
DEEP LEARNING 2
FROM THEORY TO PRACTICE

Alexandre Vérine,
Research Fellow, École Normale Supérieure Paris

Double Licence Intelligence Artificielle et Sciences des Organisations
3e année de Licence

Université Paris-Dauphine, PSL

September 8, 2025

SEMESTER SCHEDULE (TEMPORARY)

▶ 09/09: Fundamentals of Deep Learning + In a Deep Learning Model
▶ 16/09: No Class
▶ 23/09: TP1 Classification - Introduction to PyTorch
▶ 30/09: In a Deep Learning Model + Techniques to Improve Deep Learning Training + Advanced Deep Learning

Techniques
▶ 07/10: TP2 Autoencoders - Hyperparameter Tuning
▶ 13/10: TP3 Image Segmentation - From CPU to GPU and Parallelization (It is a Monday)
▶ 21/10: Graded Individual Practical Work

ALEXANDRE VÉRINE DEEP LEARNING 2 1 / 131

SEMESTER SCHEDULE (TEMPORARY)

▶ 28/10: No Class
▶ 04/11: TP4 Deep Reinforcement Learning - From Notebook to Script - Part 1
▶ 11/11: No Class - Armistice Day
▶ 18/11: TP4 Deep Reinforcement Learning - From Notebook to Script - Part 2
▶ 17/11: TP5 Adversarial Attacks - Importance of Git - Part 1
▶ 25/11: TP5 Adversarial Attacks - Importance of Git - Part 2
▶ 02/12: Project Presentation - Group Formation
▶ 16/12: Project Presentation

ALEXANDRE VÉRINE DEEP LEARNING 2 2 / 131

AI 101: FROM FUNDAMENTALS TO DEEP LEARNING

1 Introduction to Artificial Intelligence . 10

1.1 Deep Learning in the AI family . 10
1.2 Representation Learning . 15

2 Neural Networks Fundamentals . 20
2.1 Neurons . 21
2.2 Layers . 23
2.3 Activation Functions . 25

3 The Multi-layer Perceptron (MLP) . 34

3.1 The first Deep Learning Model . 35
3.2 Stochastic Gradient Descent . 36
3.3 Back-propagation . 39
3.4 Example : Image classification of handwritten digits from A to Z . 61

ALEXANDRE VÉRINE DEEP LEARNING 2 3 / 131

IN A DEEP LEARNING MODEL : FROM NEURAL NETWORKS TO TRANSFORMER MODELS

1 Convolutional Neural Networks . 69
1.1 The Two dimensional Convolution . 70
1.2 CNN : Convolutional in a network Networks . 78
1.3 CNN in practice: CIFAR 10 . 85

2 Recurrent Neural Networks . 105
2.1 Recurrent Block . 106
2.2 LSTM and GRU . 108

3 Transformer and Attention Mechanism . 118
3.1 Self-Attention Mechanism . 119
3.2 Transformers Model . 123

4 TP2: Build and use an autoencoder . 125
4.1 Formal introduction of an autoencoder . 125

ALEXANDRE VÉRINE DEEP LEARNING 2 4 / 131

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING

ALEXANDRE VÉRINE DEEP LEARNING 2 5 / 131

DEEP LEARNING AND APPLICATIONS

ALEXANDRE VÉRINE DEEP LEARNING 2 6 / 131

MANAGING DEEP LEARNING PROJECTS

ALEXANDRE VÉRINE DEEP LEARNING 2 7 / 131

PROJECT PRESENTATION

ALEXANDRE VÉRINE DEEP LEARNING 2 8 / 131

Part I

AI 101: FROM FUNDAMENTALS TO DEEP LEARNING

ALEXANDRE VÉRINE DEEP LEARNING 2 9 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING IN THE AI FAMILY

In general, among all the class of AI algorithms,
we make the difference between 3
sub-categories :
▶ Artificial Intelligence : human designed

program and...
▶ Machine Learning : human designed

features with learned mapping such as
Support Vector Machine, Kernels methods,
Logistic Regression and ...

▶ Deep Learning: Learned features with
learned mapping such as Multilayer
Perceptron, Convolutional Networks, ...

Figure. Subsets of Artificial Intelligence

ALEXANDRE VÉRINE DEEP LEARNING 2 10 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING IN THE AI FAMILY

In the field of Artificial Intelligence, the fundamental objective is to find a function f
that can perform a desired task. This function can either be set by a human or can
be learned through training.

For example, in the context of a binary classification task, the goal is to determine
f (x) such that f (x) = 0 when the label of x is 0 and f (x) = 1 when its label is 1. The
choice of AI model impacts the expressivity of the function f .

For example, a logistic regression model uses a linear function to make decisions,
where f (x) = sgn(Ax + b). The expressivity of the model can be increased by using
more complex functions, such as polynomials or radial basis functions.

ALEXANDRE VÉRINE DEEP LEARNING 2 11 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
CLASSIFICATION TASK

Figure. 2D classification for different AI models.
ALEXANDRE VÉRINE DEEP LEARNING 2 12 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
THE UNIVERSAL APPROXIMATION THEOREM

The Universal Approximation Theorem is a fundamental result in the field of artificial neural networks. It states that a
deep learning model can approximate any function.

Theorem 1 (Universal Approximation Theorem)

Let X ⊂ Rd be compact, Y ⊂ Rm, f : X → Y be a continuous function and σ : R→ R be a continuous real function.
Then σ is not polynomial if and only if for every ϵ > 0, there exist k ∈ N, A ∈ Rk×d, b ∈ Rk and C ∈ Rm×k such that

sup
x∈X
∥f (x)− g(x)∥ ≤ ϵ

where g(x) = C× σ(Ax + b).

ALEXANDRE VÉRINE DEEP LEARNING 2 13 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
CLASSIFICATION TASK

Figure. 2D classification for small Neural Network.
ALEXANDRE VÉRINE DEEP LEARNING 2 14 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
REPRESENTATION LEARNING

How does deep learning work in practice ?

Deep learning is a subset of representation learning that uses deep neural networks to learn meaningful representations
of data. In deep learning, representations are learned through a hierarchy of nonlinear transformations, where each
layer of the network builds upon the previous one to extract increasingly abstract and higher-level features from the
input data.

ALEXANDRE VÉRINE DEEP LEARNING 2 15 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Consider the task of recognizing objects in images. A traditional approach would be
to hand-engineer features such as edge detectors and color histograms that can be
fed into a classifier.
However, with deep learning representation learning, the model learns to
automatically discover these features from the data. The network might start by
learning simple features such as edges and color blobs in the first layer, then build
upon these to learn more complex features such as parts of objects in subsequent
layers, until finally, the final layer outputs a probability distribution over classes of
objects.
In this way, deep learning of representation enables the model to automatically
learn a rich and meaningful representation of the data, without the need for manual
feature engineering.

Figure. MNIST

ALEXANDRE VÉRINE DEEP LEARNING 2 16 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Figure. MNIST : Layer 0 Figure. MNIST : Layer 1

Figure. MNIST : Layer 2
ALEXANDRE VÉRINE DEEP LEARNING 2 17 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Figure. MNIST : Layer 0

Figure. MNIST : Layer 2
ALEXANDRE VÉRINE DEEP LEARNING 2 18 / 131

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING AND NEURAL NETWORKS

Ok, Deep Learning is a model that learns a good representation of the feature. But how?
▶ How does it work ?
▶ How can we build a model ?
▶ How does it learn ?

