system, with theUD
and theID strategies taking the upper hand in successive
generations.

In the second set of experiments, we introduce 10 Nash
agents in a population containing 1000 agents each using R,
TFT, MM, and BR (see Figure 2 for results). We have men-
tioned that if N agent were not presented in such a situation,
the population will quickly convergence to BR. When intro-
duced even in small numbers, the Nash strategy survives by
exploiting mainly random, then M and TFT (note that this
situation does not conform to the trend of the ultimate win-
ner being initially exploited by one of the strategies dom-

inated by the initial winner). When only BR remains, the
slight difference in favor of N for the head to head as for self
play) makes the population converge to N.

Next, we perturbed the initial population in the second ex-
periment by adding few learning agents using the FP strat-
egy. The first interesting fact in Figure 3 is that initially the
proportion of FP is increasing faster than the proportion of
Nash. This is mainly due to the fact that FP exploits TFT
agents much better than Nash does (see Table 3). After that,
although Nash performs marginally better than FP against
BR (gain of 0.0047 vs a loss of 0.036), FP exploits Nash
and performs better in self play. Because of the presence of
a learning strategy which more efficiently exploits the Nash
strategy than the simple BR strategy, a more complex strat-
egy, Nash, is ultimately eliminated. Once N is eliminated,
we see a period of changing fortunes between BR and FP.

The population, left with two strategies, evolves to a dy-
namic equilibrium with a mix BR and FP strategies. This
might appear incongruous with the head to head results since
BR is winning against FP by 0.036. In self play, however, the
FP agents are performing better (2.953 against 2.916). This
is a very important factor, often determining the ultimate
winners in evolutionary tournament. If a strategy exploits
another, but fails to generate sufficient payoff playing itself,
its performance will decrease as it becomes more numerous
in the population. Thus it will fail to become dominant in
the population. In Figure 4, we plotted the payoff obtained
by FP and BR agents in a population consisting of only these
two strategies in varying proportions. The head to head re-
sults provide the values used to compute the linear payoff
functions, for an agent using strategyi : fihii+(1−fi)hij ,
wherej is the other strategy in the population,fi is the pro-
portion of the population playing strategyi andhij is the
(i, j) entry in Table 2. The lines intersects close to an equal
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Figure 1: Evolutionary Tournament with 4 strategies (R,
TFT, BR and MaxMin).

proportion of the two strategies in the population: this dis-
tribution would be a fixed point if sampling errors were not
present. The actual selection mechanism used determines
the convergence behavior of the population. The biased tour-
nament selection mechanism we have used produces rela-
tively large swings of the population proportions over suc-
cessive generations that spans both sides of the fixed point
proportion. A selection mechanism with less strong bias will
converge either to the fixed point or to a dynamic equilib-
rium with narrower cycles.

Representative population We next consider a popula-
tion containing all the strategies that are likely to be present
in a large population: we have added to the 4 simple strate-
gies (R, TFT, BR, M) the Nash strategy and the basic learn-
ing strategy FP. The result of the evolution, with uniform
initial distribution of strategies, is presented in Figure 5: the
population converges to a mixed strategy of FP and BR, as
observed before in the perturbation of the simple strategy. It
is interesting to notice that the proportion of Nash is first in-
creasing, gaining over R. But then, as previously mentioned,
FP and BR performs better than N. There are two important
observations from this representative population:

• In a heterogeneous population a learning strategy like FP
is preferable to the more commonly advocated Nash play.

• A relatively simple learning mechanism like BR can ben-
efit from the presence of more sophisticated learning
schemes like FP and outlive more complex strategies like
Nash in the long run.

Next we perturbed this population by introducing one
agent using the Saby strategy. The evolution is presented
in Figure 6, and the population converges to a mix strategy
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Figure 2: Evolutionary Tournament with 5 strategies (R,
TFT, BR, MaxMin and Nash).

distribution of Saby and BR. The proportion of Saby rise
when there are no more Nash agents (Saby loses in head-to-
head play against Nash). This time again, the introduction
of a more sophisticated agent yield the disappearance of a
complex strategy (FP) while a more simple strategy, BR,
thrives. A similar analysis as in Figure 4 for populations
of only Saby and BR agents show that the fixed point is for
a proportion of≈ 72.5% of Saby agents.

Finally, we ran an experiment starting with a 1000 agents
for R, TFT, BR, M, Nash, FP each, and we introduce one
Saby agent and one BRFP agent. The outcome of the evo-
lution (Figure 7) is a mixed strategy of BR, Saby and BRFP.
BR is marginally present (around1% of the population). The
great majority of agents are using BRFP. From these last two
results, we conclude that lesser known, learning players can
grow to dominate the populations if agents adopt more suc-
cessful strategies.

Conclusion and future work
We have evaluated several representative learning and non-
learning strategies in a round-robin tournament format by
playing two-player two-action iterative single stage games.
The set of games used represents all the conflicting situa-
tions that can occur in a2×2 game. The learning algorithms
including fictitious play and a best response to it outperform
non-learning players like the oft-quoted Nash player, which
is a rational strategy for non-repeated games. Our results
corroborate our hypothesis that evaluated over a large set
of possible interaction scenarios, learning players not only
have the potential, but do actually outperform non-learning
players.

From our results it is clear that the learning players will
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Figure 3: Evolutionary Tournament with 5 strategies (R,
TFT, BR, MaxMin, Nash and FP).

typically outperform non-learning players when there is a
variety of players in the tournament. We also notice that the
learning players performed better in self play, an important
consideration in evolutionary tournaments.

Head to head comparison of strategies enables us to study
the evolution of the strategy distribution in a potentially
large population of agents. The selection mechanism we
used is a variant of the tournament selection. We developed
a finite-population model to compute analytically the strat-
egy distribution of the next generation. The analytical model
gives us the ability to calculate the eventual population dis-
tribution given starting distribution of strategies without hav-
ing to run costly, time-consuming experiments.

This model was used to study the evolution of likely popu-
lations of agents: a population of agents using simple strate-
gies and a population of agents using representative strate-
gies including a more complex learning strategy and playing
a Nash equilibrium. The results indicate that the outcome of
the evolution is dependent upon the initial strategy distri-
bution. It is interesting to notice that a population is able
to adopt a more sophisticated strategy, even though initially
used by a minority of the agents.

The assumption that any agent can observe the strategy
of any other agent at the end of the round robin tournament
may not be realistic. One agent may only reveal its strategy
to a small number of other agents instead of publishing it
to the entire society. We are planning to study this social
network effect on the evolution of the strategy distribution.
We also plan to study the effects of other selection schemes
on the population dynamics.
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Figure 6: Evolutionary Tournament with 7 strategies (R,
TFT, BR, N, M, FP and Saby).
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