
DEEP LEARNING 2
FROM THEORY TO PRACTICE

Alexandre Vérine,
Research Fellow, École Normale Supérieure Paris

Double Licence Intelligence Artificielle et Sciences des Organisations
3e année de Licence

Université Paris-Dauphine, PSL

November 26, 2024

SEMESTER SCHEDULE (TEMPORARY)

▶ 17/09: Fundamentals of Deep Learning
▶ 24/09: TP1 Classification - Introduction to PyTorch
▶ 01/10: In a Deep Learning Model + Techniques to Improve Deep Learning Training
▶ 08/10: TP2 Autoencoders - Hyperparameter Tuning
▶ 15/10: Advanced Deep Learning Techniques
▶ 22/10: TP3 Image Segmentation - From CPU to GPU and Parallelization
▶ 29/10: No Class

ALEXANDRE VÉRINE DEEP LEARNING 2 1 / 247

SEMESTER SCHEDULE (TEMPORARY)

▶ 05/11: Graded Individual Practical Work
▶ 12/11: TP4 Deep Reinforcement Learning - From Notebook to Script
▶ 19/11: TP5 Adversarial Attacks - Importance of Git
▶ 26/11: Project Presentation - Group Formation
▶ 03/12: Group Session - Help with Projects
▶ 10/12: Project Presentation

ALEXANDRE VÉRINE DEEP LEARNING 2 2 / 247

AI 101: FROM FUNDAMENTALS TO DEEP LEARNING

1 Introduction to Artificial Intelligence . 10

1.1 Deep Learning in the AI family . 10
1.2 Representation Learning . 15

2 Neural Networks Fundamentals . 20
2.1 Neurons . 21
2.2 Layers . 23
2.3 Activation Functions . 25

3 The Multi-layer Perceptron (MLP) . 34

3.1 The first Deep Learning Model . 35
3.2 Stochastic Gradient Descent . 36
3.3 Back-propagation . 39
3.4 Example : Image classification of handwritten digits from A to Z . 61

ALEXANDRE VÉRINE DEEP LEARNING 2 3 / 247

IN A DEEP LEARNING MODEL : FROM NEURAL NETWORKS TO TRANSFORMER MODELS

1 Convolutional Neural Networks . 69
1.1 The Two dimensional Convolution . 70
1.2 CNN : Convolutional in a network Networks . 78
1.3 CNN in practice: CIFAR 10 . 85

2 Recurrent Neural Networks . 105
2.1 Recurrent Block . 106
2.2 LSTM and GRU . 108

3 Transformer and Attention Mechanism . 118
3.1 Self-Attention Mechanism . 119
3.2 Transformers Model . 123

4 TP2: Build and use an autoencoder . 125
4.1 Formal introduction of an autoencoder . 125

ALEXANDRE VÉRINE DEEP LEARNING 2 4 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING

1 Techniques to Improve Deep Learning Training . 132

1.1 Data Augmentation . 133
1.2 Learning Rate Scheduling . 134
1.3 Early Stopping . 135
1.4 Gradient Clipping . 136
1.5 Weight Initialization . 137
1.6 Regularization . 139
1.7 GPU Acceleration . 140

ALEXANDRE VÉRINE DEEP LEARNING 2 5 / 247

DEEP LEARNING AND APPLICATIONS

1 Learning to act with Deep Reinforcement Learning . 142

1.1 Deep Q-Learning . 142
1.2 The Cheese Game . 144

2 Synthetic Data Generation with Generative Adversarial Networks . 149

2.1 GANS Models . 149
2.2 MNIST Generation . 151

3 Sentiment Analysis with Transformers and GRU . 154

3.1 Bert . 154
3.2 Sentiment Analysis . 157

4 Density Estimation with Normalizing Flows . 162

4.1 Estimating Density . 162
4.2 Normalizing Flows . 163

5 Image Segmentation with U-Net . 175

5.1 Image Segmentation . 175
5.2 U-Net Architecture . 178

ALEXANDRE VÉRINE DEEP LEARNING 2 6 / 247

MANAGING DEEP LEARNING PROJECTS

1 Why Notebooks are not enough . 181

2 Modularity . 184

3 Local Environment Setup . 190

4 Running Experiments . 195

5 Monitoring Experiments . 201

6 Versioning your Code . 206

ALEXANDRE VÉRINE DEEP LEARNING 2 7 / 247

PROJECT PRESENTATION

1 Mini Project 2: Adversarial Attacks . 213

1.1 Principle of Adversarial Attacks . 213
1.2 Attacks . 224

2 Final Project: Generative Adversarial Networks . 228

2.1 Introduction to Generative Models . 228
2.2 Precision and Recall in Generative Models . 233
2.3 Generative Adversarial Networks . 239
2.4 Final Project: Tuning Quality and Diversity in GANS . 243

ALEXANDRE VÉRINE DEEP LEARNING 2 8 / 247

Part I

AI 101: FROM FUNDAMENTALS TO DEEP LEARNING

ALEXANDRE VÉRINE DEEP LEARNING 2 9 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING IN THE AI FAMILY

In general, among all the class of AI algorithms,
we make the difference between 3
sub-categories :
▶ Artificial Intelligence : human designed

program and...
▶ Machine Learning : human designed

features with learned mapping such as
Support Vector Machine, Kernels methods,
Logistic Regression and ...

▶ Deep Learning: Learned features with
learned mapping such as Multilayer
Perceptron, Convolutional Networks, ...

Figure. Subsets of Artificial Intelligence

ALEXANDRE VÉRINE DEEP LEARNING 2 10 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING IN THE AI FAMILY

In the field of Artificial Intelligence, the fundamental objective is to find a function f
that can perform a desired task. This function can either be set by a human or can
be learned through training.

For example, in the context of a binary classification task, the goal is to determine
f (x) such that f (x) = 0 when the label of x is 0 and f (x) = 1 when its label is 1. The
choice of AI model impacts the expressivity of the function f .

For example, a logistic regression model uses a linear function to make decisions,
where f (x) = sgn(Ax + b). The expressivity of the model can be increased by using
more complex functions, such as polynomials or radial basis functions.

ALEXANDRE VÉRINE DEEP LEARNING 2 11 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
CLASSIFICATION TASK

Figure. 2D classification for different AI models.
ALEXANDRE VÉRINE DEEP LEARNING 2 12 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
THE UNIVERSAL APPROXIMATION THEOREM

The Universal Approximation Theorem is a fundamental result in the field of artificial neural networks. It states that a
deep learning model can approximate any function.

Theorem 1 (Universal Approximation Theorem)

Let X ⊂ Rd be compact, Y ⊂ Rm, f : X → Y be a continuous function and σ : R→ R be a continuous real function.
Then σ is not polynomial if and only if for every ϵ > 0, there exist k ∈ N, A ∈ Rk×d, b ∈ Rk and C ∈ Rm×k such that

sup
x∈X
∥f (x)− g(x)∥ ≤ ϵ

where g(x) = C× σ(Ax + b).

ALEXANDRE VÉRINE DEEP LEARNING 2 13 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
CLASSIFICATION TASK

Figure. 2D classification for small Neural Network.
ALEXANDRE VÉRINE DEEP LEARNING 2 14 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
REPRESENTATION LEARNING

How does deep learning work in practice ?

Deep learning is a subset of representation learning that uses deep neural networks to learn meaningful representations
of data. In deep learning, representations are learned through a hierarchy of nonlinear transformations, where each
layer of the network builds upon the previous one to extract increasingly abstract and higher-level features from the
input data.

ALEXANDRE VÉRINE DEEP LEARNING 2 15 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Consider the task of recognizing objects in images. A traditional approach would be
to hand-engineer features such as edge detectors and color histograms that can be
fed into a classifier.
However, with deep learning representation learning, the model learns to
automatically discover these features from the data. The network might start by
learning simple features such as edges and color blobs in the first layer, then build
upon these to learn more complex features such as parts of objects in subsequent
layers, until finally, the final layer outputs a probability distribution over classes of
objects.
In this way, deep learning of representation enables the model to automatically
learn a rich and meaningful representation of the data, without the need for manual
feature engineering.

Figure. MNIST

ALEXANDRE VÉRINE DEEP LEARNING 2 16 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Figure. MNIST : Layer 0 Figure. MNIST : Layer 1

Figure. MNIST : Layer 2
ALEXANDRE VÉRINE DEEP LEARNING 2 17 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Figure. MNIST : Layer 0

Figure. MNIST : Layer 2
ALEXANDRE VÉRINE DEEP LEARNING 2 18 / 247

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING AND NEURAL NETWORKS

Ok, Deep Learning is a model that learns a good representation of the feature. But how?
▶ How does it work ?
▶ How can we build a model ?
▶ How does it learn ?

ALEXANDRE VÉRINE DEEP LEARNING 2 19 / 247

NEURAL NETWORKS FUNDAMENTALS

Typically, a neural network is defined as a computational model composed of interconnected nodes, organised into
layers, that perform transformations on input data.

..

.

Let’s see what the interconnected nodes, the layers and the transformations are.ALEXANDRE VÉRINE DEEP LEARNING 2 20 / 247

NEURAL NETWORKS FUNDAMENTALS
NEURONS

If we consider that the Neural Network is a function f : Rd → Rm:

x0
0

x1
0

x2
0

x3
0

x4
0

xd−4
0

xd−3
0

xd−2
0

xd−1
0

xd0

x0
1

x1
1

x2
1

x3
1

x4
1

x5
1

x6
1

x7
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

x6
2

x7
2

x0
3

x1
3

x2
3

x3
3

..

.

A Neuron is a processing unit that receives input, performs a computation, and produces an output. Here, the inputs
are xi−1 and the output is xk

i .

ALEXANDRE VÉRINE DEEP LEARNING 2 21 / 247

NEURAL NETWORKS FUNDAMENTALS
NEURONS

For example, with an image dataset, the image can be flattened:

x0 = [0.00, 0.00, . . . , 0.00, 0.99, 0.07 . . . , 0.00, 0.00] ∈ [0, 1]d

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.99 0.91 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.45 0.18 0.66 0.00 0.00

0.00 0.00 0.00 0.99 0.07 0.00 0.00 0.99 0.00 0.00

0.00 0.00 0.30 0.44 0.00 0.00 0.00 0.99 0.00 0.00

0.00 0.00 0.33 0.00 0.00 0.00 0.99 0.00 0.00 0.00

0.00 0.00 0.33 0.99 0.99 0.77 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∈ [0, 1]d/2×d/2

ALEXANDRE VÉRINE DEEP LEARNING 2 22 / 247

NEURAL NETWORKS FUNDAMENTALS
LAYERS

A layer i is defined by a matrix
Ai ∈ Rki−1×ki , a vector bi ∈ Rki and a
nonlinear function σi : R 7→ R. The
transformation made by a layer is:

xi = σi (Aixi−1 + bi) .

The non-linear function σi the
activation function.

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 23 / 247

NEURAL NETWORKS FUNDAMENTALS
LAYERS

A layer i is defined as a matrix
Ai ∈ Rki−1×ki , a vector bi ∈ Rki and a
nonlinear function σi : R 7→ R. The
transformation made by a layer is:

xk
i = σi

 ki∑
l=1

[Ai]l,k xi−1 + [bi]k

 .

The non-linear function σi the
activation function.

x0
0

x1
0

x2
0

x3
0

x4
0

xd−4
0

xd−3
0

xd−2
0

xd−1
0

xd0

x0
1

x1
1

x2
1

x3
1

x4
1

x5
1

x6
1

x7
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

x6
2

x7
2

x0
3

x1
3

x2
3

x3
3

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 24 / 247

NEURAL NETWORKS FUNDAMENTALS
ACTIVATION FUNCTIONS

The activation functions play a crucial role in the implementation of deep neural networks, as they allow them to
approximate any continuous function, as stated by the Universal Approximation Theorem. We can list some activation
function that are commonly used :
▶ Linear
▶ Sigmoid
▶ Hyperbolic Tangent
▶ Rectified Linear Unit (ReLU)
▶ Leaky Rectified Linear Unit (Leaky ReLU)
▶ Exponential Linear Unit (ELU)
▶ Sigmoid-Weighted Linear Unit (Swish)
▶ Softmax

ALEXANDRE VÉRINE DEEP LEARNING 2 25 / 247

NEURAL NETWORKS FUNDAMENTALS
LINEAR

▶ Linear activation Function:

σ(x) = x

▶ Final activation
▶ Use case : Regression

−2 −1 0 1 2
−2

−1

0

1

2

Linear

ALEXANDRE VÉRINE DEEP LEARNING 2 26 / 247

NEURAL NETWORKS FUNDAMENTALS
SIGMOID

▶ Sigmoid Function:

σ(x) =
1

1 + e−x

▶ Final activation
▶ Use case : Classification

−2 −1 0 1 2
−2

−1

0

1

2

Sigmoid

ALEXANDRE VÉRINE DEEP LEARNING 2 27 / 247

NEURAL NETWORKS FUNDAMENTALS
SOFTMAX

▶ Softmax Function:

σ(xk) =
exk∑ki
i=1 exi

▶ Final activation
▶ Use case : Multi-class

Classification

ALEXANDRE VÉRINE DEEP LEARNING 2 28 / 247

NEURAL NETWORKS FUNDAMENTALS
HYPERBOLIC TANGENT

▶ Hyperbolic Tangent

σ(x) =
ex − e−x

ex + e−x

▶ Final activation
▶ Use case : Generative task

−2 −1 0 1 2
−2

−1

0

1

2

Tanh

ALEXANDRE VÉRINE DEEP LEARNING 2 29 / 247

NEURAL NETWORKS FUNDAMENTALS
RELU

▶ Rectified Linear Unit (ReLU):

σ(x) = max{0, x}

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

ReLU

ALEXANDRE VÉRINE DEEP LEARNING 2 30 / 247

NEURAL NETWORKS FUNDAMENTALS
LEAKY RELU

▶ Leaky Rectified Linear Unit
(Leaky ReLU):

σ(x) = max{αx, x}

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

Leaky ReLU

ALEXANDRE VÉRINE DEEP LEARNING 2 31 / 247

NEURAL NETWORKS FUNDAMENTALS
ELU

▶ Exponential Linear Unit (ELU):

σ(x) =

{
α(ex − 1) if x < 0,
x if x ≥ 0.

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

ELU

ALEXANDRE VÉRINE DEEP LEARNING 2 32 / 247

NEURAL NETWORKS FUNDAMENTALS
SWISH

▶ Sigmoid-Weighted Linear Unit
(Swish):

σ(x) =
x

1 + e−x

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

Swish

ALEXANDRE VÉRINE DEEP LEARNING 2 33 / 247

THE MULTI-LAYER PERCEPTRON (MLP)

Having discussed the structure of a neural network, we will proceed to examine the process of training a model for a
specific task. As an illustration, we will consider the example of a Multilayer Perceptron.The two intermediate
activation functions are ReLUs and the final activation is a softmax to perform multi-class classification on MNIST. We
will consider only 4 classes.

..

.

ALEXANDRE VÉRINE DEEP LEARNING 2 34 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
THE FIRST DEEP LEARNING MODEL

To introduce the training process, we will consider a 3 layers MLP trained to minimise a loss L over a given a dataset D.
The model fθ is parameterised by a vector θ = {A1,A2,A3, b1, b2, b3}:

θ∗ = argmin
θ
L(θ,D)

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 35 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent (SGD) is widely used in deep learning instead of traditional gradient descent due to its
efficiency and faster convergence rate. SGD updates the model parameters after computing the gradient of the loss
function with respect to each parameter using only a single randomly selected sample. This leads to a faster
convergence rate and improved optimization compared to traditional gradient descent, which uses the entire training
dataset to compute the gradient at each iteration.