ALEXANDRE VÉRINE DEEP LEARNING 2 19 / 131

NEURAL NETWORKS FUNDAMENTALS

Typically, a neural network is defined as a computational model composed of interconnected nodes, organised into
layers, that perform transformations on input data.

..

.

Let’s see what the interconnected nodes, the layers and the transformations are.ALEXANDRE VÉRINE DEEP LEARNING 2 20 / 131

NEURAL NETWORKS FUNDAMENTALS
NEURONS

If we consider that the Neural Network is a function f : Rd → Rm:

x0
0

x1
0

x2
0

x3
0

x4
0

xd−4
0

xd−3
0

xd−2
0

xd−1
0

xd0

x0
1

x1
1

x2
1

x3
1

x4
1

x5
1

x6
1

x7
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

x6
2

x7
2

x0
3

x1
3

x2
3

x3
3

..

.

A Neuron is a processing unit that receives input, performs a computation, and produces an output. Here, the inputs
are xi−1 and the output is xk

i .

ALEXANDRE VÉRINE DEEP LEARNING 2 21 / 131

NEURAL NETWORKS FUNDAMENTALS
NEURONS

For example, with an image dataset, the image can be flattened:

x0 = [0.00, 0.00, . . . , 0.00, 0.99, 0.07 . . . , 0.00, 0.00] ∈ [0, 1]d

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.99 0.91 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.45 0.18 0.66 0.00 0.00

0.00 0.00 0.00 0.99 0.07 0.00 0.00 0.99 0.00 0.00

0.00 0.00 0.30 0.44 0.00 0.00 0.00 0.99 0.00 0.00

0.00 0.00 0.33 0.00 0.00 0.00 0.99 0.00 0.00 0.00

0.00 0.00 0.33 0.99 0.99 0.77 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∈ [0, 1]d/2×d/2

ALEXANDRE VÉRINE DEEP LEARNING 2 22 / 131

NEURAL NETWORKS FUNDAMENTALS
LAYERS

A layer i is defined by a matrix
Ai ∈ Rki−1×ki , a vector bi ∈ Rki and a
nonlinear function σi : R 7→ R. The
transformation made by a layer is:

xi = σi (Aixi−1 + bi) .

The non-linear function σi the
activation function.

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 23 / 131

NEURAL NETWORKS FUNDAMENTALS
LAYERS

A layer i is defined as a matrix
Ai ∈ Rki−1×ki , a vector bi ∈ Rki and a
nonlinear function σi : R 7→ R. The
transformation made by a layer is:

xk
i = σi

 ki∑
l=1

[Ai]l,k xi−1 + [bi]k

 .

The non-linear function σi the
activation function.

x0
0

x1
0

x2
0

x3
0

x4
0

xd−4
0

xd−3
0

xd−2
0

xd−1
0

xd0

x0
1

x1
1

x2
1

x3
1

x4
1

x5
1

x6
1

x7
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

x6
2

x7
2

x0
3

x1
3

x2
3

x3
3

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 24 / 131

NEURAL NETWORKS FUNDAMENTALS
ACTIVATION FUNCTIONS

The activation functions play a crucial role in the implementation of deep neural networks, as they allow them to
approximate any continuous function, as stated by the Universal Approximation Theorem. We can list some activation
function that are commonly used :
▶ Linear
▶ Sigmoid
▶ Hyperbolic Tangent
▶ Rectified Linear Unit (ReLU)
▶ Leaky Rectified Linear Unit (Leaky ReLU)
▶ Exponential Linear Unit (ELU)
▶ Sigmoid-Weighted Linear Unit (Swish)
▶ Softmax

ALEXANDRE VÉRINE DEEP LEARNING 2 25 / 131

NEURAL NETWORKS FUNDAMENTALS
LINEAR

▶ Linear activation Function:

σ(x) = x

▶ Final activation
▶ Use case : Regression

−2 −1 0 1 2
−2

−1

0

1

2

Linear

ALEXANDRE VÉRINE DEEP LEARNING 2 26 / 131

NEURAL NETWORKS FUNDAMENTALS
SIGMOID

▶ Sigmoid Function:

σ(x) =
1

1 + e−x

▶ Final activation
▶ Use case : Classification

−2 −1 0 1 2
−2

−1

0

1

2

Sigmoid

ALEXANDRE VÉRINE DEEP LEARNING 2 27 / 131

NEURAL NETWORKS FUNDAMENTALS
SOFTMAX

▶ Softmax Function:

σ(xk) =
exk∑ki
i=1 exi

▶ Final activation
▶ Use case : Multi-class

Classification

ALEXANDRE VÉRINE DEEP LEARNING 2 28 / 131

NEURAL NETWORKS FUNDAMENTALS
HYPERBOLIC TANGENT

▶ Hyperbolic Tangent

σ(x) =
ex − e−x

ex + e−x

▶ Final activation
▶ Use case : Generative task

−2 −1 0 1 2
−2

−1

0

1

2

Tanh

ALEXANDRE VÉRINE DEEP LEARNING 2 29 / 131

NEURAL NETWORKS FUNDAMENTALS
RELU

▶ Rectified Linear Unit (ReLU):

σ(x) = max{0, x}

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

ReLU

ALEXANDRE VÉRINE DEEP LEARNING 2 30 / 131

NEURAL NETWORKS FUNDAMENTALS
LEAKY RELU

▶ Leaky Rectified Linear Unit
(Leaky ReLU):

σ(x) = max{αx, x}

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

Leaky ReLU

ALEXANDRE VÉRINE DEEP LEARNING 2 31 / 131

NEURAL NETWORKS FUNDAMENTALS
ELU

▶ Exponential Linear Unit (ELU):

σ(x) =

{
α(ex − 1) if x < 0,
x if x ≥ 0.

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

ELU

ALEXANDRE VÉRINE DEEP LEARNING 2 32 / 131

NEURAL NETWORKS FUNDAMENTALS
SWISH

▶ Sigmoid-Weighted Linear Unit
(Swish):

σ(x) =
x

1 + e−x

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

Swish

ALEXANDRE VÉRINE DEEP LEARNING 2 33 / 131

THE MULTI-LAYER PERCEPTRON (MLP)

Having discussed the structure of a neural network, we will proceed to examine the process of training a model for a
specific task. As an illustration, we will consider the example of a Multilayer Perceptron.The two intermediate
activation functions are ReLUs and the final activation is a softmax to perform multi-class classification on MNIST. We
will consider only 4 classes.

..

.

ALEXANDRE VÉRINE DEEP LEARNING 2 34 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
THE FIRST DEEP LEARNING MODEL

To introduce the training process, we will consider a 3 layers MLP trained to minimise a loss L over a given a dataset D.
The model fθ is parameterised by a vector θ = {A1,A2,A3, b1, b2, b3}:

θ∗ = argmin
θ
L(θ,D)

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 35 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent (SGD) is widely used in deep learning instead of traditional gradient descent due to its
efficiency and faster convergence rate. SGD updates the model parameters after computing the gradient of the loss
function with respect to each parameter using only a single randomly selected sample. This leads to a faster
convergence rate and improved optimization compared to traditional gradient descent, which uses the entire training
dataset to compute the gradient at each iteration.