θ∗ = argmin
θ
L(θ,D) = argmin

θ
Ex∼D [l(x, fθ(x))]

ALEXANDRE VÉRINE DEEP LEARNING 2 36 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
STOCHASTIC GRADIENT DESCENT

Theoretically the algorithm is the following:
Require: Given a loss function l, a dataset D = {x1, x2, . . . , xN} and a learning rate λ

1: Initialize parameters θ
2: while θ has not converged do
3: for i = 1 to N do
4: Randomly select xi from the dataset
5: Compute gradient of the loss with respect to θ: ∇θl(xi, fθ(xi))
6: Update parameters θ = θ − λ∇θl(xi, f (xi))
7: end for
8: end while
9: return θ

ALEXANDRE VÉRINE DEEP LEARNING 2 37 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
SGD IN MINI-BATCH

In practice the algorithm is modified to use mini-batches of data instead of single samples. This is done to improve the
stability of the optimization process and reduce the variance of the gradient estimates. The algorithm is as follows:
Require: Given a loss function l, a dataset D = {x1, x2, . . . , xN}, a learning rate λ and a batch size b

1: Initialize parameters θ
2: Initialize the number of batches B =

⌊N
b

⌋
3: while θ has not converged do
4: for i = 1 to B do
5: Randomly select a mini-batch of b samples from the dataset
6: Compute gradient of the loss with respect to θ: 1

B
∑B

i=1∇θl(xi, fθ(xi))

7: Update parameters θ = θ − λ 1
B
∑B

i=1∇θl(xi, f (xi))
8: end for
9: end while

10: return θ

ALEXANDRE VÉRINE DEEP LEARNING 2 38 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

At every step t of the gradient descent, setting a learning rate λ, the parameter θ is updated as:

θt+1 = θt − λ∇θl(f (xi), yi)

But θ = {A1,A2,A3, b1, b2, b3} and the gradient is computed with respect to each parameter.

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 39 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

First we will consider a single data point x, the loss will depend on the output only: l(f (x)).

f is a layered composed function. Let us focus on the last layer:

f (x) = x3 = σ3(A3x2 + b3)

Therefore:

l(f (x)) = l (σ3 (A3x2 + b3))

To minimise the loss, we have to act on A3, b3 and x2.

ALEXANDRE VÉRINE DEEP LEARNING 2 40 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let us look at the gradients with respect to A3:

∂l
∂A3

=
∂l
∂x3

∂x3

∂A3
= l′(x3)

∂σ3 (A3x2 + b3)

∂A3
= l′(x3)σ

′
3 (A3x2 + b3)

∂ [A3x2 + b3]

∂A3

= l′(x3)︸ ︷︷ ︸
∈R

σ′3 (A3x2 + b3)︸ ︷︷ ︸
∈Rki×1

xT
2︸︷︷︸

∈R1×ki−1

and therefore:

A3 ← A3 − λl′(x3)σ
′
3 (A3x2 + b3) xT

2 .

We need to keep in memory the latent values of x, i.e. x2.

ALEXANDRE VÉRINE DEEP LEARNING 2 41 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let us look at the gradients with respect to A2:

∂l
∂A2

=
∂l
∂x2

∂x2

∂A2

=
∂l
∂x2

∂σ2 (A2x1 + b2)

∂A2

=
∂l
∂x2

σ′2 (A2x1 + b2)
∂ [A2x1 + b2]

∂A2

=
∂l
∂x2

σ′2 (A2x1 + b2) xT
1

which depends on ∂l
∂x2

, we need to compute it.

ALEXANDRE VÉRINE DEEP LEARNING 2 42 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

We have to compute the gradient with respect to x2:

∂l
∂x2

=
∂l
∂x3

∂x3

∂x2
= l′(x3)

∂σ3 (A3x2 + b3)

∂x2
= l′(x3)

∂ [A3x2 + b3]

∂x2
σ′3 (A3x2 + b3)

= l′(x3) AT
3σ

′
3 (A3x2 + b3)

Therefore:

A2 ← A2 − λ
[
l′(x3)AT

3σ
′
3 (A3x2 + b3)× σ′2 (A2x1 + b2) xT

1

]
The update of A2 depends on l′(x3),

ALEXANDRE VÉRINE DEEP LEARNING 2 43 / 247

BACK-PROPAGATION

We have to compute the gradient with respect to A1:

∂l
∂A1

=
∂l
∂x1

∂x1

∂A1

=
∂l
∂x1

∂σ1 (A1x0 + b1)

∂A1

=
∂l
∂x1

σ′1 (A1x0 + b0) xT
0 ,

which depends on ∂l
∂x1

, we need to compute it.

ALEXANDRE VÉRINE DEEP LEARNING 2 44 / 247

BACK-PROPAGATION

Let us compute the gradient with respect to x1:

∂l
∂x1

=
∂l
∂x2

∂x2

∂x1
=

∂l
∂x2

∂σ2 (A2x1 + b2)

∂x1
=

∂l
∂x2

∂ [A2x1 + b2]

∂x1
σ′2 (A2x1 + b2)

=
∂l
∂x2

AT
2σ

′
2 (A2x1 + b2)

Therefore:

A1 ← A1 − λ
[
l′(x3) AT

3σ
′
3 (A3x2 + b3)AT

2σ
′
2 (A2x1 + b2)× σ′1 (A1x0 + b1) xT

0

]

ALEXANDRE VÉRINE DEEP LEARNING 2 45 / 247

BACK-PROPAGATION

In other words, the update on the weights is:

A3 ← A3 − λl′(x3)σ
′
3 (A3x2 + b3) xT

2

A2 ← A2 − λ
[
l′(x3)AT

3σ
′
3 (A3x2 + b3)× σ′2 (A2x1 + b2) xT

1

]
A1 ← A1 − λ

[
l′(x3) AT

3σ
′
3 (A3x2 + b3)AT

2σ
′
2 (A2x1 + b2)× σ′1 (A1x0 + b1) xT

0

]

ALEXANDRE VÉRINE DEEP LEARNING 2 46 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

If we look at the update of the different biases, we can easily compute the different gradient and see the updates. First,
let us compute the gradient with respect to b3:

∂l
∂b3

=
∂l
∂x3

∂x3

∂b3

= l′(x3)
∂σ3 (A3x2 + b3)

∂b3

= l′(x3)σ
′
3 (A3x2 + b3)

∂ [A3x2 + b3]

∂b3

= l′(x3)︸ ︷︷ ︸
∈R

σ′3 (A3x2 + b3)︸ ︷︷ ︸
∈Rki×1

And thus :
b3 ← b3 − λl′(x3)σ

′ (A3x2 + b3)

ALEXANDRE VÉRINE DEEP LEARNING 2 47 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let’s move on the second layer:

∂l
∂b2

=
∂l
∂x2

∂x2

∂b2

=
∂l
∂x2

∂σ2 (A2x1 + b2)

∂b2

=
∂l
∂x2

σ′2 (A2x1 + b2)

And thus :
b2 ← b2 − λ

∂l
∂x2

σ′ (A2x1 + b2)

We need to back-propagate the term ∂l
∂x2

computed for the first layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 48 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

For the first layer:

∂l
∂b1

=
∂l
∂x1

∂x1

∂b1

=
∂l
∂x1

∂σ1 (A1x0 + b1)

∂b1

=
∂l
∂x1

σ′1 (A1x0 + b0)

And thus :
b1 ← b1 − λ

∂l
∂x1

σ′ (A1x0 + b1)

We need to back-propagate the term ∂l
∂x1

computed for the second layer which has been computed with ∂l
∂x2

back-propagated from the first layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 49 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

To update the weights, we need to compute the gradient of the loss with respect to the output of the network, and then
back-propagate the gradient of the loss with respect to each activation, the ∂l

∂xi
, through the network to compute the

gradients with respect to the weights and biases of each layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 50 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
LAST LAYER

We can plot the current state of the
network for a given input.

The red lines show positive values
for Ai, the blue lines represent
negative values for Ai. The level of
transparency is proportional to the
previous neurons.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 51 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 52 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 53 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 54 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 55 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
LAST LAYER

We can plot the current state of the
network for a given input.

Red lines show positive values of
Ai, Blue lines represent negative
values of Ai. The level of
transparency is proportional to the
previous neurons.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 56 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 57 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 58 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 59 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 60 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

Having discussed the theory behind Artificial Neural Networks and the training process, we will now proceed to
demonstrate a comprehensive end-to-end example of image classification on MNIST.

ALEXANDRE VÉRINE DEEP LEARNING 2 61 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

▶ Input shape : 1× 28× 28.
▶ Number of Classes : 10.
▶ Number of training samples (x, y): 60000.
▶ Number of evaluating samples: 10000.
▶ Loss : cross-entropy

L(ŷ, y) = − 1
N

N∑
i=1

K∑
j=1

yij log(ŷij)

where :
• ŷ ∈ RN×K is the predicted probability distribution over K classes for N samples,
• y ∈ 0, 1N×K is the ground-truth one-hot encoded label matrix,

ALEXANDRE VÉRINE DEEP LEARNING 2 62 / 247

RECAP ON THE CROSS-ENTROPY LOSS

Class 1 Class 2 Class 3 Class 4 Class 5
0

0.2

0.4

0.6

0.8

1

0 0

1

0 0

One-Hot Distribution (yi)

Class 1 Class 2 Class 3 Class 4 Class 5
0

0.2

0.4

0.6

0.8

1

0.1 0.15

0.5

0.2

5 · 10−2

Model Predicted Distribution (ŷi)

The cross-entropy loss for one sample is:

l(ŷi, yi) = −
K∑

j=1

yij log(ŷij).

ALEXANDRE VÉRINE DEEP LEARNING 2 63 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

We build a 3 layers network.
▶ Batch size : 64
▶ Learning rate : 0.01
▶ Intermediate activation : ReLU
▶ Final activation : Softmax
▶ Number of epochs : 12
▶ Number of trained parameters: 52.6k

input-tensor
depth:0 (64, 784) view

depth:1

input: (64, 784)

output: (64, 784)

Linear
depth:1

input: (64, 784)

output: (64, 64)

relu
depth:1

input: (64, 64)

output: (64, 64)

Linear
depth:1

input: (64, 64)

output: (64, 32)

relu
depth:1

input: (64, 32)

output: (64, 32)

Linear
depth:1

input: (64, 32)

output: (64, 10)

LogSoftmax
depth:1

input: (64, 10)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 64 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

0 100000 200000 300000 400000 500000
Number of Examples Seen by the model

0.0

0.5

1.0

1.5

2.0
C

ro
ss

-E
n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 65 / 247

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

With a interpretation tool such as SHAP:

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
SHAP value

ALEXANDRE VÉRINE DEEP LEARNING 2 66 / 247

Part II

DEEP LEARNING IN ACTION: FROM NEURAL NETWORKS TO

TRANSFORMER MODELS

ALEXANDRE VÉRINE DEEP LEARNING 2 67 / 247

Now that we have an understanding of the training procedure for Artificial Neural Networks, we shall examine several
widely-utilized structures within the literature of Neural Networks, including Convolutional Neural Networks
(CNN),Resdiual Networks (ResNet), Recurrent Neural Networks (RNN), and Transformers.

ALEXANDRE VÉRINE DEEP LEARNING 2 68 / 247

CONVOLUTIONAL NEURAL NETWORKS

In the field of image processing, the Convolution Operators are widely considered as the most favoured approach.
While it has been demonstrated that Dense blocks, or Linear blocks, are capable of accurately classifying images in the
case of the MNIST dataset, the need for convolutional transformations arises when addressing wider and more intricate
datasets.

ALEXANDRE VÉRINE DEEP LEARNING 2 69 / 247

CONVOLUTIONAL NEURAL NETWORKS
THE TWO DIMENSIONAL CONVOLUTION

A 2D convolution in a neural network context can be mathematically represented as a sliding window operation where
a filter (also called kernel) w of size k× k is applied to each k× k sub-matrix of the input matrix x. The operation can be
defined as the element-wise multiplication of the filter w and the sub-matrix followed by summing the results, i.e.

yi,j =

k∑
m=1

k∑
n

wm,n · xi+m,j+n

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.9 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.4 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.5 0.0 1.0 0.2 0.0

0.0 0.0 0.0 0.7 0.9 0.1 0.0 0.0 0.0 1.0 0.8 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.8 0.0

0.0 0.0 0.3 0.9 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.3 0.6 0.0 0.0 0.0 0.2 1.0 0.0 0.0 0.0

0.0 0.0 0.3 1.0 0.2 0.3 0.9 0.9 0.2 0.0 0.0 0.0

0.0 0.0 0.1 1.0 1.0 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kernel

1.0 1.0 1.0

0.0 0.0 0.0

-1.0 -1.0 -1.0

-0.3 -1.3 -1.5 -1.5 -1.4 -2.1 -2.0 -1.1 -0.2 0.0

-0.2 0.2 1.2 2.4 2.5 1.4 -0.6 -1.2 -1.0 0.0

0.0 0.1 0.3 0.6 1.4 2.1 1.9 0.1 -0.8 -1.0

0.3 -0.1 -0.1 -0.4 0.0 0.2 1.2 0.2 -0.8 -1.8

0.3 0.5 -0.4 -0.8 -1.0 -0.1 0.0 0.0 -0.7 -0.7

0.0 1.0 0.1 -0.9 -2.0 -1.5 -0.5 -0.5 0.6 0.6

0.0 0.7 1.6 0.7 -1.0 -2.9 -2.4 -1.4 0.4 0.8

0.0 0.0 0.9 1.9 1.1 -0.4 -2.3 -0.7 0.1 1.0

0.0 0.0 0.0 1.0 2.0 2.3 1.1 1.1 0.7 1.0

0.0 0.0 0.0 0.0 0.9 1.9 2.8 2.1 1.1 0.2

ALEXANDRE VÉRINE DEEP LEARNING 2 70 / 247

CONVOLUTIONAL NEURAL NETWORKS
THE TWO DIMENSIONAL CONVOLUTION

A 2D convolution in a neural network context can be mathematically represented as a sliding window operation where
a filter (also called kernel) w of size k× k is applied to each k× k submatrix of the input matrix x. The operation can be
defined as the element-wise multiplication of the filter w and the submatrix followed by summing the results, i.e.

yi,j =

k∑
m=1

k∑
n

wm,n · xi+m,j+n

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

0.0 1.0 -0.0 -3.7 -2.8 -0.1 0.0 0.0 0.0 0.0

0.0 2.9 3.7 -1.0 -3.3 -0.7 0.0 0.0 0.0 0.0

0.0 1.8 3.8 0.5 -3.7 -2.3 0.0 0.0 0.0 0.0

0.0 0.0 2.8 2.5 -1.8 -3.6 -1.2 0.0 0.0 0.0

0.0 0.0 1.9 3.8 1.1 -2.8 -2.7 -0.1 0.0 0.0

0.0 0.0 0.3 2.5 3.2 -0.7 -3.9 -1.9 0.0 0.0

0.0 0.0 0.0 0.8 3.4 1.8 -2.4 -3.3 -0.7 0.0

0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0 -2.6 -0.5

0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9 -3.2 -0.7

0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7 -0.2

ALEXANDRE VÉRINE DEEP LEARNING 2 71 / 247

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

In every Deep Learning library, the Conv2D block takes three parameters in argument:
▶ the Kernel’s size,
▶ the Stride,
▶ the Padding.

The size out the output is :

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 72 / 247

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 0, Stride: 1

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 10× 10

0.0 1.0 -0.0 -3.7 -2.8 -0.1 0.0 0.0 0.0 0.0

0.0 2.9 3.7 -1.0 -3.3 -0.7 0.0 0.0 0.0 0.0

0.0 1.8 3.8 0.5 -3.7 -2.3 0.0 0.0 0.0 0.0

0.0 0.0 2.8 2.5 -1.8 -3.6 -1.2 0.0 0.0 0.0

0.0 0.0 1.9 3.8 1.1 -2.8 -2.7 -0.1 0.0 0.0

0.0 0.0 0.3 2.5 3.2 -0.7 -3.9 -1.9 0.0 0.0

0.0 0.0 0.0 0.8 3.4 1.8 -2.4 -3.3 -0.7 0.0

0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0 -2.6 -0.5

0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9 -3.2 -0.7

0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7 -0.2

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 73 / 247

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 5, Padding: 0, Stride: 1

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 5× 5

kernel
-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

Size 8× 8

9.2 6.4 -0.5 -7.4 -8.7 -2.7 0.0 0.0

9.5 8.5 1.7 -6.9-10.0-5.3 -1.2 0.0

6.8 8.5 5.1 -3.0 -8.6 -7.1 -3.3 -0.1

4.0 7.4 7.9 2.6 -5.7 -8.1 -6.2 -2.0

2.0 5.8 8.1 5.8 -1.7 -7.2 -7.7 -4.3

0.3 2.9 7.1 7.6 3.5 -3.8 -7.9 -6.3

0.0 0.8 4.8 7.1 6.7 0.3 -6.4 -7.3

0.0 0.0 2.5 6.0 7.1 2.1 -4.4 -7.2

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 74 / 247

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 1. Padding mode can be ’zeros’, ’reflect’, ’replicate’ or ’circular’.