θ∗ = argmin
θ
L(θ,D) = argmin

θ
Ex∼D [l(x, fθ(x))]

ALEXANDRE VÉRINE DEEP LEARNING 2 36 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
STOCHASTIC GRADIENT DESCENT

Theoretically the algorithm is the following:
Require: Given a loss function l, a dataset D = {x1, x2, . . . , xN} and a learning rate λ

1: Initialize parameters θ
2: while θ has not converged do
3: for i = 1 to N do
4: Randomly select xi from the dataset
5: Compute gradient of the loss with respect to θ: ∇θl(xi, fθ(xi))
6: Update parameters θ = θ − λ∇θl(xi, f (xi))
7: end for
8: end while
9: return θ

ALEXANDRE VÉRINE DEEP LEARNING 2 37 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
SGD IN MINI-BATCH

In practice the algorithm is modified to use mini-batches of data instead of single samples. This is done to improve the
stability of the optimization process and reduce the variance of the gradient estimates. The algorithm is as follows:
Require: Given a loss function l, a dataset D = {x1, x2, . . . , xN}, a learning rate λ and a batch size b

1: Initialize parameters θ
2: Initialize the number of batches B =

⌊N
b

⌋
3: while θ has not converged do
4: for i = 1 to B do
5: Randomly select a mini-batch of b samples from the dataset
6: Compute gradient of the loss with respect to θ: 1

B
∑B

i=1∇θl(xi, fθ(xi))

7: Update parameters θ = θ − λ 1
B
∑B

i=1∇θl(xi, f (xi))
8: end for
9: end while

10: return θ

ALEXANDRE VÉRINE DEEP LEARNING 2 38 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

At every step t of the gradient descent, setting a learning rate λ, the parameter θ is updated as:

θt+1 = θt − λ∇θl(f (xi), yi)

But θ = {A1,A2,A3, b1, b2, b3} and the gradient is computed with respect to each parameter.

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 39 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

First we will consider a single data point x, the loss will depend on the output only: l(f (x)).

f is a layered composed function. Let us focus on the last layer:

f (x) = x3 = σ3(A3x2 + b3)

Therefore:

l(f (x)) = l (σ3 (A3x2 + b3))

To minimise the loss, we have to act on A3, b3 and x2.

ALEXANDRE VÉRINE DEEP LEARNING 2 40 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let us look at the gradients with respect to A3:

∂l
∂A3

=
∂l
∂x3

∂x3

∂A3
= l′(x3)

∂σ3 (A3x2 + b3)

∂A3
= l′(x3)σ

′
3 (A3x2 + b3)

∂ [A3x2 + b3]

∂A3

= l′(x3)︸ ︷︷ ︸
∈R

σ′
3 (A3x2 + b3)︸ ︷︷ ︸

∈Rki×1

xT
2︸︷︷︸

∈R1×ki−1

and therefore:

A3 ← A3 − λl′(x3)σ
′
3 (A3x2 + b3) xT

2 .

We need to keep in memory the latent values of x, i.e. x2.

ALEXANDRE VÉRINE DEEP LEARNING 2 41 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let us look at the gradients with respect to A2:

∂l
∂A2

=
∂l
∂x2

∂x2

∂A2

=
∂l
∂x2

∂σ2 (A2x1 + b2)

∂A2

=
∂l
∂x2

σ′
2 (A2x1 + b2)

∂ [A2x1 + b2]

∂A2

=
∂l
∂x2

σ′
2 (A2x1 + b2) xT

1

which depends on ∂l
∂x2

, we need to compute it.

ALEXANDRE VÉRINE DEEP LEARNING 2 42 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

We have to compute the gradient with respect to x2:

∂l
∂x2

=
∂l
∂x3

∂x3

∂x2
= l′(x3)

∂σ3 (A3x2 + b3)

∂x2
= l′(x3)

∂ [A3x2 + b3]

∂x2
σ′

3 (A3x2 + b3)

= l′(x3) AT
3σ

′
3 (A3x2 + b3)

Therefore:

A2 ← A2 − λ
[
l′(x3)AT

3σ
′
3 (A3x2 + b3)× σ′

2 (A2x1 + b2) xT
1

]
The update of A2 depends on l′(x3),

ALEXANDRE VÉRINE DEEP LEARNING 2 43 / 131

BACK-PROPAGATION

We have to compute the gradient with respect to A1:

∂l
∂A1

=
∂l
∂x1

∂x1

∂A1

=
∂l
∂x1

∂σ1 (A1x0 + b1)

∂A1

=
∂l
∂x1

σ′
1 (A1x0 + b0) xT

0 ,

which depends on ∂l
∂x1

, we need to compute it.

ALEXANDRE VÉRINE DEEP LEARNING 2 44 / 131

BACK-PROPAGATION

Let us compute the gradient with respect to x1:

∂l
∂x1

=
∂l
∂x2

∂x2

∂x1
=

∂l
∂x2

∂σ2 (A2x1 + b2)

∂x1
=

∂l
∂x2

∂ [A2x1 + b2]

∂x1
σ′

2 (A2x1 + b2)

=
∂l
∂x2

AT
2σ

′
2 (A2x1 + b2)

Therefore:

A1 ← A1 − λ
[
l′(x3) AT

3σ
′
3 (A3x2 + b3)AT

2σ
′
2 (A2x1 + b2)× σ′

1 (A1x0 + b1) xT
0

]

ALEXANDRE VÉRINE DEEP LEARNING 2 45 / 131

BACK-PROPAGATION

In other words, the update on the weights is:

A3 ← A3 − λl′(x3)σ
′
3 (A3x2 + b3) xT

2

A2 ← A2 − λ
[
l′(x3)AT

3σ
′
3 (A3x2 + b3)× σ′

2 (A2x1 + b2) xT
1

]
A1 ← A1 − λ

[
l′(x3) AT

3σ
′
3 (A3x2 + b3)AT

2σ
′
2 (A2x1 + b2)× σ′

1 (A1x0 + b1) xT
0

]

ALEXANDRE VÉRINE DEEP LEARNING 2 46 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

If we look at the update of the different biases, we can easily compute the different gradient and see the updates. First,
let us compute the gradient with respect to b3:

∂l
∂b3

=
∂l
∂x3

∂x3

∂b3

= l′(x3)
∂σ3 (A3x2 + b3)

∂b3

= l′(x3)σ
′
3 (A3x2 + b3)

∂ [A3x2 + b3]

∂b3

= l′(x3)︸ ︷︷ ︸
∈R

σ′
3 (A3x2 + b3)︸ ︷︷ ︸

∈Rki×1

And thus :
b3 ← b3 − λl′(x3)σ

′ (A3x2 + b3)

ALEXANDRE VÉRINE DEEP LEARNING 2 47 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let’s move on the second layer:

∂l
∂b2

=
∂l
∂x2

∂x2

∂b2

=
∂l
∂x2

∂σ2 (A2x1 + b2)

∂b2

=
∂l
∂x2

σ′
2 (A2x1 + b2)

And thus :
b2 ← b2 − λ

∂l
∂x2

σ′ (A2x1 + b2)

We need to back-propagate the term ∂l
∂x2

computed for the first layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 48 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

For the first layer:

∂l
∂b1

=
∂l
∂x1

∂x1

∂b1

=
∂l
∂x1

∂σ1 (A1x0 + b1)

∂b1

=
∂l
∂x1

σ′
1 (A1x0 + b0)

And thus :
b1 ← b1 − λ

∂l
∂x1

σ′ (A1x0 + b1)

We need to back-propagate the term ∂l
∂x1

computed for the second layer which has been computed with ∂l
∂x2

back-propagated from the first layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 49 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

To update the weights, we need to compute the gradient of the loss with respect to the output of the network, and then
back-propagate the gradient of the loss with respect to each activation, the ∂l

∂xi
, through the network to compute the

gradients with respect to the weights and biases of each layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 50 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
LAST LAYER

We can plot the current state of the
network for a given input.