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 12× 12

0.0 0.0 0.0 -1.0-2.8-1.7 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 -0.0-3.7-2.8-0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 2.9 3.7 -1.0-3.3-0.7 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.8 3.8 0.5 -3.7-2.3 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 2.8 2.5 -1.8-3.6-1.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.9 3.8 1.1 -2.8-2.7-0.1 0.0 0.0 0.0

0.0 0.0 0.0 0.3 2.5 3.2 -0.7-3.9-1.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.8 3.4 1.8 -2.4-3.3-0.7 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0-2.6-0.5 0.0

0.0 0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9-3.2-0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7-0.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.5 0.2 0.0 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 75 / 247

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 2

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 6× 6

0.0 1.0 -3.7-0.1 0.0 0.0

0.0 1.8 0.5 -2.3 0.0 0.0

0.0 0.0 3.8 -2.8-0.1 0.0

0.0 0.0 0.8 1.8 -3.3 0.0

0.0 0.0 0.0 2.7 -0.9-0.7

0.0 0.0 0.0 0.0 1.5 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 76 / 247

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 3

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 4× 4

0.0 0.0 0.0 0.2

0.0 0.0 3.8 -2.6

0.0 1.9 -2.8 0.0

0.0 3.7 -0.7 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 77 / 247

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

We can represent a CNN as under this form:

ALEXANDRE VÉRINE DEEP LEARNING 2 78 / 247

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

Usually, the output of a convolutional block is linear combination of the Convolutional output of every previous
channels and a bias:

outi,j(cout) = bias(cout) +

|cin|−1∑
k=0

Conv(input(k),kernelk)i,j

ALEXANDRE VÉRINE DEEP LEARNING 2 79 / 247

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

In practice, we split the image into multiple channels : the three channels RGB to begin with. Then we apply
convolutional operation on different scales and then we use a fully connected tail. To change the scale we can use
different sub-sampling : Max pooling, Average pooling or Invertible pooling.

ALEXANDRE VÉRINE DEEP LEARNING 2 80 / 247

CONVOLUTIONAL NEURAL NETWORKS
MAX POOLING

Max Pooling take the maximum within a given sized sub-matrix. In practice, the matrix is size 2× 2 in order to reduce
the dimension by 4 and doubling the scale.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Max Pooling

Subsampling

1.0 0.8 0.8 0.9

0.8 0.9 0.9 0.9

0.9 0.9 0.8 0.9

0.9 0.7 0.6 0.9

ALEXANDRE VÉRINE DEEP LEARNING 2 81 / 247

CONVOLUTIONAL NEURAL NETWORKS
AVERAGE POOLING

The Average pooling takes the average value within the sub-matrix.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Average Pooling

Subsampling

0.5 0.5 0.4 0.6

0.6 0.5 0.5 0.5

0.4 0.5 0.5 0.6

0.7 0.3 0.2 0.5

ALEXANDRE VÉRINE DEEP LEARNING 2 82 / 247

CONVOLUTIONAL NEURAL NETWORKS
INVERTIBLE POOLING

For Invertible Networks, we can use Invertible Pooling, aka Squeeze. It preserves the information contained in the
channels and keeps the dimension constant.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Invertible Pooling

Subsampling

0.2 0.3 0.1 0.6

0.2 0.7 0.9 0.3

0.7 0.1 0.8 0.9

0.8 0.2 0.0 0.9

1.0 0.8 0.8 0.9

0.6 0.9 0.1 0.5

0.1 0.2 0.4 0.7

0.7 0.7 0.6 0.5

0.7 0.3 0.4 0.3

0.8 0.1 0.3 0.9

0.9 0.8 0.6 0.1

0.9 0.1 0.0 0.1

0.3 0.5 0.3 0.4

0.7 0.3 0.6 0.5

0.1 0.9 0.3 0.9

0.5 0.2 0.1 0.4

ALEXANDRE VÉRINE DEEP LEARNING 2 83 / 247

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

Convolutional Neural Networks are more suitable for image processing compared to fully connected networks due to
their ability to efficiently handle the spatial relationships between pixels in an image. This is achieved through the use
of convolutional layers that apply filters to small portions of an image, rather than fully connected layers that process
the entire image as a single vector. Additionally, the shared weights in convolutional layers allow for learning of
hierarchical features, reducing the number of parameters in the network and increasing its ability to generalize to new
images.

ALEXANDRE VÉRINE DEEP LEARNING 2 84 / 247

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

▶ Input shape : 3× 32× 32.
▶ Number of Classes : 10.
▶ Number of training samples (x, y): 50000.
▶ Number of evaluating samples: 10000.

Cat Ship Ship Airplane Frog Frog Automobile Frog Cat

Automobile Airplane Truck Dog Horse Truck Ship Dog Horse

Ship Frog Horse Airplane Deer Truck Dog Bird Deer

ALEXANDRE VÉRINE DEEP LEARNING 2 85 / 247

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

We will compare three different models:
▶ Model 1 : Fully Connected Neural Network with 3.4 million parameters.
▶ Model 2 : CNN with 62 thousand parameters.
▶ Model 3 : Wider and longer CNN with 5.8 million parameters.

ALEXANDRE VÉRINE DEEP LEARNING 2 86 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

The Net in composed of 4 linear layers with ReLU activations:
▶ Linear 3072 7→ 1024 + ReLU
▶ Linear 1024 7→ 256 + ReLU
▶ Linear 256 7→ 64 + ReLU
▶ Linear 64 7→ 10 + SoftMax

input-tensor
depth:0 (64, 3, 32, 32)

view
depth:1

input: (64, 3, 32, 32)

output: (64, 3072)

Linear
depth:1

input: (64, 3072)

output: (64, 1024)

relu
depth:1

input: (64, 1024)

output: (64, 1024)

Linear
depth:1

input: (64, 1024)

output: (64, 256)

relu
depth:1

input: (64, 256)

output: (64, 256)

Linear
depth:1

input: (64, 256)

output: (64, 64)

relu
depth:1

input: (64, 64)

output: (64, 64)

Linear
depth:1

input: (64, 64)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 87 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 88 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 89 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

The Net is composed 2 convolutional layers and 2 linear layers:
▶ Conv 3× 32× 32 7→ 6× 28× 28 + ReLU
▶ Max Pooling 6× 28× 28 7→ 6× 14× 14
▶ Conv 6× 14× 14 7→ 16× 10× 10 + ReLU
▶ Max Pooling 16× 10× 10 7→ 16× 5× 5
▶ Linear 400 7→ 120 + ReLU
▶ Linear 120 7→ 84 + ReLU
▶ Linear 84 7→ 10 + SoftMax

input-tensor
depth:0 (64, 3, 32, 32)

Conv2d
depth:1

input: (64, 3, 32, 32)

output: (64, 6, 28, 28)

relu
depth:1

input: (64, 6, 28, 28)

output: (64, 6, 28, 28)

MaxPool2d
depth:1

input: (64, 6, 28, 28)

output: (64, 6, 14, 14)

Conv2d
depth:1

input: (64, 6, 14, 14)

output: (64, 16, 10, 10)

relu
depth:1

input: (64, 16, 10, 10)

output: (64, 16, 10, 10)

MaxPool2d
depth:1

input: (64, 16, 10, 10)

output: (64, 16, 5, 5)

view
depth:1

input: (64, 16, 5, 5)

output: (64, 400)

Linear
depth:1

input: (64, 400)

output: (64, 120)

relu
depth:1

input: (64, 120)

output: (64, 120)

Linear
depth:1

input: (64, 120)

output: (64, 84)

relu
depth:1

input: (64, 84)

output: (64, 84)

Linear
depth:1

input: (64, 84)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 90 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 91 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 92 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

The Net is composed 6 convolutional layers and 3 linear layers:
▶ Conv 3× 32× 32 7→ 32× 32× 32 + BatchNorm2d + ReLU
▶ Conv 32× 32× 32 7→ 64× 32× 32 + ReLU
▶ Max Pooling 64× 32× 32 7→ 64× 16× 16
▶ Conv 64× 16× 16 7→ 128× 16× 16 + BatchNorm2d + ReLU
▶ Conv 128× 16× 16 7→ 128× 16× 16 + ReLU
▶ Max Pooling 128× 16× 16 7→ 128× 8× 8
▶ Conv 128× 8× 8 7→ 256× 8× 8 + BatchNorm2d + ReLU
▶ Conv 256× 8× 8 7→ 256× 8× 8 + ReLU
▶ Max Pooling 256× 8× 8 7→ 256× 4× 4 + DropOut p = 0.05
▶ Linear 4096 7→ 1024 + ReLU
▶ Linear 1024 7→ 512 + ReLU + DropOut p = 0.05
▶ Linear 512 7→ 10 + SoftMax

We have added Batch Normalization to improve the training stability and Drop Out to reduce
overfitting.

input-tensor
depth:0 (64, 3, 32, 32)

Conv2d
depth:2

input: (64, 3, 32, 32)

output: (64, 32, 32, 32)

BatchNorm2d
depth:2

input: (64, 32, 32, 32)

output: (64, 32, 32, 32)

ReLU
depth:2

input: (64, 32, 32, 32)

output: (64, 32, 32, 32)

Conv2d
depth:2

input: (64, 32, 32, 32)

output: (64, 64, 32, 32)

ReLU
depth:2

input: (64, 64, 32, 32)

output: (64, 64, 32, 32)

MaxPool2d
depth:2

input: (64, 64, 32, 32)

output: (64, 64, 16, 16)

Conv2d
depth:2

input: (64, 64, 16, 16)

output: (64, 128, 16, 16)

BatchNorm2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

ReLU
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

Conv2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

ReLU
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

MaxPool2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 8, 8)

Dropout2d
depth:2

input: (64, 128, 8, 8)

output: (64, 128, 8, 8)

Conv2d
depth:2

input: (64, 128, 8, 8)

output: (64, 256, 8, 8)

BatchNorm2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

ReLU
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

Conv2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

ReLU
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

MaxPool2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 4, 4)

view
depth:1

input: (64, 256, 4, 4)

output: (64, 4096)

Dropout
depth:2

input: (64, 4096)

output: (64, 4096)

Linear
depth:2

input: (64, 4096)

output: (64, 1024)

ReLU
depth:2

input: (64, 1024)

output: (64, 1024)

Linear
depth:2

input: (64, 1024)

output: (64, 512)

ReLU
depth:2

input: (64, 512)

output: (64, 512)

Dropout
depth:2

input: (64, 512)

output: (64, 512)

Linear
depth:2

input: (64, 512)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 93 / 247

CONVOLUTIONAL NEURAL NETWORKS
DROP OUT

Dropout is a regularization technique in neural networks where during training, a portion of the nodes are randomly
"dropped out" or ignored during each iteration. This helps prevent over-fitting by preventing the model from relying
too heavily on any one node. The result is a more robust and generalizable model that can better handle unseen data.

ALEXANDRE VÉRINE DEEP LEARNING 2 94 / 247

CONVOLUTIONAL NEURAL NETWORKS
BATCH NORMALIZATION

Batch normalization is a technique in deep learning that is used to normalize the activations of a layer within a batch of
data. This helps to prevent the problem of vanishing or exploding gradients and also speeds up the training process. By
normalizing the activations, batch normalization helps to stabilize the distribution of the inputs to each layer, reducing
the covariate shift and allowing the network to learn more effectively.

ALEXANDRE VÉRINE DEEP LEARNING 2 95 / 247

CONVOLUTIONAL NEURAL NETWORKS
BATCH NORMALIZATION

1: for each xi in a mini-batch B of size b do
2: Compute the mean µB and variance σ2

B of the features in the mini-batch B.

µB =
1
b

∑
i

xi and σ2
B =

1
m

∑
i

(xi − µB)
2

3: Normalize each feature xi in the mini-batch B using µB and σ2
B.

x̄i =
xi − µB√
σ2

B + ε

4: Scale and shift each normalized feature xi using two learnable parameters γ and β respectively.

yi = γx̄i + β

5: end for
Algorithm 1: Batch Normalization

ALEXANDRE VÉRINE DEEP LEARNING 2 96 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 97 / 247

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 98 / 247

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

CNN : 5.8M

FC : 3.4M

CNN: 62k

ALEXANDRE VÉRINE DEEP LEARNING 2 99 / 247

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

To examine the information captured by different channels in a Neural Network, we can compare their output on a
dataset. For a given input x, we can compute the similarity between the output of a specific channel and the same
channel for other images in the dataset.

ALEXANDRE VÉRINE DEEP LEARNING 2 100 / 247

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image

C
h

an
n

el
3

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
9

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

26

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
31

Best Match Best Match Best Match Best Match
ALEXANDRE VÉRINE DEEP LEARNING 2 101 / 247

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image

C
h

an
n

el
12

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
15

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

16

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
20

Best Match Best Match Best Match Best Match
ALEXANDRE VÉRINE DEEP LEARNING 2 102 / 247

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image

C
h

an
n

el
2

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
12

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

13

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
24

Best Match Best Match Best Match Best Match
ALEXANDRE VÉRINE DEEP LEARNING 2 103 / 247

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image

C
h

an
n

el
5

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
12

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

20

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
21

Best Match Best Match Best Match Best Match
ALEXANDRE VÉRINE DEEP LEARNING 2 104 / 247

RECURRENT NEURAL NETWORKS

Recurrent Networks (RNNs) are a type of neural network that are specifically designed to handle sequential data,
whereas CNNs are more suited for image and grid-like data. The main difference between RNNs and CNNs lies in the
way they process data, with RNNs considering the sequence of elements and their interdependencies, while CNNs
focus on capturing local patterns within the input.

ALEXANDRE VÉRINE DEEP LEARNING 2 105 / 247

RECURRENT NEURAL NETWORKS
RECURRENT BLOCK

A Recurrent Network is a type of neural network that contains a loop mechanism, allowing previous outputs to be used
as inputs for future computations. This creates a form of memory that allows the network to process sequential data
with variable-length sequences.

ALEXANDRE VÉRINE DEEP LEARNING 2 106 / 247

RECURRENT NEURAL NETWORKS
RECURRENT BLOCK

Some of the limitations of Vanilla RNNs:
▶ Vanishing gradient problem: The gradient signals used to update the weights

during training can become very small, making it difficult to train RNNs
effectively.

▶ Exploding gradient problem: On the other hand, gradients can become too
large and cause numeric instability, making it difficult to train RNNs effectively.

▶ Short-term memory: Vanilla RNNs have difficulty retaining information over
long periods of time, making them unsuitable for tasks that require
remembering information from previous time steps.

▶ Computational limitations: RNNs can be computationally intensive, making it
difficult to apply them to large sequences of data.

▶ Difficulty with parallelization: The sequential nature of RNNs can make it
difficult to take advantage of parallel processing to speed up training and
inference.

ALEXANDRE VÉRINE DEEP LEARNING 2 107 / 247

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that overcome some of
the limitations of traditional RNNs, such as the vanishing gradient problem and difficulty in learning long-term
dependencies. LSTM networks introduce memory cells, gates, and a process for updating cells, which allows them to
selectively preserve information from previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 108 / 247

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that overcome some of
the limitations of traditional RNNs, such as the problem of vanishing gradients and the difficulty of learning long-term
dependencies. LSTM networks introduce memory cells, gates, and a process for updating cells, which allows them to
selectively preserve information from previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 109 / 247

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that overcome some of
the limitations of traditional RNNs, such as the vanishing gradient problem and difficulty in learning long-term
dependencies. LSTM networks introduce memory cells, gates, and a process for updating the cells, which allows them
to selectively preserve information from previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 110 / 247

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that overcome some of
the limitations of traditional RNNs, such as the vanishing gradient problem and difficulty in learning long-term
dependencies. LSTM networks introduce memory cells, gates, and a process for updating the cells, which allows them
to selectively preserve information from previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 111 / 247

RECURRENT NEURAL NETWORKS
LIMITS OF LSTM

Limitations of LSTM RNNs:
▶ High computational cost: LSTMs are computationally more expensive compared to other traditional neural

network models due to the presence of multiple gates and their sequential processing nature.
▶ Vanishing Gradient Problem: LSTMs, like any other RNNs, are prone to the vanishing gradient problem when the

sequences are too long, making it difficult for the model to learn long-term dependencies.
▶ Overfitting: LSTMs are complex models and are more susceptible to overfitting compared to simple feedforward

networks.
▶ Difficult to parallelize: Due to the sequential nature of LSTMs, they are difficult to parallelize and can take longer to

train.
▶ Gradient Explosion: LSTMs can also suffer from the gradient explosion problem, where the gradients can become

too large and cause numerical instability during training.