The red lines show positive values
for Ai, the blue lines represent
negative values for Ai. The level of
transparency is proportional to the
previous neurons.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 51 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 52 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 53 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 54 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 55 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
LAST LAYER

We can plot the current state of the
network for a given input.

Red lines show positive values of
Ai, Blue lines represent negative
values of Ai. The level of
transparency is proportional to the
previous neurons.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 56 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 57 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 58 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 59 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural networks
improves its performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 60 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

Having discussed the theory behind Artificial Neural Networks and the training process, we will now proceed to
demonstrate a comprehensive end-to-end example of image classification on MNIST.

ALEXANDRE VÉRINE DEEP LEARNING 2 61 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

▶ Input shape : 1× 28× 28.
▶ Number of Classes : 10.
▶ Number of training samples (x, y): 60000.
▶ Number of evaluating samples: 10000.
▶ Loss : cross-entropy

L(ŷ, y) = − 1
N

N∑
i=1

K∑
j=1

yij log(ŷij)

where :
• ŷ ∈ RN×K is the predicted probability distribution over K classes for N samples,
• y ∈ 0, 1N×K is the ground-truth one-hot encoded label matrix,

ALEXANDRE VÉRINE DEEP LEARNING 2 62 / 131

RECAP ON THE CROSS-ENTROPY LOSS

Class 1 Class 2 Class 3 Class 4 Class 5
0

0.2

0.4

0.6

0.8

1

0 0

1

0 0

One-Hot Distribution (yi)

Class 1 Class 2 Class 3 Class 4 Class 5
0

0.2

0.4

0.6

0.8

1

0.1 0.15

0.5

0.2

5 · 10−2

Model Predicted Distribution (ŷi)

The cross-entropy loss for one sample is:

l(ŷi, yi) = −
K∑

j=1

yij log(ŷij).

ALEXANDRE VÉRINE DEEP LEARNING 2 63 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

We build a 3 layers network.
▶ Batch size : 64
▶ Learning rate : 0.01
▶ Intermediate activation : ReLU
▶ Final activation : Softmax
▶ Number of epochs : 12
▶ Number of trained parameters: 52.6k

input-tensor
depth:0 (64, 784) view

depth:1

input: (64, 784)

output: (64, 784)

Linear
depth:1

input: (64, 784)

output: (64, 64)

relu
depth:1

input: (64, 64)

output: (64, 64)

Linear
depth:1

input: (64, 64)

output: (64, 32)

relu
depth:1

input: (64, 32)

output: (64, 32)

Linear
depth:1

input: (64, 32)

output: (64, 10)

LogSoftmax
depth:1

input: (64, 10)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 64 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

0 100000 200000 300000 400000 500000
Number of Examples Seen by the model

0.0

0.5

1.0

1.5

2.0
C

ro
ss

-E
n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 65 / 131

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

With a interpretation tool such as SHAP:

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
SHAP value

ALEXANDRE VÉRINE DEEP LEARNING 2 66 / 131

Part II

DEEP LEARNING IN ACTION: FROM NEURAL NETWORKS TO

TRANSFORMER MODELS

ALEXANDRE VÉRINE DEEP LEARNING 2 67 / 131

Now that we have an understanding of the training procedure for Artificial Neural Networks, we shall examine several
widely-utilized structures within the literature of Neural Networks, including Convolutional Neural Networks
(CNN),Resdiual Networks (ResNet), Recurrent Neural Networks (RNN), and Transformers.

ALEXANDRE VÉRINE DEEP LEARNING 2 68 / 131

CONVOLUTIONAL NEURAL NETWORKS

In the field of image processing, the Convolution Operators are widely considered as the most favoured approach.
While it has been demonstrated that Dense blocks, or Linear blocks, are capable of accurately classifying images in the
case of the MNIST dataset, the need for convolutional transformations arises when addressing wider and more intricate
datasets.

ALEXANDRE VÉRINE DEEP LEARNING 2 69 / 131

CONVOLUTIONAL NEURAL NETWORKS
THE TWO DIMENSIONAL CONVOLUTION

A 2D convolution in a neural network context can be mathematically represented as a sliding window operation where
a filter (also called kernel) w of size k× k is applied to each k× k sub-matrix of the input matrix x. The operation can be
defined as the element-wise multiplication of the filter w and the sub-matrix followed by summing the results, i.e.

yi,j =

k∑
m=1

k∑
n

wm,n · xi+m,j+n

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.9 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.4 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.5 0.0 1.0 0.2 0.0

0.0 0.0 0.0 0.7 0.9 0.1 0.0 0.0 0.0 1.0 0.8 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.8 0.0

0.0 0.0 0.3 0.9 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.3 0.6 0.0 0.0 0.0 0.2 1.0 0.0 0.0 0.0

0.0 0.0 0.3 1.0 0.2 0.3 0.9 0.9 0.2 0.0 0.0 0.0

0.0 0.0 0.1 1.0 1.0 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kernel

1.0 1.0 1.0

0.0 0.0 0.0

-1.0 -1.0 -1.0

-0.3 -1.3 -1.5 -1.5 -1.4 -2.1 -2.0 -1.1 -0.2 0.0

-0.2 0.2 1.2 2.4 2.5 1.4 -0.6 -1.2 -1.0 0.0

0.0 0.1 0.3 0.6 1.4 2.1 1.9 0.1 -0.8 -1.0

0.3 -0.1 -0.1 -0.4 0.0 0.2 1.2 0.2 -0.8 -1.8

0.3 0.5 -0.4 -0.8 -1.0 -0.1 0.0 0.0 -0.7 -0.7

0.0 1.0 0.1 -0.9 -2.0 -1.5 -0.5 -0.5 0.6 0.6

0.0 0.7 1.6 0.7 -1.0 -2.9 -2.4 -1.4 0.4 0.8

0.0 0.0 0.9 1.9 1.1 -0.4 -2.3 -0.7 0.1 1.0

0.0 0.0 0.0 1.0 2.0 2.3 1.1 1.1 0.7 1.0

0.0 0.0 0.0 0.0 0.9 1.9 2.8 2.1 1.1 0.2

ALEXANDRE VÉRINE DEEP LEARNING 2 70 / 131

CONVOLUTIONAL NEURAL NETWORKS
THE TWO DIMENSIONAL CONVOLUTION

A 2D convolution in a neural network context can be mathematically represented as a sliding window operation where
a filter (also called kernel) w of size k× k is applied to each k× k submatrix of the input matrix x. The operation can be
defined as the element-wise multiplication of the filter w and the submatrix followed by summing the results, i.e.

yi,j =

k∑
m=1

k∑
n

wm,n · xi+m,j+n

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

0.0 1.0 -0.0 -3.7 -2.8 -0.1 0.0 0.0 0.0 0.0

0.0 2.9 3.7 -1.0 -3.3 -0.7 0.0 0.0 0.0 0.0

0.0 1.8 3.8 0.5 -3.7 -2.3 0.0 0.0 0.0 0.0

0.0 0.0 2.8 2.5 -1.8 -3.6 -1.2 0.0 0.0 0.0

0.0 0.0 1.9 3.8 1.1 -2.8 -2.7 -0.1 0.0 0.0

0.0 0.0 0.3 2.5 3.2 -0.7 -3.9 -1.9 0.0 0.0

0.0 0.0 0.0 0.8 3.4 1.8 -2.4 -3.3 -0.7 0.0

0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0 -2.6 -0.5

0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9 -3.2 -0.7

0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7 -0.2

ALEXANDRE VÉRINE DEEP LEARNING 2 71 / 131

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

In every Deep Learning library, the Conv2D block takes three parameters in argument:
▶ the Kernel’s size,
▶ the Stride,
▶ the Padding.

The size out the output is :

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 72 / 131

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 0, Stride: 1

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 10× 10

0.0 1.0 -0.0 -3.7 -2.8 -0.1 0.0 0.0 0.0 0.0

0.0 2.9 3.7 -1.0 -3.3 -0.7 0.0 0.0 0.0 0.0

0.0 1.8 3.8 0.5 -3.7 -2.3 0.0 0.0 0.0 0.0

0.0 0.0 2.8 2.5 -1.8 -3.6 -1.2 0.0 0.0 0.0

0.0 0.0 1.9 3.8 1.1 -2.8 -2.7 -0.1 0.0 0.0

0.0 0.0 0.3 2.5 3.2 -0.7 -3.9 -1.9 0.0 0.0

0.0 0.0 0.0 0.8 3.4 1.8 -2.4 -3.3 -0.7 0.0

0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0 -2.6 -0.5

0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9 -3.2 -0.7

0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7 -0.2

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 73 / 131

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 5, Padding: 0, Stride: 1

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 5× 5

kernel
-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

Size 8× 8

9.2 6.4 -0.5 -7.4 -8.7 -2.7 0.0 0.0

9.5 8.5 1.7 -6.9-10.0-5.3 -1.2 0.0

6.8 8.5 5.1 -3.0 -8.6 -7.1 -3.3 -0.1

4.0 7.4 7.9 2.6 -5.7 -8.1 -6.2 -2.0

2.0 5.8 8.1 5.8 -1.7 -7.2 -7.7 -4.3

0.3 2.9 7.1 7.6 3.5 -3.8 -7.9 -6.3

0.0 0.8 4.8 7.1 6.7 0.3 -6.4 -7.3

0.0 0.0 2.5 6.0 7.1 2.1 -4.4 -7.2

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 74 / 131

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 1. Padding mode can be ’zeros’, ’reflect’, ’replicate’ or ’circular’.

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 12× 12

0.0 0.0 0.0 -1.0-2.8-1.7 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 -0.0-3.7-2.8-0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 2.9 3.7 -1.0-3.3-0.7 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.8 3.8 0.5 -3.7-2.3 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 2.8 2.5 -1.8-3.6-1.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.9 3.8 1.1 -2.8-2.7-0.1 0.0 0.0 0.0

0.0 0.0 0.0 0.3 2.5 3.2 -0.7-3.9-1.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.8 3.4 1.8 -2.4-3.3-0.7 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0-2.6-0.5 0.0

0.0 0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9-3.2-0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7-0.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.5 0.2 0.0 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 75 / 131

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 2

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 6× 6

0.0 1.0 -3.7-0.1 0.0 0.0

0.0 1.8 0.5 -2.3 0.0 0.0

0.0 0.0 3.8 -2.8-0.1 0.0

0.0 0.0 0.8 1.8 -3.3 0.0

0.0 0.0 0.0 2.7 -0.9-0.7

0.0 0.0 0.0 0.0 1.5 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 76 / 131

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 3

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 4× 4

0.0 0.0 0.0 0.2

0.0 0.0 3.8 -2.6

0.0 1.9 -2.8 0.0

0.0 3.7 -0.7 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 77 / 131

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

We can represent a CNN as under this form:

ALEXANDRE VÉRINE DEEP LEARNING 2 78 / 131

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

Usually, the output of a convolutional block is linear combination of the Convolutional output of every previous
channels and a bias:

outi,j(cout) = bias(cout) +

|cin|−1∑
k=0

Conv(input(k),kernelk)i,j

ALEXANDRE VÉRINE DEEP LEARNING 2 79 / 131

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

In practice, we split the image into multiple channels : the three channels RGB to begin with. Then we apply
convolutional operation on different scales and then we use a fully connected tail. To change the scale we can use
different sub-sampling : Max pooling, Average pooling or Invertible pooling.

ALEXANDRE VÉRINE DEEP LEARNING 2 80 / 131

CONVOLUTIONAL NEURAL NETWORKS
MAX POOLING

Max Pooling take the maximum within a given sized sub-matrix. In practice, the matrix is size 2× 2 in order to reduce
the dimension by 4 and doubling the scale.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Max Pooling

Subsampling

1.0 0.8 0.8 0.9

0.8 0.9 0.9 0.9

0.9 0.9 0.8 0.9

0.9 0.7 0.6 0.9

ALEXANDRE VÉRINE DEEP LEARNING 2 81 / 131

CONVOLUTIONAL NEURAL NETWORKS
AVERAGE POOLING

The Average pooling takes the average value within the sub-matrix.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Average Pooling

Subsampling

0.5 0.5 0.4 0.6

0.6 0.5 0.5 0.5

0.4 0.5 0.5 0.6

0.7 0.3 0.2 0.5

ALEXANDRE VÉRINE DEEP LEARNING 2 82 / 131

CONVOLUTIONAL NEURAL NETWORKS
INVERTIBLE POOLING

For Invertible Networks, we can use Invertible Pooling, aka Squeeze. It preserves the information contained in the
channels and keeps the dimension constant.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Invertible Pooling

Subsampling

0.2 0.3 0.1 0.6

0.2 0.7 0.9 0.3

0.7 0.1 0.8 0.9

0.8 0.2 0.0 0.9

1.0 0.8 0.8 0.9

0.6 0.9 0.1 0.5

0.1 0.2 0.4 0.7

0.7 0.7 0.6 0.5

0.7 0.3 0.4 0.3

0.8 0.1 0.3 0.9

0.9 0.8 0.6 0.1

0.9 0.1 0.0 0.1

0.3 0.5 0.3 0.4

0.7 0.3 0.6 0.5

0.1 0.9 0.3 0.9

0.5 0.2 0.1 0.4

ALEXANDRE VÉRINE DEEP LEARNING 2 83 / 131

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

Convolutional Neural Networks are more suitable for image processing compared to fully connected networks due to
their ability to efficiently handle the spatial relationships between pixels in an image. This is achieved through the use
of convolutional layers that apply filters to small portions of an image, rather than fully connected layers that process
the entire image as a single vector. Additionally, the shared weights in convolutional layers allow for learning of
hierarchical features, reducing the number of parameters in the network and increasing its ability to generalize to new
images.