ALEXANDRE VÉRINE DEEP LEARNING 2 112 / 247

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are similar to LSTMs in
their function and ability to process sequential data. GRUs were introduced as a simplification of LSTMs, with the aim
of reducing the number of parameters in the network and improving computational efficiency. GRUs achieve this by
merging the forget and input gates in LSTMs into a single update gate, effectively combining the two operations in a
single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 113 / 247

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are similar to LSTMs in
their function and ability to process sequential data. GRUs were introduced as a simplification of LSTMs, with the aim
of reducing the number of parameters in the network and improving computational efficiency. GRUs achieve this by
merging the forget and input gates in LSTMs into a single update gate, effectively combining the two operations in a
single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 114 / 247

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are similar to LSTMs in
their function and ability to process sequential data. GRUs were introduced as a simplification of LSTMs, with the aim
of reducing the number of parameters in the network and improving computational efficiency. GRUs achieve this by
merging the forget and input gates in LSTMs into a single update gate, effectively combining the two operations in a
single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 115 / 247

RECURRENT NEURAL NETWORKS
LSTM AND GRU

Limitations of GRU RNNs:
▶ Computational complexity: GRUs are more computationally efficient than LSTMs but still more complex than

feedforward neural networks.
▶ Long-term dependencies: GRUs may struggle with capturing long-term dependencies in sequences, although they

perform better in this regard than vanilla RNNs.
▶ Vanishing gradient problem: GRUs can still be affected by the vanishing gradient problem that plagues all RNN

models. This problem makes it difficult for the model to learn from long sequences.
▶ Non-stationary data: GRUs may struggle with nonstationary data, where the statistical properties of the data

change over time.

ALEXANDRE VÉRINE DEEP LEARNING 2 116 / 247

RECURRENT NEURAL NETWORKS
APPLICATION OF RNNS

Applications of RNNs:
▶ Natural language processing (NLP): Using RNNs for text classification, language translation, and text generation.
▶ Time-series prediction: Using RNNs to make predictions based on sequential data, such as stock prices and

weather patterns.
▶ Speech recognition: Using RNNs for speech-to-text conversion.

ALEXANDRE VÉRINE DEEP LEARNING 2 117 / 247

TRANSFORMER AND ATTENTION MECHANISM

Transformers and Attention Mechanisms are relatively recent developments in the field of deep learning, which have
become popular for processing sequential data, such as natural language processing (NLP) tasks. Unlike Recurrent
Neural Networks (RNNs) which process sequential data by repeatedly applying the same set of weights to the inputs
over time, Transformers and Attention Mechanisms use self-attention mechanisms to dynamically weight the
importance of different elements in the sequence. This enables Transformers to better capture the long-range
dependencies between elements in the sequence, leading to improved performance on NLP tasks.

ALEXANDRE VÉRINE DEEP LEARNING 2 118 / 247

TRANSFORMER AND ATTENTION MECHANISM
SELF-ATTENTION MECHANISM

Self-attention mechanism in transformers is a method of calculating the weight of each input token in a sequence with
respect to every other token in the same sequence, resulting in a representation of the input sequence in which the most
relevant tokens have the highest weight. Mathematically, the self-attention mechanism can be represented as a dot
product between the query (Q), key (K) and value (V) matrices, obtained from the input sequence, followed by a
softmax activation to obtain the attention scores. These scores are then used to compute a weighted sum of the value
matrix to produce the final representation.

Attention(Q,K,V) = Softmax

(
QKT√

dk

)
V where Q ∈ Rm×dk , K ∈ Rn×dk , V ∈ Rn×dv

ALEXANDRE VÉRINE DEEP LEARNING 2 119 / 247

TRANSFORMER AND ATTENTION MECHANISM
SELF-ATTENTION MECHANISM

▶ Query (Q): Represents the query vector, which is used to calculate
the attention scores. Intuitively, the query vector represents the
token that we are interested in.

▶ Key (K): Represents the key vector, which is used to calculate the
attention scores. The key vector helps to determine the importance
of each token in the input sequence.

▶ Value (V): Represents the value vector, which is used to compute
the weighted sum of the values. The value vector provides the
information that is used to update the representation of the input
sequence.

The resulting weighted sum of the values represents the output of the
self-attention mechanism, capturing the relationships between different
parts of the input sequence.

ALEXANDRE VÉRINE DEEP LEARNING 2 120 / 247

TRANSFORMER AND ATTENTION MECHANISM
MULTI-HEAD ATTENTION

In Multi-head Attention, the self-attention mechanism is performed
multiple times in parallel with different weight matrices, before being
concatenated and once again projected, leading to a more robust
representation of the input sequence. The intuition behind the three
matrices (Q, K, V) remains the same as in self-attention, with Q
representing the query, K the key and V the value. Each head performs
an attention mechanism on the input sequence, capturing different
aspects and dependencies of the data, before being combined to form a
more comprehensive representation of the input.

ALEXANDRE VÉRINE DEEP LEARNING 2 121 / 247

TRANSFORMER AND ATTENTION MECHANISM
VISUALIZING MULTI-HEAD ATTENTION

Visualizing Self-Attention for Image:
Link

ALEXANDRE VÉRINE DEEP LEARNING 2 122 / 247

https://epfml.github.io/attention-cnn/

TRANSFORMER AND ATTENTION MECHANISM
TRANSFORMERS MODEL

Transformers are neural network models that use an encoder-decoder
architecture. The encoder takes the input sequence and converts it into
a continuous hidden representation, which is then passed to the
decoder to generate the output sequence. The architecture of the
transformer model is designed to allow the model to process the entire
sequence in parallel, rather than processing one element at a time like in
traditional RNNs.

Training of transformers involves optimizing a loss function that
measures the difference between the model predictions and the true
outputs. This loss function is usually based on the cross entropy
between the predicted and true sequences.

The encoder-decoder mechanism is commonly referred to as the
seq2seq mechanism.

ALEXANDRE VÉRINE DEEP LEARNING 2 123 / 247

TRANSFORMER AND ATTENTION MECHANISM
TRANSFORMERS MODEL

More information about transformers and specific model architectures will be covered next semester in the course on
Applied Deep Learning.

ALEXANDRE VÉRINE DEEP LEARNING 2 124 / 247

TP2: BUILD AND USE AN AUTOENCODER
FORMAL INTRODUCTION OF AN AUTOENCODER

Definition
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. It consists of two
main components:
▶ An encoder function: encoder(x) : Rd → Rm

Maps an input x from the input space Rd to a hidden representation space Rm.
▶ A decoder function: decoder(z) : Rm → Rd

Maps the hidden representation z back to the original input space Rd.

Goal
The primary goal of an autoencoder is to learn a representation (encoding) for a set of data, typically for the purpose of
dimensionality reduction or feature learning. Through training, the autoencoder learns to compress the data from Rd to
Rm (where m < d) and then reconstruct the data back to Rd as accurately as possible. This process forces the
autoencoder to capture the most important features of the data in the hidden representation z.

ALEXANDRE VÉRINE DEEP LEARNING 2 125 / 247

TP2: BUILD AND USE AN AUTOENCODER
FORMAL INTRODUCTION OF AN AUTOENCODER

ALEXANDRE VÉRINE DEEP LEARNING 2 126 / 247

TP2: BUILD AND USE AN AUTOENCODER
AUTOENCODERS AND UNSUPERVISED LEARNING

Unsupervised Learning

Autoencoders are a classic example of unsupervised learning. In unsupervised learning, the goal is to learn patterns
from unlabelled data. Autoencoders learn to compress and decompress the input data without any explicit labels,
aiming to capture the underlying structure of the data.

Objective Function

The learning process of an autoencoder is guided by the minimization of a loss function, typically involving a norm that
measures the difference between the input and the reconstructed output. Formally, the objective is to minimize:

min
θ

Ex∼P [l(x,decoderθ(encoderθ(x)))]

where x is the input data, θ represents the parameters of the encoder and decoder, and l is a loss function.

ALEXANDRE VÉRINE DEEP LEARNING 2 127 / 247

TP2: BUILD AND USE AN AUTOENCODER
AUTOENCODERS AND UNSUPERVISED LEARNING

Unsupervised Learning

Autoencoders are a classic example of unsupervised learning. In unsupervised learning, the goal is to learn patterns
from unlabelled data. Autoencoders learn to compress and decompress the input data without any explicit labels,
aiming to capture the underlying structure of the data.

Objective Function

The learning process of an autoencoder is guided by the minimization of a loss function, typically involving a norm that
measures the difference between the input and the reconstructed output. Formally, the objective is to minimize:

min
θ

Ex∼P

[
∥x− x̂∥2

2

]
where x is the input data, θ represents the parameters of the encoder and decoder and x̂ = decoderθ(encoderθ(x)) in the
reconstruction.

ALEXANDRE VÉRINE DEEP LEARNING 2 128 / 247

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a lower-dimensional space,
facilitating faster data transfer by reducing the amount of data that needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can reconstruct cleaner versions
of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from these patterns,
when the reconstruction error is high, can indicate anomalies or outliers in the data.

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 247

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a lower-dimensional space,
facilitating faster data transfer by reducing the amount of data that needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can reconstruct cleaner versions
of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from these patterns,
when the reconstruction error is high, can indicate anomalies or outliers in the data.

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 247

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a lower-dimensional space,
facilitating faster data transfer by reducing the amount of data that needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can reconstruct cleaner versions
of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from these patterns,
when the reconstruction error is high, can indicate anomalies or outliers in the data.

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 247

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a lower-dimensional space,
facilitating faster data transfer by reducing the amount of data that needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can reconstruct cleaner versions
of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from these patterns,
when the reconstruction error is high, can indicate anomalies or outliers in the data.

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 247

TP2: BUILD AND USE AN AUTOENCODER
YOUR TURN !

Get the TP2 on the course website and start working on it.
▶ https://www.alexverine.com

▶ Teaching
▶ Deep Learning II
▶ Lien Notebooks Python

ALEXANDRE VÉRINE DEEP LEARNING 2 130 / 247

https://www.alexverine.com

Part III

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING

ALEXANDRE VÉRINE DEEP LEARNING 2 131 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING

▶ Batch Normalization - Seen
▶ Dropout - Seen
▶ Data Augmentation
▶ Learning Rate Scheduling
▶ Early Stopping
▶ Gradient Clipping
▶ Weight Initialization
▶ Regularization
▶ GPU Acceleration

ALEXANDRE VÉRINE DEEP LEARNING 2 132 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
DATA AUGMENTATION

▶ Data Augmentation is a technique to increase the diversity of your training set by applying random (but realistic)
transformations to the training images.

▶ The goal is to train a model that is robust to these transformations.
▶ For example, you can randomly rotate, scale, and flip the images in your training set.
▶ This helps expose the model to different aspects of the data and reduce overfitting.

ALEXANDRE VÉRINE DEEP LEARNING 2 133 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
LEARNING RATE SCHEDULING

▶ The learning rate is one of the most important hyperparameters to tune for your deep learning model. The learning
rate determines how quickly the model learns the optimal weights and how refined the gradient descent process is.

▶ If the learning rate is too high, the model may not converge or converge to a higher loss. If it is too low, the model
may take too long to train.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Epochs

Lo
ss

Low learning rate
High learning rate

ALEXANDRE VÉRINE DEEP LEARNING 2 134 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
LEARNING RATE SCHEDULING

▶ The learning rate is one of the most important hyperparameters to tune for your deep learning model. The learning
rate determines how quickly the model learns the optimal weights and how refined the gradient descent process is.

▶ If the learning rate is too high, the model may not converge or converge to a higher loss. If it is too low, the model
may take too long to train.

▶ Learning rate scheduling is a technique to adjust the learning rate during training. For example, you can start with
a high learning rate and then decrease it over time.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Epochs

Lo
ss

Low learning rate
High learning rate

Learning rate scheduled

ALEXANDRE VÉRINE DEEP LEARNING 2 134 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
EARLY STOPPING

▶ Early stopping is a technique to prevent overfitting by stopping the training process when the model’s performance
on the validation set starts to degrade.

▶ The idea is to monitor the validation loss during training and stop training when the validation loss stops
decreasing.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Early Stopping Point

Epochs

Lo
ss

Training Loss
Evaluation Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 135 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
GRADIENT CLIPPING

▶ Gradient clipping is a technique to prevent exploding gradients during training.
▶ Exploding gradients occur when the gradients of the loss function with respect to the model’s parameters are too

large.
▶ This can cause the model to diverge and fail to learn.
▶ Gradient clipping involves scaling the gradients if their norm exceeds a certain threshold.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Epochs

Lo
ss

Without Gradient Clipping
With Gradient Clipping

ALEXANDRE VÉRINE DEEP LEARNING 2 136 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
WEIGHT INITIALIZATION

▶ Weight initialization is a technique to set the initial values of the weights in the model.
▶ The initial values of the weights can have a significant impact on the training process and the final performance of

the model.
▶ If the weights are initialized too small, the model may not learn effectively. If they are initialized too large, the

model may not converge.
▶ Common weight initialization techniques include Xavier/Glorot initialization and He initialization.

ALEXANDRE VÉRINE DEEP LEARNING 2 137 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
WEIGHT INITIALIZATION

▶ Xavier/Glorot initialization: The weights are initialized from a normal distribution with mean 0 and variance
2/(nin + nout), where nin and nout are the number of input and output units, respectively. It helps prevent the
gradients from vanishing or exploding during training by ensuring that the gradients have a similar scale.

▶ He initialization: The weights are initialized from a normal distribution with mean 0 and variance 2/nin, where nin
is the number of input units. It is commonly used for ReLU activation functions.

ALEXANDRE VÉRINE DEEP LEARNING 2 138 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
REGULARIZATION

▶ Regularization is a technique to prevent overfitting by adding a penalty term to the loss function that discourages
the model from learning complex patterns that may not generalize well.

▶ L1 regularization adds a penalty term to the loss function that is proportional to the absolute value of the weights.
It encourages sparsity in the weights.

▶ L2 regularization adds a penalty term to the loss function that is proportional to the square of the weights. It
encourages the weights to be small.

ALEXANDRE VÉRINE DEEP LEARNING 2 139 / 247

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
GPU ACCELERATION

CPUs and GPUs are very different in terms of architecture and performance. CPUs are more suited for general-purpose
computing tasks, while GPUs are optimized for parallel processing of simple operations, making them ideal for deep
learning tasks.
▶ GPUs are much faster than CPUs for deep learning tasks because they have many more cores and can perform

many more operations in parallel.
▶ Deep learning frameworks like PyTorch and TensorFlow are designed to take advantage of GPUs to accelerate the

training process.
▶ Only the forward and backward passes of the model are executed on the GPU. The data loading and preprocessing

are still done on the CPU.

ALEXANDRE VÉRINE DEEP LEARNING 2 140 / 247

Part IV

DEEP LEARNING AND APPLICATIONS

ALEXANDRE VÉRINE DEEP LEARNING 2 141 / 247

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
DEEP Q-LEARNING

Deep Q-Learning is a reinforcement learning algorithm that utilizes a neural network to approximate the optimal Q
function, which is defined as the expected cumulative reward obtained by following a specific policy. The expected
reward can be represented mathematically as follows:

R(π) =
∑
t≤T

Epπ [γ
tr(st, at)] ,

where r(st, at) is the reward at time step t, γ is the discount factor, T is the final time step and

pπ(a0, a1, s1, ..., aT, sT) = p(a0)

T∏
t=1

π(at|st)p(st+1|st, at) .

The Q function, Q(s, a), represents the expected cumulative reward obtained by taking action a in state s:

Qπ(s, a) = Epπ [
∑
t≤T

γtr(st, at)|s0 = s, a0 = a] .

The policy, represented by π(a|s), is a probability distribution over actions given a state. The optimal Q function,
Q∗(s, a), can be found by solving the Bellman equation:

Q∗(s, a) = E[R|s, a] = E[r + γmax
a′

Qπ(s′, a′)|s, a].

ALEXANDRE VÉRINE DEEP LEARNING 2 142 / 247

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
DEEP Q-LEARNING

The loss in Deep Q-Learning method is the difference between the predicted Q-value and the target Q-value, which is
the maximum expected reward obtained from the next state:

L(θ) = Es′∼π∗(.|s,a)∥r + γmax
a′

Q(s′, a′, θ)−Q(s, a, θ)∥2.