ALEXANDRE VÉRINE DEEP LEARNING 2 84 / 131

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

▶ Input shape : 3× 32× 32.
▶ Number of Classes : 10.
▶ Number of training samples (x, y): 50000.
▶ Number of evaluating samples: 10000.

Cat Ship Ship Airplane Frog Frog Automobile Frog Cat

Automobile Airplane Truck Dog Horse Truck Ship Dog Horse

Ship Frog Horse Airplane Deer Truck Dog Bird Deer

ALEXANDRE VÉRINE DEEP LEARNING 2 85 / 131

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

We will compare three different models:
▶ Model 1 : Fully Connected Neural Network with 3.4 million parameters.
▶ Model 2 : CNN with 62 thousand parameters.
▶ Model 3 : Wider and longer CNN with 5.8 million parameters.

ALEXANDRE VÉRINE DEEP LEARNING 2 86 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

The Net in composed of 4 linear layers with ReLU activations:
▶ Linear 3072 7→ 1024 + ReLU
▶ Linear 1024 7→ 256 + ReLU
▶ Linear 256 7→ 64 + ReLU
▶ Linear 64 7→ 10 + SoftMax

input-tensor
depth:0 (64, 3, 32, 32)

view
depth:1

input: (64, 3, 32, 32)

output: (64, 3072)

Linear
depth:1

input: (64, 3072)

output: (64, 1024)

relu
depth:1

input: (64, 1024)

output: (64, 1024)

Linear
depth:1

input: (64, 1024)

output: (64, 256)

relu
depth:1

input: (64, 256)

output: (64, 256)

Linear
depth:1

input: (64, 256)

output: (64, 64)

relu
depth:1

input: (64, 64)

output: (64, 64)

Linear
depth:1

input: (64, 64)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 87 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 88 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 89 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

The Net is composed 2 convolutional layers and 2 linear layers:
▶ Conv 3× 32× 32 7→ 6× 28× 28 + ReLU
▶ Max Pooling 6× 28× 28 7→ 6× 14× 14
▶ Conv 6× 14× 14 7→ 16× 10× 10 + ReLU
▶ Max Pooling 16× 10× 10 7→ 16× 5× 5
▶ Linear 400 7→ 120 + ReLU
▶ Linear 120 7→ 84 + ReLU
▶ Linear 84 7→ 10 + SoftMax

input-tensor
depth:0 (64, 3, 32, 32)

Conv2d
depth:1

input: (64, 3, 32, 32)

output: (64, 6, 28, 28)

relu
depth:1

input: (64, 6, 28, 28)

output: (64, 6, 28, 28)

MaxPool2d
depth:1

input: (64, 6, 28, 28)

output: (64, 6, 14, 14)

Conv2d
depth:1

input: (64, 6, 14, 14)

output: (64, 16, 10, 10)

relu
depth:1

input: (64, 16, 10, 10)

output: (64, 16, 10, 10)

MaxPool2d
depth:1

input: (64, 16, 10, 10)

output: (64, 16, 5, 5)

view
depth:1

input: (64, 16, 5, 5)

output: (64, 400)

Linear
depth:1

input: (64, 400)

output: (64, 120)

relu
depth:1

input: (64, 120)

output: (64, 120)

Linear
depth:1

input: (64, 120)

output: (64, 84)

relu
depth:1

input: (64, 84)

output: (64, 84)

Linear
depth:1

input: (64, 84)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 90 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 91 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 92 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

The Net is composed 6 convolutional layers and 3 linear layers:
▶ Conv 3× 32× 32 7→ 32× 32× 32 + BatchNorm2d + ReLU
▶ Conv 32× 32× 32 7→ 64× 32× 32 + ReLU
▶ Max Pooling 64× 32× 32 7→ 64× 16× 16
▶ Conv 64× 16× 16 7→ 128× 16× 16 + BatchNorm2d + ReLU
▶ Conv 128× 16× 16 7→ 128× 16× 16 + ReLU
▶ Max Pooling 128× 16× 16 7→ 128× 8× 8
▶ Conv 128× 8× 8 7→ 256× 8× 8 + BatchNorm2d + ReLU
▶ Conv 256× 8× 8 7→ 256× 8× 8 + ReLU
▶ Max Pooling 256× 8× 8 7→ 256× 4× 4 + DropOut p = 0.05
▶ Linear 4096 7→ 1024 + ReLU
▶ Linear 1024 7→ 512 + ReLU + DropOut p = 0.05
▶ Linear 512 7→ 10 + SoftMax

We have added Batch Normalization to improve the training stability and Drop Out to reduce
overfitting.

input-tensor
depth:0 (64, 3, 32, 32)

Conv2d
depth:2

input: (64, 3, 32, 32)

output: (64, 32, 32, 32)

BatchNorm2d
depth:2

input: (64, 32, 32, 32)

output: (64, 32, 32, 32)

ReLU
depth:2

input: (64, 32, 32, 32)

output: (64, 32, 32, 32)

Conv2d
depth:2

input: (64, 32, 32, 32)

output: (64, 64, 32, 32)

ReLU
depth:2

input: (64, 64, 32, 32)

output: (64, 64, 32, 32)

MaxPool2d
depth:2

input: (64, 64, 32, 32)

output: (64, 64, 16, 16)

Conv2d
depth:2

input: (64, 64, 16, 16)

output: (64, 128, 16, 16)

BatchNorm2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

ReLU
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

Conv2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

ReLU
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

MaxPool2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 8, 8)

Dropout2d
depth:2

input: (64, 128, 8, 8)

output: (64, 128, 8, 8)

Conv2d
depth:2

input: (64, 128, 8, 8)

output: (64, 256, 8, 8)

BatchNorm2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

ReLU
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

Conv2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

ReLU
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

MaxPool2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 4, 4)

view
depth:1

input: (64, 256, 4, 4)

output: (64, 4096)

Dropout
depth:2

input: (64, 4096)

output: (64, 4096)

Linear
depth:2

input: (64, 4096)

output: (64, 1024)

ReLU
depth:2

input: (64, 1024)

output: (64, 1024)

Linear
depth:2

input: (64, 1024)

output: (64, 512)

ReLU
depth:2

input: (64, 512)

output: (64, 512)

Dropout
depth:2

input: (64, 512)

output: (64, 512)

Linear
depth:2

input: (64, 512)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 93 / 131

CONVOLUTIONAL NEURAL NETWORKS
DROP OUT

Dropout is a regularization technique in neural networks where during training, a portion of the nodes are randomly
"dropped out" or ignored during each iteration. This helps prevent over-fitting by preventing the model from relying
too heavily on any one node. The result is a more robust and generalizable model that can better handle unseen data.