This loss is used to update the parameters of the deep learning model in order to make the predictions more accurate.
The target Q-value is typically computed as the reward obtained from taking an action in the current state, plus the
maximum expected reward obtainable from the next state:

1. At the state st, select the action at with best reward using Qt and store the results;
2. Obtain the new state st+1 from the environment p;
3. Store (st, at, st+1);
4. Obtain Qt+1 by minimizing L from a batch recovered from previously stored results.

ALEXANDRE VÉRINE DEEP LEARNING 2 143 / 247

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
THE MOUSE GAME

▶ A Mouse has to feed on food (red) and
avoid poison (blue).

▶ It has a vision range of 2 squares. So it can
see the 25 cells around.

▶ The reward for a cheese cell is 0.5, while
the reward for eating poison is −1.

On this example, the mouse behaves randomly.

ALEXANDRE VÉRINE DEEP LEARNING 2 144 / 247

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
MODEL 1

Fully connected network:

InputLayer
input:

output:

[(None, 5, 5, 2)]

[(None, 5, 5, 2)]

Flatten
input:

output:

(None, 5, 5, 2)

(None, 50)

Dense
input:

output:

(None, 50)

(None, 24)

Dense
input:

output:

(None, 24)

(None, 24)

Dense
input:

output:

(None, 24)

(None, 4)

ALEXANDRE VÉRINE DEEP LEARNING 2 145 / 247

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
MODEL 2

Convolutional network:

InputLayer
input:

output:

[(None, 5, 5, 2)]

[(None, 5, 5, 2)]

Conv2D
input:

output:

(None, 5, 5, 2)

(None, 4, 4, 8)

Activation
input:

output:

(None, 4, 4, 8)

(None, 4, 4, 8)

Conv2D
input:

output:

(None, 4, 4, 8)

(None, 3, 3, 16)

Flatten
input:

output:

(None, 3, 3, 16)

(None, 144)

Dense
input:

output:

(None, 144)

(None, 4)

Activation
input:

output:

(None, 4)

(None, 4)

ALEXANDRE VÉRINE DEEP LEARNING 2 146 / 247

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
ϵ-GREEDY ALGORITHM

The ϵ-greedy algorithm is a common exploration strategy used in Deep Q learning. Balances exploration, where the
agent tries out new actions and collects new data, and exploitation, where the agent uses the information it already has
to select the action with the highest expected reward. The algorithm selects a random action with probability ϵ and the
action with the highest Q value with probability 1− ϵ. The value of ϵ decreases over time to gradually shift the focus
from exploration to exploitation.

ALEXANDRE VÉRINE DEEP LEARNING 2 147 / 247

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
MODEL 2+ INCORPORATED ϵ-EXPLORATION

Convolutional network + ϵ-greedy Algorithm
during training:

InputLayer
input:

output:

[(None, 5, 5, 2)]

[(None, 5, 5, 2)]

Conv2D
input:

output:

(None, 5, 5, 2)

(None, 4, 4, 8)

Activation
input:

output:

(None, 4, 4, 8)

(None, 4, 4, 8)

Conv2D
input:

output:

(None, 4, 4, 8)

(None, 3, 3, 16)

Flatten
input:

output:

(None, 3, 3, 16)

(None, 144)

Dense
input:

output:

(None, 144)

(None, 4)

Activation
input:

output:

(None, 4)

(None, 4)

ALEXANDRE VÉRINE DEEP LEARNING 2 148 / 247

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL NETWORKS
GANS MODELS

Generative Adversarial Networks (GANs) are a type of deep learning architecture composed of two neural networks,
the generator and the discriminator, that are trained in a adversarial manner. The generator network is trained to
generate fake data that appears similar to real data, while the discriminator network is trained to distinguish between
real and fake data. The loss for GANs is defined as a min-max game, where the generator minimizes the loss function,
and the discriminator maximizes it. D and G represent the discriminator and generator networks, respectively, and the
goal is to find the optimal configuration for D and G such that the generated samples appear indistinguishable from real
data.

ALEXANDRE VÉRINE DEEP LEARNING 2 149 / 247

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL NETWORKS
GANS MODELS

The loss of a (GAN) is defined as a minimax game between the generator and discriminator models. The generator aims
to generate samples that are indistinguishable from real samples, while the discriminator aims to distinguish the
generated samples from real samples. The loss function for the generator is defined as − log(D(G(z))), where D is the
discriminator model and G(z) is the generator’s output for a random noise vector z. The loss function for the
discriminator is defined as log(D(x)) + log(1−D(G(z))), where x is a real sample.

min
D

max
G

Ex∼preal [log(D(x))] + Ez∼q [log(1−D(G(z)))]

ALEXANDRE VÉRINE DEEP LEARNING 2 150 / 247

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL NETWORKS
MNIST GENERATION

G
input-tensor

depth:0 (64, 100)

Linear
depth:1

input: (64, 100)

output: (64, 256)

leaky_relu
depth:1

input: (64, 256)

output: (64, 256)

Linear
depth:1

input: (64, 256)

output: (64, 512)

leaky_relu
depth:1

input: (64, 512)

output: (64, 512)

Linear
depth:1

input: (64, 512)

output: (64, 1024)

leaky_relu
depth:1

input: (64, 1024)

output: (64, 1024)

Linear
depth:1

input: (64, 1024)

output: (64, 784)

tanh
depth:1

input: (64, 784)

output: (64, 784)

output-tensor
depth:0 (64, 784)

D
input-tensor

depth:0 (64, 784)

Linear
depth:1

input: (64, 784)

output: (64, 1024)

leaky_relu
depth:1

input: (64, 1024)

output: (64, 1024)

dropout
depth:1

input: (64, 1024)

output: (64, 1024)

Linear
depth:1

input: (64, 1024)

output: (64, 512)

leaky_relu
depth:1

input: (64, 512)

output: (64, 512)

dropout
depth:1

input: (64, 512)

output: (64, 512)

Linear
depth:1

input: (64, 512)

output: (64, 256)

leaky_relu
depth:1

input: (64, 256)

output: (64, 256)

dropout
depth:1

input: (64, 256)

output: (64, 256)

Linear
depth:1

input: (64, 256)

output: (64, 1)

sigmoid
depth:1

input: (64, 1)

output: (64, 1)

output-tensor
depth:0 (64, 1)

ALEXANDRE VÉRINE DEEP LEARNING 2 151 / 247

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL NETWORKS
MNIST GENERATION

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Number of Examples Seen by the model ×107

0

1

2

3

4

5

C
ro

ss
-E

n
tr

op
y

D Loss

G Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 152 / 247

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL NETWORKS
MNIST GENERATION

ALEXANDRE VÉRINE DEEP LEARNING 2 153 / 247

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
BERT

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained language model developed by Google
in 2018. It is a transformer-based architecture that uses a masked language modeling task to generate a deep
understanding of the contextual relationships between words in a sentence. BERT can be fine-tuned for various NLP
tasks such as sentiment classification by adding a classification layer on top of its pre-trained representations. The
model has achieved state-of-the-art performance in a wide range of NLP tasks, making it a popular choice for sentiment
analysis.

A bidirectional transformer is a type of transformer architecture in natural language processing (NLP) where
information from both past and future contexts is taken into consideration when making predictions. This is achieved
by processing the input sequence in two directions, starting from the beginning and the end of the sequence, and
concatenating the outputs to obtain the final representation. This allows the model to capture the context both in the
forward and backward directions, providing a more comprehensive representation of the input sequence.

ALEXANDRE VÉRINE DEEP LEARNING 2 154 / 247

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
BERT

BERT model consists of multiple transformer encoder blocks, with a self-attention mechanism, a feedforward neural
network and layer normalization, stacked on top of each other. It also includes a positional encoding component to
capture the relative position of tokens in a sequence, and a segment encoding component to differentiate between
different sequences within the same input.

ALEXANDRE VÉRINE DEEP LEARNING 2 155 / 247

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
TRAINING BERT

Bert is trained on two tasks, the masked language model and the next sentence prediction. In the masked language
model task, a portion of the input sequence is masked and the model must predict the original token based on its
context. In the next sentence prediction task, the model receives a pair of sentences and must predict whether the
second sentence follows the first one in the context of the input text. Both of these tasks are used to train Bert to
understand the context of words in a sentence and how they relate to each other, allowing it to perform well on a wide
range of natural language processing tasks.

ALEXANDRE VÉRINE DEEP LEARNING 2 156 / 247

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

Bert can be fine-tuned for sentiment analysis by adding a classifier layer on top of the pretrained Bert model. The layer
is trained on a labeled sentiment analysis dataset to predict the sentiment of a given input sequence, which can be a
sentence, paragraph, or document. Fine-tuning the model allows it to learn the specific nuances of sentiment in the
target task and produce improved results compared to using the pre-trained model alone.

ALEXANDRE VÉRINE DEEP LEARNING 2 157 / 247

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

ALEXANDRE VÉRINE DEEP LEARNING 2 158 / 247

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

0 50000 100000 150000 200000 250000
Number of Examples Seen by the model

0.0

0.1

0.2

0.3

0.4

0.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 159 / 247

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

0 2 4 6 8 10 12 14
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Train

Test

ALEXANDRE VÉRINE DEEP LEARNING 2 160 / 247

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

ALEXANDRE VÉRINE DEEP LEARNING 2 161 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
ESTIMATING DENSITY

In Machine Learning, the task of density estimation consists in estimating the probability density function of a random
variable from a set of observations. This is a fundamental problem in statistics and machine learning, with applications
in a wide range of fields, including anomaly detection, clustering, and generative modeling. There are several methods
for density estimation, including parametric models, non-parametric models, and deep learning models. In this section,
we will focus on a specific type of deep learning model called Normalizing Flows, which is used for density estimation
and generative modeling.

p(
x

)

X ⊂ Rd
x

Target
Distribution

P

Learned
Distribution

P̂

ALEXANDRE VÉRINE DEEP LEARNING 2 162 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
OVERVIEW

A Normalizing Flow is usually seen as:
▶ a generative model,
▶ a bijective mapping,
▶ an invertible neural network,
▶ a density estimator.

ALEXANDRE VÉRINE DEEP LEARNING 2 163 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
OVERVIEW

Figure. A mapping between two probability distributions
Point to point

ALEXANDRE VÉRINE DEEP LEARNING 2 164 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
OVERVIEW

Figure. A mapping between two probability distributions
Subset to subset

ALEXANDRE VÉRINE DEEP LEARNING 2 165 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
MATHEMATICAL FRAMEWORK

Normalizing Flow

A Normalizing Flow is a bijective function between a data space X and a latent space Z , both subset of Rd.

F : X 7−→ Z
x 7−→ z = F(x)

Data and Latent Distributions
In theory, a NF maps a target distribution P, ie the data distribution to a simple latent distribution Q.
Usually, Q is set to be a Normal Gaussian multivariate distribution N (0d, Id). p and q are respectivelly the probability
densities of P and Q.

ALEXANDRE VÉRINE DEEP LEARNING 2 166 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
HOW DOES IT WORK ?

In practice, the mapping is not perfect. P∗ induces a distribution Q and similarly, the latent distribution Q induces P̂,
which is the learned distribution. The forward pass F is called the Normalizing direction while the inverse pass F−1 is
called the Generative direction.

Figure. 1D Normalizing Flow process.

ALEXANDRE VÉRINE DEEP LEARNING 2 167 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

Change of Variable Formula

For a bijective and continuous fonction F and a latent distribution Q, the distribution induced by Q and F is defined
through the change of variable formula:

∀x ∈ X , p̂(x) = | det JacF(x)| q(F(x)). (1)

ALEXANDRE VÉRINE DEEP LEARNING 2 168 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = | det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 169 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = | det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 169 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = | det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 169 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = | det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 169 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = | det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 169 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
DENSITY ESTIMATION

To perfom density estimation:
1. Draw x ∼ P∗,
2. Compute F(x) and |det JacF(x)|,
3. Compute p̂(x) = q(F(x))| det JacF(x)|.

Figure. 1D Normalizing Process of Density Estimation.

ALEXANDRE VÉRINE DEEP LEARNING 2 170 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
DATA GENERATION

To perform data generation:
1. Draw z ∼ Q,
2. Compute x = F−1(x).

Figure. 1D Normalizing Flow process of Generation.

ALEXANDRE VÉRINE DEEP LEARNING 2 171 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
LOG-LIKELIHOOD

Loss
The objective is to approximate P∗ with P̂. We can minimize the Kullback-Leiber Divergence :

θ = argmin
θ
DKL(P∗∥P̂).

This is equivalent to maximizing the log likelihood :

θ = argmax
θ

Ex∼X [log p̂(x)] .

ALEXANDRE VÉRINE DEEP LEARNING 2 172 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
LOG-LIKELIHOOD

DKL(P∗∥P̂) =
∫
X

p∗(x) log
(

p∗(x)
p̂(x)

)
dx

nll = −Ex∼X [log p̂(x)]

ALEXANDRE VÉRINE DEEP LEARNING 2 173 / 247

DENSITY ESTIMATION WITH NORMALIZING FLOWS
LEARNING STEPS

Figure. Learning Process for a 1D Normalizing Flow.

ALEXANDRE VÉRINE DEEP LEARNING 2 174 / 247

IMAGE SEGMENTATION WITH U-NET
IMAGE SEGMENTATION

Image segmentation is the process of partitioning an image into multiple segments or regions based on the
characteristics of the pixels. It is a fundamental task in computer vision and has applications in various fields, including
medical imaging, autonomous driving, and satellite image analysis. There are several methods for image segmentation,
including thresholding, clustering, and deep learning-based approaches. In this section, we will focus on a deep
learning model called U-Net, which is commonly used for image segmentation tasks.

ALEXANDRE VÉRINE DEEP LEARNING 2 175 / 247

IMAGE SEGMENTATION WITH U-NET
APPLICATIONS OF IMAGE SEGMENTATION

Image segmentation has a wide range of applications in computer vision and image processing, including:
▶ Medical Imaging: Segmentation of organs, tumors, and other structures in medical images.
▶ Autonomous Driving: Segmentation of objects such as cars, pedestrians, and road signs in images captured by

autonomous vehicles.
▶ Satellite Image Analysis: Segmentation of land cover types, buildings, and other features in satellite images.
▶ Object Detection: Segmentation of objects in images to localize and classify them.
▶ Image Editing: Segmentation of objects for image editing tasks such as background removal and image

compositing.

ALEXANDRE VÉRINE DEEP LEARNING 2 176 / 247

IMAGE SEGMENTATION WITH U-NET
TYPE OF SEGMENTATIONS

Image segmentation can be broadly classified into two
types: semantic segmentation and instance segmentation.

▶ Semantic Segmentation: Semantic segmentation
assigns a class label to each pixel in an image, such
as road, car, person, etc. The goal is to partition the
image into semantically meaningful regions.

▶ Instance Segmentation: Instance segmentation goes
a step further than semantic segmentation by
distinguishing between different instances of the
same class. It assigns a unique label to each object
instance in the image.

ALEXANDRE VÉRINE DEEP LEARNING 2 177 / 247

IMAGE SEGMENTATION WITH U-NET
U-NET ARCHITECTURE

U-Net is a convolutional neural network architecture designed for image segmentation tasks. It consists of an
encoder-decoder structure with skip connections that allow the model to capture both local and global features in the
input image.

ALEXANDRE VÉRINE DEEP LEARNING 2 178 / 247

IMAGE SEGMENTATION WITH U-NET
LOSS FUNCTIONS

3 main loss functions are used for image segmentation tasks:
▶ Categorical Cross-Entropy Loss: Used for multi-class segmentation tasks where each pixel is classified into one of

multiple classes.
▶ Dice Loss: A similarity-based loss function that measures the overlap between the predicted segmentation mask

and the ground truth mask.
▶ Shaped aware Loss: A loss function that penalizes the model for making errors near the object boundaries, where

the segmentation is most critical.

ALEXANDRE VÉRINE DEEP LEARNING 2 179 / 247

IMAGE SEGMENTATION WITH U-NET
LOSS FUNCTIONS

3 main loss functions are used for image segmentation tasks:
▶ Categorical Cross-Entropy Loss: Used for multi-class segmentation tasks where each pixel is classified into one of

multiple classes.

L = − 1
N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c)

▶ Dice Loss: A similarity-based loss function that measures the overlap between the predicted segmentation mask
and the ground truth mask.