ALEXANDRE VÉRINE DEEP LEARNING 2 94 / 131

CONVOLUTIONAL NEURAL NETWORKS
BATCH NORMALIZATION

Batch normalization is a technique in deep learning that is used to normalize the activations of a layer within a batch of
data. This helps to prevent the problem of vanishing or exploding gradients and also speeds up the training process. By
normalizing the activations, batch normalization helps to stabilize the distribution of the inputs to each layer, reducing
the covariate shift and allowing the network to learn more effectively.

ALEXANDRE VÉRINE DEEP LEARNING 2 95 / 131

CONVOLUTIONAL NEURAL NETWORKS
BATCH NORMALIZATION

1: for each xi in a mini-batch B of size b do
2: Compute the mean µB and variance σ2

B of the features in the mini-batch B.

µB =
1
b

∑
i

xi and σ2
B =

1
m

∑
i

(xi − µB)
2

3: Normalize each feature xi in the mini-batch B using µB and σ2
B.

x̄i =
xi − µB√
σ2

B + ε

4: Scale and shift each normalized feature xi using two learnable parameters γ and β respectively.

yi = γx̄i + β

5: end for
Algorithm 1: Batch Normalization

ALEXANDRE VÉRINE DEEP LEARNING 2 96 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 97 / 131

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 98 / 131

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

CNN : 5.8M

FC : 3.4M

CNN: 62k

ALEXANDRE VÉRINE DEEP LEARNING 2 99 / 131

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

To examine the information captured by different channels in a Neural Network, we can compare their output on a
dataset. For a given input x, we can compute the similarity between the output of a specific channel and the same
channel for other images in the dataset.

ALEXANDRE VÉRINE DEEP LEARNING 2 100 / 131

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image

C
h

an
n

el
3

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
9

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

26

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
31

Best Match Best Match Best Match Best Match
ALEXANDRE VÉRINE DEEP LEARNING 2 101 / 131

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image

C
h

an
n

el
12

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
15

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

16

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
20

Best Match Best Match Best Match Best Match
ALEXANDRE VÉRINE DEEP LEARNING 2 102 / 131

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image

C
h

an
n

el
2

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
12

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

13

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
24

Best Match Best Match Best Match Best Match
ALEXANDRE VÉRINE DEEP LEARNING 2 103 / 131

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image

C
h

an
n

el
5

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
12

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

20

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
21

Best Match Best Match Best Match Best Match
ALEXANDRE VÉRINE DEEP LEARNING 2 104 / 131

RECURRENT NEURAL NETWORKS

Recurrent Networks (RNNs) are a type of neural network that are specifically designed to handle sequential data,
whereas CNNs are more suited for image and grid-like data. The main difference between RNNs and CNNs lies in the
way they process data, with RNNs considering the sequence of elements and their interdependencies, while CNNs
focus on capturing local patterns within the input.

ALEXANDRE VÉRINE DEEP LEARNING 2 105 / 131

RECURRENT NEURAL NETWORKS
RECURRENT BLOCK

A Recurrent Network is a type of neural network that contains a loop mechanism, allowing previous outputs to be used
as inputs for future computations. This creates a form of memory that allows the network to process sequential data
with variable-length sequences.

ALEXANDRE VÉRINE DEEP LEARNING 2 106 / 131

RECURRENT NEURAL NETWORKS
RECURRENT BLOCK

Some of the limitations of Vanilla RNNs:
▶ Vanishing gradient problem: The gradient signals used to update the weights

during training can become very small, making it difficult to train RNNs
effectively.

▶ Exploding gradient problem: On the other hand, gradients can become too
large and cause numeric instability, making it difficult to train RNNs effectively.

▶ Short-term memory: Vanilla RNNs have difficulty retaining information over
long periods of time, making them unsuitable for tasks that require
remembering information from previous time steps.

▶ Computational limitations: RNNs can be computationally intensive, making it
difficult to apply them to large sequences of data.

▶ Difficulty with parallelization: The sequential nature of RNNs can make it
difficult to take advantage of parallel processing to speed up training and
inference.

ALEXANDRE VÉRINE DEEP LEARNING 2 107 / 131

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that overcome some of
the limitations of traditional RNNs, such as the vanishing gradient problem and difficulty in learning long-term
dependencies. LSTM networks introduce memory cells, gates, and a process for updating cells, which allows them to
selectively preserve information from previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 108 / 131

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that overcome some of
the limitations of traditional RNNs, such as the problem of vanishing gradients and the difficulty of learning long-term
dependencies. LSTM networks introduce memory cells, gates, and a process for updating cells, which allows them to
selectively preserve information from previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 109 / 131

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that overcome some of
the limitations of traditional RNNs, such as the vanishing gradient problem and difficulty in learning long-term
dependencies. LSTM networks introduce memory cells, gates, and a process for updating the cells, which allows them
to selectively preserve information from previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 110 / 131

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that overcome some of
the limitations of traditional RNNs, such as the vanishing gradient problem and difficulty in learning long-term
dependencies. LSTM networks introduce memory cells, gates, and a process for updating the cells, which allows them
to selectively preserve information from previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 111 / 131

RECURRENT NEURAL NETWORKS
LIMITS OF LSTM

Limitations of LSTM RNNs:
▶ High computational cost: LSTMs are computationally more expensive compared to other traditional neural

network models due to the presence of multiple gates and their sequential processing nature.
▶ Vanishing Gradient Problem: LSTMs, like any other RNNs, are prone to the vanishing gradient problem when the

sequences are too long, making it difficult for the model to learn long-term dependencies.
▶ Overfitting: LSTMs are complex models and are more susceptible to overfitting compared to simple feedforward

networks.
▶ Difficult to parallelize: Due to the sequential nature of LSTMs, they are difficult to parallelize and can take longer to

train.
▶ Gradient Explosion: LSTMs can also suffer from the gradient explosion problem, where the gradients can become

too large and cause numerical instability during training.

ALEXANDRE VÉRINE DEEP LEARNING 2 112 / 131

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are similar to LSTMs in
their function and ability to process sequential data. GRUs were introduced as a simplification of LSTMs, with the aim
of reducing the number of parameters in the network and improving computational efficiency. GRUs achieve this by
merging the forget and input gates in LSTMs into a single update gate, effectively combining the two operations in a
single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 113 / 131

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are similar to LSTMs in
their function and ability to process sequential data. GRUs were introduced as a simplification of LSTMs, with the aim
of reducing the number of parameters in the network and improving computational efficiency. GRUs achieve this by
merging the forget and input gates in LSTMs into a single update gate, effectively combining the two operations in a
single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 114 / 131

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are similar to LSTMs in
their function and ability to process sequential data. GRUs were introduced as a simplification of LSTMs, with the aim
of reducing the number of parameters in the network and improving computational efficiency. GRUs achieve this by
merging the forget and input gates in LSTMs into a single update gate, effectively combining the two operations in a
single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 115 / 131

RECURRENT NEURAL NETWORKS
LSTM AND GRU

Limitations of GRU RNNs:
▶ Computational complexity: GRUs are more computationally efficient than LSTMs but still more complex than

feedforward neural networks.
▶ Long-term dependencies: GRUs may struggle with capturing long-term dependencies in sequences, although they

perform better in this regard than vanilla RNNs.
▶ Vanishing gradient problem: GRUs can still be affected by the vanishing gradient problem that plagues all RNN

models. This problem makes it difficult for the model to learn from long sequences.
▶ Non-stationary data: GRUs may struggle with nonstationary data, where the statistical properties of the data

change over time.