▶ Shaped aware Loss: A loss function that penalizes the model for making errors near the object boundaries, where
the segmentation is most critical.

ALEXANDRE VÉRINE DEEP LEARNING 2 179 / 247

IMAGE SEGMENTATION WITH U-NET
LOSS FUNCTIONS

3 main loss functions are used for image segmentation tasks:
▶ Categorical Cross-Entropy Loss: Used for multi-class segmentation tasks where each pixel is classified into one of

multiple classes.
▶ Dice Loss: A similarity-based loss function that measures the overlap between the predicted segmentation mask

and the ground truth mask.

L = 1−
2
∑N

i=1 yiŷi∑N
i=1 yi +

∑N
i=1 ŷi

▶ Shaped aware Loss: A loss function that penalizes the model for making errors near the object boundaries, where
the segmentation is most critical.

ALEXANDRE VÉRINE DEEP LEARNING 2 179 / 247

IMAGE SEGMENTATION WITH U-NET
LOSS FUNCTIONS

3 main loss functions are used for image segmentation tasks:
▶ Categorical Cross-Entropy Loss: Used for multi-class segmentation tasks where each pixel is classified into one of

multiple classes.
▶ Dice Loss: A similarity-based loss function that measures the overlap between the predicted segmentation mask

and the ground truth mask.
▶ Shaped aware Loss: A loss function that penalizes the model for making errors near the object boundaries, where

the segmentation is most critical.

L = −w(x)

[
1
N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c)

]
with w(x) a weight function that assigns higher weights to pixels near the object boundaries.

ALEXANDRE VÉRINE DEEP LEARNING 2 179 / 247

Part V

MANAGING A DEEP LEARNING PROJECT

ALEXANDRE VÉRINE DEEP LEARNING 2 180 / 247

WHY NOTEBOOKS ARE NOT ENOUGH
WHERE NOTEBOOKS FALL SHORT

Jupyter or Colab Notebooks are great for prototyping, showcasing, and data exploration. However, they are not enough
for managing a deep learning project. In particular, they lack the following features:
▶ Reproducibility: Notebooks are not reproducible. They are not designed to be run multiple times with the same

results.
▶ Versioning: Notebooks are not versioned. It is hard to track changes and revert to versions.
▶ Modularity: Notebooks are not modular. It is hard to reuse code across different notebooks.
▶ Scalability: Notebooks are not scalable. They are not designed to run on multiple machines or in the cloud.
▶ Monitoring: Notebooks are not monitored. It is hard to track the progress of a long-running experiment.
▶ Collaboration: Notebooks are not collaborative. It is hard to work with multiple people on the same notebook.
▶ Deployment: Notebooks are not deployable. They are not designed to be run in production.
▶ Performance: Notebooks are not performant, depending on the amount of log, they can be up to 50% slower than a

script.

ALEXANDRE VÉRINE DEEP LEARNING 2 181 / 247

WHY NOTEBOOKS ARE NOT ENOUGH
WHY SCRIPTS ARE BETTER

Directly running Python script is a better alternative to Jupyter Notebooks for a deep learning project. They allow:
▶ Support for Scheduling and Automation: Scripts can be scheduled to run at specific times or intervals.
▶ Support for Versioning: Scripts can be versioned using Git or other version control systems.
▶ Support for Scalability: Scripts can be run on multiple machines or in the cloud.
▶ Support for Command Line Arguments: Scripts can take command line arguments for customization.
▶ Support for Ressource Management: Scripts can be run in the background without blocking the terminal or

integrate cluster management tools (e.g. SLURM).
▶ Support for Logging: Scripts can log information to files for monitoring and debugging.
▶ Support for Modularity: Scripts can be modularized into functions and classes.

ALEXANDRE VÉRINE DEEP LEARNING 2 182 / 247

WHY NOTEBOOKS ARE NOT ENOUGH
PROGRAM

In this lecture, we will learn how to manage a deep learning project using Python scripts. We will cover the following
topics:
▶ Project Structure: We will learn how to organize a deep learning project into directories and files for better

modularity and reusability.
▶ Dependency Management: We will learn how to manage dependencies using a virtual environment and a

requirements file.
▶ Running code as a script: We will learn how to run Python code as a script from the command line.
▶ Logging: We will learn how to log information to files for monitoring and debugging.

ALEXANDRE VÉRINE DEEP LEARNING 2 183 / 247

MODULARITY
WHY CODE SHOULD BE MODULAR

Writing modular code is essential for managing complex deep learning projects. It offers several advantages:
▶ Reusability: Modular code allows functions and classes to be reused across different parts of the project, reducing

redundancy.
▶ Maintainability: With a clear structure, modular code is easier to maintain and update, especially in large projects.
▶ Testing and Debugging: Smaller, independent modules make it easier to test and debug specific parts of the

codebase.
▶ Collaboration: A modular design enables multiple team members to work on different parts of the codebase

simultaneously without conflicts.
▶ Scalability: Modular code can scale more effectively, as each component can be optimized or extended individually.

ALEXANDRE VÉRINE DEEP LEARNING 2 184 / 247

MODULARITY
ORGANIZING YOUR PROJECT

repo

main.py
models.py

utils.py
requirements.txt

experiments xp1

plots
epoch_0.png
epoch_10.png

models
epoch_0.pth
epoch_10.pth

info.log

Explanation:
▶ main.py: Entry point for running experiments
▶ models.py, agents.py, etc.: Modular files for specific tasks
▶ utils.py: Utility functions and classes
▶ requirements.txt: List of dependencies
▶ experiments/: Separate folder for experiment outputs, logs, and saved models

ALEXANDRE VÉRINE DEEP LEARNING 2 185 / 247

MODULARITY
KEY PRINCIPLES OF MODULARITY

To build a maintainable and scalable project, follow these modularity principles:
▶ Separation of Concerns: Each module should have a single responsibility (e.g., separate data processing, model

architecture, and training code).
▶ Encapsulation: Keep functionality within defined boundaries to avoid cross-module dependencies.
▶ Configurable Parameters: Use configuration files for parameters, ensuring that code can be adapted to new

experiments without modification.
▶ Interface Design: Define clear inputs and outputs for each module, making it easier to swap or update

components.

ALEXANDRE VÉRINE DEEP LEARNING 2 186 / 247

MODULARITY
WRITING MODULAR CODE IN PYTHON

Best practices for maintaining modularity in Python:
▶ Use Functions and Classes: Encapsulate related functionality in functions and classes for better organization.
▶ Separate Configurations: Store experiment parameters and settings in YAML or JSON files instead of hardcoding.
▶ Follow a Naming Convention: Consistent, descriptive names for modules, functions, and variables improve

readability.
▶ Documentation: Document modules with docstrings and comments to clarify each part’s role and dependencies.

ALEXANDRE VÉRINE DEEP LEARNING 2 187 / 247

MODULARITY
DEFINING THE NEURALNET CLASS

Code example:

import torch.nn as nn

class NeuralNet(nn.Module):
def __init__(self):

super(NeuralNet, self).__init__()
self.block = None

def forward(self, x):
x = self.block(x)
return x

ALEXANDRE VÉRINE DEEP LEARNING 2 188 / 247

MODULARITY
EXTENDING NEURALNET FOR DIFFERENT ARCHITECTURES

Modularity allows for easy extension of base classes. Here, we extend NeuralNet to create specialized architectures:

class DenseNet(NeuralNet):
def __init__(self, input_size, hidden_size, output_size):

super(DenseNet, self).__init__()
self.blocks = nn.ModuleList([nn.Linear(input_size, hidden_size),

nn.ReLU(),
nn.Linear(hidden_size, output_size)])

class ConvNet(NeuralNet):
def __init__(self, input_channels, num_classes):

super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(input_channels=16,

kernel_size=3,
stride=1,
padding=1)

self.fc = nn.Linear(16 * 28 * 28, num_classes)
self.blocks = nn.ModuleList([self.conv1, nn.ReLU(), self.fc])

ALEXANDRE VÉRINE DEEP LEARNING 2 189 / 247

LOCAL ENVIRONMENT SETUP
WHY SET UP A LOCAL ENVIRONMENT?

Setting up a local environment is crucial for deep learning projects for several reasons:
▶ Dependency Isolation: Keeps project-specific dependencies separate from system-wide packages, preventing

version conflicts.
▶ Reproducibility: Ensures consistent dependencies, allowing for reproducible experiments and easier collaboration.
▶ Project Portability: Makes it simpler to share the project with others, as they can replicate the exact environment.

Tools for Creating Local Environments:
▶ virtualenv: Lightweight environment creation tool
▶ conda: Environment management with additional package management capabilities

ALEXANDRE VÉRINE DEEP LEARNING 2 190 / 247

LOCAL ENVIRONMENT SETUP
WHY USE VIRTUALENV?

virtualenv offers several advantages over conda for local environments:
▶ Lightweight: virtualenv is faster to create and has a smaller footprint compared to conda.
▶ Python Version Agnostic: Works with different versions of Python, regardless of the system’s Python version.
▶ Flexible Integration: Compatible with pip and various Python packaging tools, making it easy to install

dependencies from requirements.txt.
Creating a Virtual Environment:

Install virtualenv if not already installed
pip install virtualenv

Create a new virtual environment
virtualenv my_env

ALEXANDRE VÉRINE DEEP LEARNING 2 191 / 247

LOCAL ENVIRONMENT SETUP
ESSENTIAL COMMANDS FOR VIRTUALENV

Once the virtual environment is created, here are the key commands to manage it:
▶ Activate the Environment:

On Windows
my_env\Scripts\activate

On macOS/Linux
source my_env/bin/activate

▶ Deactivate the Environment:
deactivate

▶ Install Dependencies:
Install a package
pip install <package_name>

Install from a requirements file
pip install -r requirements.txt

Tip: Always activate the environment before installing packages.
ALEXANDRE VÉRINE DEEP LEARNING 2 192 / 247

LOCAL ENVIRONMENT SETUP
WHY USE CONDA?

conda provides several advantages over virtualenv for local environments:
▶ Built-In Package Management: conda can install packages directly.
▶ Cross-Language Support: Supports packages beyond Python, such as R or C libraries, making it versatile for data

science projects.
▶ Easier Dependency Resolution: conda handles complex dependencies automatically, reducing conflicts.

Creating a Conda Environment:

Create a new environment
conda create --name my_env python=3.8

ALEXANDRE VÉRINE DEEP LEARNING 2 193 / 247

LOCAL ENVIRONMENT SETUP
ESSENTIAL COMMANDS FOR CONDA

Once the conda environment is created, here are the key commands to manage it:
▶ Activate the Environment:

conda activate my_env

▶ Deactivate the Environment:
conda deactivate

▶ Install Dependencies:
Install a specific package
conda install <package_name>

Install from an environment file
conda env update --file environment.yml

Tip: Use environment.yml files for reproducible setups when sharing your project.

ALEXANDRE VÉRINE DEEP LEARNING 2 194 / 247

RUNNING EXPERIMENTS
INTRODUCTION TO ARGPARSE

The argparse library in Python allows for flexible command-line argument parsing, which is essential for configuring
scripts without modifying code.
▶ Customizable Scripts: Enable users to specify parameters at runtime.
▶ Improves Code Reusability: Parameters can be adjusted dynamically, making the script adaptable across tasks.
▶ User-Friendly Interface: Provides help messages and default values, making it easier to use scripts.

Example:

import argparse
parser = argparse.ArgumentParser(description="My script description")

ALEXANDRE VÉRINE DEEP LEARNING 2 195 / 247

RUNNING EXPERIMENTS
ADDING ARGUMENTS

Using argparse, we can add different types of arguments with various options:

Adding arguments
parser.add_argument("--epochs", type=int, default=10,

help="Number of epochs")
parser.add_argument("--lr", type=float, default=0.001,

help="Learning rate")
parser.add_argument("--batch-size", type=int, default=32,

help="Batch size")
args = parser.parse_args()

Explanation:
▶ -epochs: Integer argument with a default value of 10.
▶ -lr: Float argument with a default value of 0.001.
▶ -batch-size: Integer argument to specify the batch size.

ALEXANDRE VÉRINE DEEP LEARNING 2 196 / 247

RUNNING EXPERIMENTS
EXAMPLE USAGE OF ARGPARSE

Once arguments are defined, we can access them via args:

Accessing arguments
print(f"Train for {args.epochs} epochs with batch size {args.batch_size}")

Example of running the script with arguments:

python my_script.py

python my_script.py --epochs 20 --lr 0.01 --batch-size 64

python my_script.py --epochs 200 --lr 1e-5

This allows the script to be configured dynamically without changing the code.

ALEXANDRE VÉRINE DEEP LEARNING 2 197 / 247

RUNNING EXPERIMENTS
RUNNING PYTHON COMMANDS IN THE TERMINAL (MAC/LINUX)

Running Python scripts from the terminal on Mac and Linux provides flexibility and resource control:
▶ Basic Command:

python my_script.py --epochs 10 --lr 0.001

▶ Background Execution: Running a script in the background frees up the terminal for other tasks.
python my_script.py --epochs 10 --lr 0.001 &

▶ Monitoring Background Jobs: Use jobs to list background jobs and fg to bring them to the foreground.
▶ Importance of Background Execution: Ideal for long-running tasks, especially on servers or remote machines.

ALEXANDRE VÉRINE DEEP LEARNING 2 198 / 247

RUNNING EXPERIMENTS
RUNNING PYTHON COMMANDS IN THE TERMINAL (WINDOWS)

Running Python scripts from the Command Prompt or PowerShell on Windows is straightforward:
▶ Basic Command:

python my_script.py --epochs 10 --lr 0.001

▶ Running in Background:
• Use pythonw to launch a new command window:

pythonw my_script.py --epochs 10 --lr 0.001

• Alternatively, use start /B for background execution without opening a new window:
start /B python my_script.py --epochs 10 --lr 0.001

▶ Importance of Background Execution: Allows other terminal tasks and is useful for long-running processes.

ALEXANDRE VÉRINE DEEP LEARNING 2 199 / 247

RUNNING EXPERIMENTS
SCHEDULING JOBS WITH CRON AND ALTERNATIVES

Cron is a task scheduler for Unix-based systems that runs scripts or commands at scheduled intervals.
▶ Cron Syntax: The format is min hour day month day_of_week command.
▶ Example:

Run a script every day at midnight
0 0 * * * /usr/bin/python /path/to/my_script.py --epochs 10

Alternative Tools:
▶ MacOS: Use launchd, a built-in tool for scheduling tasks.
▶ Windows: Use the Task Scheduler, which provides a GUI for managing scheduled tasks.

Why Scheduling Matters: Automating tasks saves time and allows for consistent, timely execution of regular jobs (e.g.,
retraining a model).

ALEXANDRE VÉRINE DEEP LEARNING 2 200 / 247

MONITORING EXPERIMENTS
WHY MONITORING MATTERS

Monitoring experiments is essential in deep learning projects for several reasons:
▶ Track Progress: Provides insights into training dynamics, allowing for better optimization and tuning.
▶ Diagnose Issues Early: Identify potential issues (e.g., vanishing gradients, overfitting) quickly, saving time and

resources.
▶ Reproducibility and Accountability: Logs and metrics enable reproducibility and allow other collaborators to

understand the experiment setup and results.
▶ Model Comparisons: Facilitates comparison of different runs and hyperparameters to identify the best-performing

model.

ALEXANDRE VÉRINE DEEP LEARNING 2 201 / 247

MONITORING EXPERIMENTS
TOOLS FOR MONITORING EXPERIMENTS

There are various tools for effective monitoring and tracking:
▶ Basic Logging: Use the logging module to track metrics, errors, and messages within code.
▶ JSONL Files: Store logs as structured data, allowing for detailed tracking and easy parsing.
▶ TensorBoard: Provides a visual interface for monitoring metrics, loss curves, and other parameters in real-time.
▶ Weights & Biases: A powerful tool for experiment tracking and visualization, allowing for collaborative analysis

and sharing.
These tools support different needs, from lightweight solutions (logging) to more robust experiment tracking
(TensorBoard, Weights & Biases).

ALEXANDRE VÉRINE DEEP LEARNING 2 202 / 247

MONITORING EXPERIMENTS
LOGGING IN PYTHON

The logging module in Python is a flexible way to capture and track key information during training:
▶ Purpose: Logs provide structured, timestamped messages about code execution, helping with debugging and

monitoring.
▶ Logging Levels: logging supports different log levels:

• INFO: General messages about code execution and key steps.
• WARNING: Messages for potential issues that are not critical.
• ERROR: Logs errors that may stop part of the execution.

▶ Formats: Logs can include timestamps, filenames, and message content for better traceability.

ALEXANDRE VÉRINE DEEP LEARNING 2 203 / 247

MONITORING EXPERIMENTS
SETTING UP A LOGGER

Here’s how to set up a basic logger in Python:

import logging

Configure the logger
logging.basicConfig(

filename=’experiment.log’,
level=logging.INFO,
format=’%(asctime)s - %(levelname)s - %(message)s’

)

Log messages
logging.info("Training started")
logging.warning("Batch size might be too large")
logging.error("Out of memory error")

Explanation:
▶ filename: Saves logs to a file for permanent record.
▶ level: Sets the minimum log level (INFO, WARNING, ERROR) for capture.
▶ format: Configures the log format with timestamp, level, and message.

ALEXANDRE VÉRINE DEEP LEARNING 2 204 / 247

MONITORING EXPERIMENTS
SAVING METRICS AND PLOTS

For effective monitoring, it’s important to save, rather than print, key metrics and visualizations:
▶ Metrics Tracking: Save loss, accuracy, and other key metrics to log files or structured formats (e.g., JSON, JSONL)

for later analysis.
▶ Plotting Loss Curves: Generate and save plots of loss, accuracy, and other metrics during training, rather than

printing them in the terminal.
▶ Tools for Visualization: Use tools like matplotlib to save plots, or real-time dashboards such as:

• TensorBoard: Visualize training metrics live for a smoother debugging experience.
• Weights & Biases: Track metrics, visualize experiments, and compare runs.

Tip: Automate saving plots and metrics to ensure nothing is missed during training.

ALEXANDRE VÉRINE DEEP LEARNING 2 205 / 247

VERSIONING YOUR CODE
WHY GIT MATTERS

Git is essential for managing code in deep learning projects for several reasons:
▶ Version Control: Git tracks changes over time, enabling easy rollback to previous versions and enhancing

reproducibility.
▶ Collaboration: Git allows multiple contributors to work on the same project, with tools to merge code and resolve

conflicts.
▶ Backup and Security: Code stored on remote servers (e.g., GitHub, GitLab) provides a secure, backed-up version

of the project.
▶ Experiment Tracking: Branching allows you to test experimental features or new ideas without affecting the main

code.

ALEXANDRE VÉRINE DEEP LEARNING 2 206 / 247

VERSIONING YOUR CODE
HOW GIT WORKS

Git is a distributed version control system where every version of the repository is saved locally and remotely (e.g., on
GitHub):
▶ Local Repository: Changes are tracked locally on your machine, allowing for offline work and complete version

history.
▶ Remote Repository: A server (e.g., GitHub, GitLab) stores your code and history, making it accessible for

collaboration.
▶ Commit History: Every change is saved as a "commit," building a history of modifications for easy review.

Each commit is like a snapshot of the project at a specific point in time, allowing for seamless version tracking.

ALEXANDRE VÉRINE DEEP LEARNING 2 207 / 247

VERSIONING YOUR CODE
ESSENTIAL GIT COMMANDS

Here are some fundamental Git commands to manage your repository:
▶ git pull: Fetch updates from the remote repository and integrate them into your local repository.

git pull origin main

▶ git add: Stage changes for the next commit.
git add <file_name> # Add a specific file
git add . # Add all changed files

▶ git rm: Remove a file from the repository.
git rm <file_name>

ALEXANDRE VÉRINE DEEP LEARNING 2 208 / 247

VERSIONING YOUR CODE
COMMITTING AND PUSHING CHANGES

Committing and pushing changes are key steps in Git:
▶ git commit: Save a snapshot of the staged changes to the local repository with a message describing the change.

git commit -m "Describe the change"

▶ git push: Upload your commits from the local repository to the remote repository.
git push origin main

Regular commits with clear messages help track progress and make it easier to understand code changes.

ALEXANDRE VÉRINE DEEP LEARNING 2 209 / 247

VERSIONING YOUR CODE
BRANCHING AND PULL REQUESTS

Git branches enable experimentation and collaboration:
▶ Branches: Create separate lines of development to test features without affecting the main codebase.

git branch new-feature # Create a branch
git checkout new-feature # Switch to the branch

▶ Merging: Combine changes from a branch back into the main branch once the feature is ready.
git checkout main
git merge new-feature

▶ Pull Requests (PRs): PRs are used on platforms like GitHub to review and approve code before merging it into the
main branch.

ALEXANDRE VÉRINE DEEP LEARNING 2 210 / 247

VERSIONING YOUR CODE
GIT BRANCHING WORKFLOW

The following diagram represents a typical Git workflow with branching, committing, and pushing changes.

ALEXANDRE VÉRINE DEEP LEARNING 2 211 / 247

Part VI

PROJECT PRESENTATION

ALEXANDRE VÉRINE DEEP LEARNING 2 212 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
A DATASET

ALEXANDRE VÉRINE DEEP LEARNING 2 213 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
A DECISION BOUNDARY

ALEXANDRE VÉRINE DEEP LEARNING 2 214 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
A CLASSIFIER

f(x) = 1f(x) = −1

ALEXANDRE VÉRINE DEEP LEARNING 2 215 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
CHOOSING A DATA POINT

f(x) = 1f(x) = −1

x1

ALEXANDRE VÉRINE DEEP LEARNING 2 216 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
PERTURBING THE DATA POINT

f(x) = 1f(x) = −1

x1

x1 + δ

ALEXANDRE VÉRINE DEEP LEARNING 2 217 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
ADVERSARIAL ATTACKS

What if δ is imperceptible ?

ALEXANDRE VÉRINE DEEP LEARNING 2 218 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
ADVERSARIAL ATTACKS IN IMAGE RECOGNITION

Source : Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.

ALEXANDRE VÉRINE DEEP LEARNING 2 219 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
ADVERSARIAL ATTACKS IN IMAGE RECOGNITION

Figure. Adversarial traffic signs (Sitawarin, Bhagoji et al., 2018)

ALEXANDRE VÉRINE DEEP LEARNING 2 220 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
DEFINITIONS

To be imperceptible, the norm of the perturbation is bounded

We define an ϵ ∈ R such that ∥δ∥p ≤ ϵ.
In practice, we use ℓ2 and ℓ∞ norm to bound the perturbation.

Generating a adversarial example

Let f : Rd → Y be a classifier. Given an example x ∈ X ⊂ Rd and its true label y ∈ Y , the goal is to find δ ∈ Rd such that :

Untargeted attacks
∥δ∥p ≤ ϵ and f (x + δ) ̸= y

Targeted attacks
∥δ∥p ≤ ϵ and f (x + δ) = t with t ̸= y

ALEXANDRE VÉRINE DEEP LEARNING 2 221 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
GENERATING AN ADVERSARIAL EXAMPLE WITH ℓ2-NORM

ALEXANDRE VÉRINE DEEP LEARNING 2 222 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
GENERATING AN ADVERSARIAL EXAMPLE WITH ℓ∞-NORM

ALEXANDRE VÉRINE DEEP LEARNING 2 223 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
FGSM ATTACK

FGSM
The Fast Gradient Sign Method (FGSM) is an attack scheme that uses the gradients of the neural network to create
adversarial examples, it is defined as:

xadv = x + ϵ · sign(∇xL(θ, x, y))

Source:
Explaining and Harnessing Adversarial Examples, Goodfellow et. al, ICLR 2015.

ALEXANDRE VÉRINE DEEP LEARNING 2 224 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
ℓ2-PGD ATTACK

ℓ2-PGD

ℓ2-PGD is an iterative method similar to ℓ∞-PGD, but it constrains the perturbation to an ℓ2-norm ball. The iteration is
defined as follows:

1. x0 ← x
2. repeat n times :

xt+1 = ΠB2(x,ϵ) (xt + η∇xLθ(xt, y))

Source:
Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et. al, ICLR 2018.

ALEXANDRE VÉRINE DEEP LEARNING 2 225 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
ℓ2-PGD ATTACK

ALEXANDRE VÉRINE DEEP LEARNING 2 226 / 247

MINI PROJECT 2: ADVERSARIAL ATTACKS
ℓ∞-PGD ATTACK

ℓ∞-PGD

ℓ∞-PGD is an iterative method that constructs the perturbed data as follows :
1. x0 ← x
2. repeat n times :

xt+1 = ΠB∞(x,ϵ) (xt + ηsign(∇xLθ(xt, y)))

Source:
Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et. al, ICLR 2018.

ALEXANDRE VÉRINE DEEP LEARNING 2 227 / 247

GENERATIVE MODELS
CONTEXT

In the past few years, generative models have made significant progress in various domains of application.

Text Generation

eg: Code Completion

ALEXANDRE VÉRINE DEEP LEARNING 2 228 / 247

GENERATIVE MODELS
CONTEXT

In the past few years, generative models have made significant progress in various domains of application.

Text Generation Image/Video Generation

eg: Code Completion eg: Media Industry

ALEXANDRE VÉRINE DEEP LEARNING 2 228 / 247

GENERATIVE MODELS
CONTEXT

In the past few years, generative models have made significant progress in various domains of application.

Text Generation Image/Video Generation Sound Generation

eg: Code Completion eg: Media Industry eg: Speech Synthesis

ALEXANDRE VÉRINE DEEP LEARNING 2 228 / 247

GENERATIVE MODELS
CONTEXT

In the past few years, generative models have made significant progress in various domains of application.

Text Generation Image/Video Generation Sound Generation Molecular Generation

eg: Code Completion eg: Media Industry eg: Speech Synthesis eg: Drug Discovery

ALEXANDRE VÉRINE DEEP LEARNING 2 228 / 247

GENERATIVE MODELS
FRAMEWORK

p(
x

)
X ⊂ Rd

x

Target
Distribution

P

▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.

ALEXANDRE VÉRINE DEEP LEARNING 2 229 / 247

GENERATIVE MODELS
FRAMEWORK

p(
x

)
X ⊂ Rd

x

Target
Distribution

P

▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.

ALEXANDRE VÉRINE DEEP LEARNING 2 229 / 247

GENERATIVE MODELS
FRAMEWORK

p(
x

)
X ⊂ Rd

x

Target
Distribution

P

Learned
Distribution

P̂

▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
▶ Goal: Learn a parameterized distribution P̂ that approximate P:

ALEXANDRE VÉRINE DEEP LEARNING 2 229 / 247

GENERATIVE MODELS
FRAMEWORK

p(
x

)

X ⊂ Rd
x

q(
z)

Z ⊂ Rm
z

Target
Distribution

P

Latent
Distribution

Q

▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
▶ Goal: Learn a parameterized distribution P̂ that approximate P:

1. Consider a distribution Q in a latent space X ⊂ Rm, usually N (0, Im).

ALEXANDRE VÉRINE DEEP LEARNING 2 229 / 247

GENERATIVE MODELS
FRAMEWORK

p(
x

)

X ⊂ Rd
x

q(
z)

Z ⊂ Rm
z

Target
Distribution

P

Latent
Distribution

Q

Learned
Distribution

P̂G

G

▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
▶ Goal: Learn a parameterized distribution P̂G that approximate P:

1. Consider a distribution Q in a latent space X ⊂ Rm, usually N (0, Im).
2. Take a generator model G represented by a neural network. Take P̂G = G#Q.

ALEXANDRE VÉRINE DEEP LEARNING 2 229 / 247

GENERATIVE MODELS
FRAMEWORK

▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
▶ Goal: Learn a parameterized distribution P̂G that approximate P:

1. Consider a distribution Q in a latent space X ⊂ Rm, usually N (0, Im).
2. Take a generator model G represented by a neural network. Take P̂G = G#Q.
3. Compute Gopt that minimize a dissimilarity measure D between P and P̂G:

Gopt = argmin
G

D(P, P̂G)

ALEXANDRE VÉRINE DEEP LEARNING 2 229 / 247

GENERATIVE MODELS
FRAMEWORK

p(
x

)

X ⊂ Rd
x

q(
z)

Z ⊂ Rm
z

Target
Distribution

P

Latent
Distribution

Q

Learned
Distribution

P̂

G

▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
▶ Goal: Learn a parameterized distribution P̂ that approximate P:

1. Consider a distribution Q in a latent space X ⊂ Rm, usually N (0, Im).
2. Take a generator model G represented by a neural network. Take P̂ = G#Q.
3. Compute Gopt that minimize a dissimilarity measure D between P and P̂:

Gopt = argmin
G

D(P, P̂)

ALEXANDRE VÉRINE DEEP LEARNING 2 230 / 247

GENERATIVE MODELS
IN PRACTICE

?

Midjourney v5 (2023)DALL·E 2 (2023)

Prompt: A dog playing with a child.

ALEXANDRE VÉRINE DEEP LEARNING 2 231 / 247

GENERATIVE MODELS
IN PRACTICE

̸=

Midjourney v5 (2023)DALL·E 2 (2023)

Prompt: A dog playing with a child.

Low
Quality

High Diversity
High Quali

ty

Low
Diver

sit
y

ALEXANDRE VÉRINE DEEP LEARNING 2 231 / 247

GENERATIVE MODELS
IN PRACTICE

P̂ ̸= P

p(
x

)

x

Target P

Model P̂

p(
x

)

x

Target P

Model P̂

ALEXANDRE VÉRINE DEEP LEARNING 2 232 / 247

GENERATIVE MODELS
IN PRACTICE

P̂ ̸= P

p(
x

)

x

Target P

Model P̂

p(
x

)

x

Target P

Model P̂

Low Diversity
ALEXANDRE VÉRINE DEEP LEARNING 2 232 / 247

GENERATIVE MODELS
IN PRACTICE

P̂ ̸= P

p(
x

)

x

Target P

Model P̂

p(
x

)

x

Target P

Model P̂

Low Diversity Low Quality
ALEXANDRE VÉRINE DEEP LEARNING 2 232 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity

ALEXANDRE VÉRINE DEEP LEARNING 2 233 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity

↓
Precision

=
What proportion of generated samples are realistic?

ALEXANDRE VÉRINE DEEP LEARNING 2 233 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity

↓ ↓
Precision Recall

= =
What proportion of generated samples are realistic? What proportion of real samples can be generated?

ALEXANDRE VÉRINE DEEP LEARNING 2 233 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

p(
x

)

x

Target P

Model P̂

p(
x

)

x

Target P

Model P̂

ALEXANDRE VÉRINE DEEP LEARNING 2 234 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Definition 2.1 (Support-Based Precision and Recall - [6].)

For any distributions P ∈ P(X) and P̂ ∈ P(X), we say that the distribution P has precision ᾱ at recall β̄ with respect to P̂ if

ᾱ = P̂(Supp(P)) et β̄ = P(Supp(P̂)). (2)

ALEXANDRE VÉRINE DEEP LEARNING 2 234 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Precision for finite support is the proportion of generated data that lies on the support of the real data:

ᾱ = P̂(Supp(P)).

p(
x

)

x

Supp(P)

Target P

Model P̂

p(
x

)

x

Supp(P)

Target P

Model P̂

ALEXANDRE VÉRINE DEEP LEARNING 2 235 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Precision for finite support is the proportion of generated data that lies on the support of the real data:

ᾱ = P̂(Supp(P)).

p(
x

)

x

Supp(P)

Target P

Model P̂

p(
x

)

x

Supp(P)

Target P

Model P̂

ALEXANDRE VÉRINE DEEP LEARNING 2 235 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Recall for finite support is the proportion of the support of the real data that is covered by the generated data:

β̄ = P(Supp(P̂)).

p(
x

)

x

Target P

Model P̂

Supp(P̂)

p(
x

)

x

Target P

Model P̂

Supp(P̂)

ALEXANDRE VÉRINE DEEP LEARNING 2 236 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Recall for finite support is the proportion of the support of the real data that is covered by the generated data:

β̄ = P(Supp(P̂)).

p(
x

)

x

Target P

Model P̂

Supp(P̂)

p(
x

)

x

Target P

Model P̂

Supp(P̂)

ALEXANDRE VÉRINE DEEP LEARNING 2 236 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
IN PRACTICE

MNIST Dataset [7]

ALEXANDRE VÉRINE DEEP LEARNING 2 237 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
IN PRACTICE

MNIST Dataset [7] High Precision Low Recall

Precision: 0.80 Recall: 0.70

Low Precision High Recall

Precision: 0.54 Recall: 0.91

ALEXANDRE VÉRINE DEEP LEARNING 2 237 / 247

PRECISION AND RECALL FOR GENERATIVE MODELS
FOR LLMS

On open-ended generation, the quality and
diversity of LLMs can also be evaluated using

Precision and Recall: [2]

0.70 0.75 0.80

Recall

0.32

0.34

0.36

0.38

0.40

0.42

P
re

ci
si

on

Instruction tuned

Pre-trained

Llama-2
Llama-2 7B

Llama-2 13B

Llama-2 70B

Llama-2 7B Chat

Llama-2 13B Chat

Llama-2 70B Chat

Mistral
Mistral 7B

Mistral 7B Instruct

Vicuna
Vicuna 7B

ALEXANDRE VÉRINE DEEP LEARNING 2 238 / 247

GENERATIVE ADVERSARIAL NETWORKS
ORIGINAL FRAMEWORK

▶ Let G : Z → X be a generator model parameterized by a neural network.
▶ Let D : X → [0, 1] be a discriminator model parameterized by a neural network.

The original GAN framework [3] is defined by the following optimization problem:

min
G

max
D

Ex∼P [logD(x)] + Ex∼P̂G
[log(1−D(x))] . (3)

ALEXANDRE VÉRINE DEEP LEARNING 2 239 / 247

GENERATIVE ADVERSARIAL NETWORKS
ORIGINAL FRAMEWORK

▶ Let G : Z → X be a generator model parameterized by a neural network.
▶ Let D : X → [0, 1] be a discriminator model parameterized by a neural network.

The original GAN framework [3] is defined by the following optimization problem:

min
G

max
D

Ex∼P [logD(x)] + Ex∼P̂G
[log(1−D(x))] . (3)

ALEXANDRE VÉRINE DEEP LEARNING 2 239 / 247

TUNING PRECISION AND RECALL IN GENERATIVE MODELS
TRUNCATION

Hard Trunctation
Karras et al. [4]

Soft Trunctation
Kingma and Dhariwal [5]

ALEXANDRE VÉRINE DEEP LEARNING 2 240 / 247

FINAL PROJECT: GENERATIVE ADVERSARIAL NETWORKS
HARD TRUNCATION

Figure. From left to right: ψ = 0.0, ψ = 0.3 ψ = 0.7 ψ = 1.0.

0.0 0.2 0.4 0.6 0.8 1.0
Truncation Ã

0.0

0.2

0.4

0.6

0.8

1.0
Precision
Recall

Figure. Source: [6]

ALEXANDRE VÉRINE DEEP LEARNING 2 241 / 247

FINAL PROJECT: GENERATIVE ADVERSARIAL NETWORKS
SOFT TRUNCATION

(a) ψ = 0.04 (b) ψ = 0.5 (c) ψ = 1.0 (d) ψ = 2.0

Figure. Soft-Truncation on BigGAN. Source:[1].

ALEXANDRE VÉRINE DEEP LEARNING 2 242 / 247

FINAL PROJECT
TUNING QUALITY AND DIVERSITY IN GANS

▶ Goal: Implement a GAN architecture to generate samples from a given dataset.
▶ Dataset: MNIST
▶ Code: Use the repository given in the Project
▶ Enrolling: GitHub Classroom https://classroom.github.com/a/lj2_ipKW

ALEXANDRE VÉRINE DEEP LEARNING 2 243 / 247

https://classroom.github.com/a/lj2_ipKW

POSSIBLE IMPROVEMENTS

▶ f-GANs
1. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
2. Precision-Recall Divergence Optimization for Generative Modeling with GANs and Normalizing Flows

▶ WGAN
1. Wasserstein GAN

▶ Rejection Sampling
1. Discriminator Rejection Sampling
2. Metropolis-Hastings Generative Adversarial Networks
3. Optimal Budgeted Rejection Sampling for Generative Models

▶ Latent Rejection sampling
1. Latent reweighting, an almost free improvement for GANs

▶ Gradient ascent
1. Discriminator optimal transport
2. Refining Deep Generative Models via Discriminator Gradient Flow
3. Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling

▶ Classifier guidance generation
1. MMGAN: Generative Adversarial Networks for Multi-Modal Distributions

ALEXANDRE VÉRINE DEEP LEARNING 2 244 / 247

https://arxiv.org/abs/1606.00709
https://proceedings.neurips.cc/paper_files/paper/2023/file/67159f1c0cab15dd34c76a5dd830a389-Paper-Conference.pdf
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1810.06758
https://proceedings.mlr.press/v97/turner19a.html
https://arxiv.org/abs/2311.00460
https://ieeexplore.ieee.org/document/9706934
https://proceedings.neurips.cc/paper_files/paper/2019/hash/8abfe8ac9ec214d68541fcb888c0b4c3-Abstract.html
https://arxiv.org/abs/2012.00780
https://arxiv.org/abs/2003.06060
https://arxiv.org/abs/1911.06663

FINAL PROJECT: GENERATIVE ADVERSARIAL NETWORKS
FINAL PROJECT: TUNING QUALITY AND DIVERSITY IN GANS

Specifics:
▶ For fair comparison, use the same generator architecture as the one in the project.
▶ Your code will be pulled and test every 24 hours (at 02:00 AM).
▶ You have to choose one of the methods (or any other method that makes sense to you) and implement it.

During the presentation, you will have to:
▶ Present the paper you chose.
▶ Present how you adapted the method to the project.
▶ Explain your results.
▶ Explain the limitations of your method.

You will be graded:
▶ on the quality of the presentation.
▶ on how well you understood the method.
▶ on how well you adapted the method to the project.

You will not be graded on:
▶ Your rank on the platform.
▶ The quality of your code.

ALEXANDRE VÉRINE DEEP LEARNING 2 245 / 247

FINAL PROJECT: GENERATIVE ADVERSARIAL NETWORKS
REPORT AND PRESENTATION

The work is:
▶ Individual.
▶ Due on the 10th of December at 8:15 AM.

The report and the presentation:
▶ The report should be a PDF file to push on the Github repository.
▶ The report should be at most 5 pages long. (excluding references and title page)
▶ The report should be written in English.

▶ The presentation should be a PDF file to push on the Github repository.
▶ The presentation must be 15 minutes long (hard limit) + 5 minutes for questions.
▶ The presentation should be in English or French.

ALEXANDRE VÉRINE DEEP LEARNING 2 246 / 247

REFERENCES I

[1] Brock, A., Donahue, J., and Simonyan, K. (2019). Large Scale GAN Training for High Fidelity Natural Image
Synthesis. arXiv:1809.11096 [cs, stat].

[2] Bronnec, F. L., Verine, A., Negrevergne, B., Chevaleyre, Y., and Allauzen, A. (2024). Exploring Precision and Recall
to assess the quality and diversity of LLMs. Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics. arXiv:2402.10693 [cs].

[3] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative Adversarial Networks. In 27th Conference on Neural Information Processing Systems (NeurIPS 2014). arXiv:
1406.2661.

[4] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020). Analyzing and Improving the Image
Quality of StyleGAN. arXiv:1912.04958 [cs, eess, stat].

[5] Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative Flow with Invertible 1x1 Convolutions. In 32nd Conference
on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada., volume 31.

[6] Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., and Aila, T. (2019). Improved Precision and Recall Metric for
Assessing Generative Models. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver,
Canada. arXiv: 1904.06991.

[7] Yann LeCun, Corinna Cortes, and Burges, C. (2010). MNIST handwritten digit database. ATT Labs, 2.

ALEXANDRE VÉRINE DEEP LEARNING 2 247 / 247

	AI 101: From Fundamentals to Deep Learning
	Introduction to Artificial Intelligence
	Deep Learning in the AI family
	Representation Learning

	Neural Networks Fundamentals
	Neurons
	Layers
	Activation Functions

	The Multi-layer Perceptron (MLP)
	The first Deep Learning Model
	Stochastic Gradient Descent
	Back-propagation
	Example : Image classification of handwritten digits from A to Z

	Deep Learning in Action: From Neural Networks to Transformer Models
	Convolutional Neural Networks
	The Two dimensional Convolution
	CNN : Convolutional in a network Networks
	CNN in practice: CIFAR 10

	Recurrent Neural Networks
	Recurrent Block
	LSTM and GRU

	Transformer and Attention Mechanism
	Self-Attention Mechanism
	Transformers Model

	TP2: Build and use an autoencoder
	Formal introduction of an autoencoder

	Techniques to Improve Deep Learning Training
	Techniques to Improve Deep Learning Training
	Data Augmentation
	Learning Rate Scheduling
	Early Stopping
	Gradient Clipping
	Weight Initialization
	Regularization
	GPU Acceleration

	Deep Learning and Applications
	Learning to act with Deep Reinforcement Learning
	Deep Q-Learning
	The Cheese Game

	Synthetic Data Generation with Generative Adversarial Networks
	GANS Models
	MNIST Generation

	Sentiment Analysis with Transformers and GRU
	Bert
	Sentiment Analysis

	Density Estimation with Normalizing Flows
	Estimating Density
	Normalizing Flows

	Image Segmentation with U-Net
	Image Segmentation
	U-Net Architecture

	Managing a Deep Learning Project
	Why Notebooks are not enough
	Modularity
	Local Environment Setup
	Running Experiments
	Monitoring Experiments
	Versioning your Code

	Project Presentation
	Mini Project 2: Adversarial Attacks
	Principle of Adversarial Attacks
	Attacks

	Final Project: Generative Adversarial Networks
	Introduction to Generative Models
	Precision and Recall in Generative Models
	Generative Adversarial Networks
	Final Project: Tuning Quality and Diversity in GANS

	References

	anm8:
	8.18:
	8.17:
	8.16:
	8.15:
	8.14:
	8.13:
	8.12:
	8.11:
	8.10:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.304:
	4.303:
	4.302:
	4.301:
	4.300:
	4.299:
	4.298:
	4.297:
	4.296:
	4.295:
	4.294:
	4.293:
	4.292:
	4.291:
	4.290:
	4.289:
	4.288:
	4.287:
	4.286:
	4.285:
	4.284:
	4.283:
	4.282:
	4.281:
	4.280:
	4.279:
	4.278:
	4.277:
	4.276:
	4.275:
	4.274:
	4.273:
	4.272:
	4.271:
	4.270:
	4.269:
	4.268:
	4.267:
	4.266:
	4.265:
	4.264:
	4.263:
	4.262:
	4.261:
	4.260:
	4.259:
	4.258:
	4.257:
	4.256:
	4.255:
	4.254:
	4.253:
	4.252:
	4.251:
	4.250:
	4.249:
	4.248:
	4.247:
	4.246:
	4.245:
	4.244:
	4.243:
	4.242:
	4.241:
	4.240:
	4.239:
	4.238:
	4.237:
	4.236:
	4.235:
	4.234:
	4.233:
	4.232:
	4.231:
	4.230:
	4.229:
	4.228:
	4.227:
	4.226:
	4.225:
	4.224:
	4.223:
	4.222:
	4.221:
	4.220:
	4.219:
	4.218:
	4.217:
	4.216:
	4.215:
	4.214:
	4.213:
	4.212:
	4.211:
	4.210:
	4.209:
	4.208:
	4.207:
	4.206:
	4.205:
	4.204:
	4.203:
	4.202:
	4.201:
	4.200:
	4.199:
	4.198:
	4.197:
	4.196:
	4.195:
	4.194:
	4.193:
	4.192:
	4.191:
	4.190:
	4.189:
	4.188:
	4.187:
	4.186:
	4.185:
	4.184:
	4.183:
	4.182:
	4.181:
	4.180:
	4.179:
	4.178:
	4.177:
	4.176:
	4.175:
	4.174:
	4.173:
	4.172:
	4.171:
	4.170:
	4.169:
	4.168:
	4.167:
	4.166:
	4.165:
	4.164:
	4.163:
	4.162:
	4.161:
	4.160:
	4.159:
	4.158:
	4.157:
	4.156:
	4.155:
	4.154:
	4.153:
	4.152:
	4.151:
	4.150:
	4.149:
	4.148:
	4.147:
	4.146:
	4.145:
	4.144:
	4.143:
	4.142:
	4.141:
	4.140:
	4.139:
	4.138:
	4.137:
	4.136:
	4.135:
	4.134:
	4.133:
	4.132:
	4.131:
	4.130:
	4.129:
	4.128:
	4.127:
	4.126:
	4.125:
	4.124:
	4.123:
	4.122:
	4.121:
	4.120:
	4.119:
	4.118:
	4.117:
	4.116:
	4.115:
	4.114:
	4.113:
	4.112:
	4.111:
	4.110:
	4.109:
	4.108:
	4.107:
	4.106:
	4.105:
	4.104:
	4.103:
	4.102:
	4.101:
	4.100:
	4.99:
	4.98:
	4.97:
	4.96:
	4.95:
	4.94:
	4.93:
	4.92:
	4.91:
	4.90:
	4.89:
	4.88:
	4.87:
	4.86:
	4.85:
	4.84:
	4.83:
	4.82:
	4.81:
	4.80:
	4.79:
	4.78:
	4.77:
	4.76:
	4.75:
	4.74:
	4.73:
	4.72:
	4.71:
	4.70:
	4.69:
	4.68:
	4.67:
	4.66:
	4.65:
	4.64:
	4.63:
	4.62:
	4.61:
	4.60:
	4.59:
	4.58:
	4.57:
	4.56:
	4.55:
	4.54:
	4.53:
	4.52:
	4.51:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.201:
	3.200:
	3.199:
	3.198:
	3.197:
	3.196:
	3.195:
	3.194:
	3.193:
	3.192:
	3.191:
	3.190:
	3.189:
	3.188:
	3.187:
	3.186:
	3.185:
	3.184:
	3.183:
	3.182:
	3.181:
	3.180:
	3.179:
	3.178:
	3.177:
	3.176:
	3.175:
	3.174:
	3.173:
	3.172:
	3.171:
	3.170:
	3.169:
	3.168:
	3.167:
	3.166:
	3.165:
	3.164:
	3.163:
	3.162:
	3.161:
	3.160:
	3.159:
	3.158:
	3.157:
	3.156:
	3.155:
	3.154:
	3.153:
	3.152:
	3.151:
	3.150:
	3.149:
	3.148:
	3.147:
	3.146:
	3.145:
	3.144:
	3.143:
	3.142:
	3.141:
	3.140:
	3.139:
	3.138:
	3.137:
	3.136:
	3.135:
	3.134:
	3.133:
	3.132:
	3.131:
	3.130:
	3.129:
	3.128:
	3.127:
	3.126:
	3.125:
	3.124:
	3.123:
	3.122:
	3.121:
	3.120:
	3.119:
	3.118:
	3.117:
	3.116:
	3.115:
	3.114:
	3.113:
	3.112:
	3.111:
	3.110:
	3.109:
	3.108:
	3.107:
	3.106:
	3.105:
	3.104:
	3.103:
	3.102:
	3.101:
	3.100:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.201:
	2.200:
	2.199:
	2.198:
	2.197:
	2.196:
	2.195:
	2.194:
	2.193:
	2.192:
	2.191:
	2.190:
	2.189:
	2.188:
	2.187:
	2.186:
	2.185:
	2.184:
	2.183:
	2.182:
	2.181:
	2.180:
	2.179:
	2.178:
	2.177:
	2.176:
	2.175:
	2.174:
	2.173:
	2.172:
	2.171:
	2.170:
	2.169:
	2.168:
	2.167:
	2.166:
	2.165:
	2.164:
	2.163:
	2.162:
	2.161:
	2.160:
	2.159:
	2.158:
	2.157:
	2.156:
	2.155:
	2.154:
	2.153:
	2.152:
	2.151:
	2.150:
	2.149:
	2.148:
	2.147:
	2.146:
	2.145:
	2.144:
	2.143:
	2.142:
	2.141:
	2.140:
	2.139:
	2.138:
	2.137:
	2.136:
	2.135:
	2.134:
	2.133:
	2.132:
	2.131:
	2.130:
	2.129:
	2.128:
	2.127:
	2.126:
	2.125:
	2.124:
	2.123:
	2.122:
	2.121:
	2.120:
	2.119:
	2.118:
	2.117:
	2.116:
	2.115:
	2.114:
	2.113:
	2.112:
	2.111:
	2.110:
	2.109:
	2.108:
	2.107:
	2.106:
	2.105:
	2.104:
	2.103:
	2.102:
	2.101:
	2.100:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