ALEXANDRE VÉRINE DEEP LEARNING 2 116 / 131

RECURRENT NEURAL NETWORKS
APPLICATION OF RNNS

Applications of RNNs:
▶ Natural language processing (NLP): Using RNNs for text classification, language translation, and text generation.
▶ Time-series prediction: Using RNNs to make predictions based on sequential data, such as stock prices and

weather patterns.
▶ Speech recognition: Using RNNs for speech-to-text conversion.

ALEXANDRE VÉRINE DEEP LEARNING 2 117 / 131

TRANSFORMER AND ATTENTION MECHANISM

Transformers and Attention Mechanisms are relatively recent developments in the field of deep learning, which have
become popular for processing sequential data, such as natural language processing (NLP) tasks. Unlike Recurrent
Neural Networks (RNNs) which process sequential data by repeatedly applying the same set of weights to the inputs
over time, Transformers and Attention Mechanisms use self-attention mechanisms to dynamically weight the
importance of different elements in the sequence. This enables Transformers to better capture the long-range
dependencies between elements in the sequence, leading to improved performance on NLP tasks.

ALEXANDRE VÉRINE DEEP LEARNING 2 118 / 131

TRANSFORMER AND ATTENTION MECHANISM
SELF-ATTENTION MECHANISM

Self-attention mechanism in transformers is a method of calculating the weight of each input token in a sequence with
respect to every other token in the same sequence, resulting in a representation of the input sequence in which the most
relevant tokens have the highest weight. Mathematically, the self-attention mechanism can be represented as a dot
product between the query (Q), key (K) and value (V) matrices, obtained from the input sequence, followed by a
softmax activation to obtain the attention scores. These scores are then used to compute a weighted sum of the value
matrix to produce the final representation.

Attention(Q,K,V) = Softmax

(
QKT√

dk

)
V where Q ∈ Rm×dk , K ∈ Rn×dk , V ∈ Rn×dv

ALEXANDRE VÉRINE DEEP LEARNING 2 119 / 131

TRANSFORMER AND ATTENTION MECHANISM
SELF-ATTENTION MECHANISM

▶ Query (Q): Represents the query vector, which is used to calculate
the attention scores. Intuitively, the query vector represents the
token that we are interested in.

▶ Key (K): Represents the key vector, which is used to calculate the
attention scores. The key vector helps to determine the importance
of each token in the input sequence.

▶ Value (V): Represents the value vector, which is used to compute
the weighted sum of the values. The value vector provides the
information that is used to update the representation of the input
sequence.

The resulting weighted sum of the values represents the output of the
self-attention mechanism, capturing the relationships between different
parts of the input sequence.

ALEXANDRE VÉRINE DEEP LEARNING 2 120 / 131

TRANSFORMER AND ATTENTION MECHANISM
MULTI-HEAD ATTENTION

In Multi-head Attention, the self-attention mechanism is performed
multiple times in parallel with different weight matrices, before being
concatenated and once again projected, leading to a more robust
representation of the input sequence. The intuition behind the three
matrices (Q, K, V) remains the same as in self-attention, with Q
representing the query, K the key and V the value. Each head performs
an attention mechanism on the input sequence, capturing different
aspects and dependencies of the data, before being combined to form a
more comprehensive representation of the input.

ALEXANDRE VÉRINE DEEP LEARNING 2 121 / 131

TRANSFORMER AND ATTENTION MECHANISM
VISUALIZING MULTI-HEAD ATTENTION

Visualizing Self-Attention for Image:
Link

ALEXANDRE VÉRINE DEEP LEARNING 2 122 / 131

https://epfml.github.io/attention-cnn/

TRANSFORMER AND ATTENTION MECHANISM
TRANSFORMERS MODEL

Transformers are neural network models that use an encoder-decoder
architecture. The encoder takes the input sequence and converts it into
a continuous hidden representation, which is then passed to the
decoder to generate the output sequence. The architecture of the
transformer model is designed to allow the model to process the entire
sequence in parallel, rather than processing one element at a time like in
traditional RNNs.

Training of transformers involves optimizing a loss function that
measures the difference between the model predictions and the true
outputs. This loss function is usually based on the cross entropy
between the predicted and true sequences.

The encoder-decoder mechanism is commonly referred to as the
seq2seq mechanism.

ALEXANDRE VÉRINE DEEP LEARNING 2 123 / 131

TRANSFORMER AND ATTENTION MECHANISM
TRANSFORMERS MODEL

More information about transformers and specific model architectures will be covered next semester in the course on
Applied Deep Learning.

ALEXANDRE VÉRINE DEEP LEARNING 2 124 / 131

TP2: BUILD AND USE AN AUTOENCODER
FORMAL INTRODUCTION OF AN AUTOENCODER

Definition
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. It consists of two
main components:
▶ An encoder function: encoder(x) : Rd → Rm

Maps an input x from the input space Rd to a hidden representation space Rm.
▶ A decoder function: decoder(z) : Rm → Rd

Maps the hidden representation z back to the original input space Rd.

Goal
The primary goal of an autoencoder is to learn a representation (encoding) for a set of data, typically for the purpose of
dimensionality reduction or feature learning. Through training, the autoencoder learns to compress the data from Rd to
Rm (where m < d) and then reconstruct the data back to Rd as accurately as possible. This process forces the
autoencoder to capture the most important features of the data in the hidden representation z.

ALEXANDRE VÉRINE DEEP LEARNING 2 125 / 131

TP2: BUILD AND USE AN AUTOENCODER
FORMAL INTRODUCTION OF AN AUTOENCODER

ALEXANDRE VÉRINE DEEP LEARNING 2 126 / 131

TP2: BUILD AND USE AN AUTOENCODER
AUTOENCODERS AND UNSUPERVISED LEARNING

Unsupervised Learning

Autoencoders are a classic example of unsupervised learning. In unsupervised learning, the goal is to learn patterns
from unlabelled data. Autoencoders learn to compress and decompress the input data without any explicit labels,
aiming to capture the underlying structure of the data.

Objective Function

The learning process of an autoencoder is guided by the minimization of a loss function, typically involving a norm that
measures the difference between the input and the reconstructed output. Formally, the objective is to minimize:

min
θ

Ex∼P [l(x,decoderθ(encoderθ(x)))]

where x is the input data, θ represents the parameters of the encoder and decoder, and l is a loss function.

ALEXANDRE VÉRINE DEEP LEARNING 2 127 / 131

TP2: BUILD AND USE AN AUTOENCODER
AUTOENCODERS AND UNSUPERVISED LEARNING

Unsupervised Learning

Autoencoders are a classic example of unsupervised learning. In unsupervised learning, the goal is to learn patterns
from unlabelled data. Autoencoders learn to compress and decompress the input data without any explicit labels,
aiming to capture the underlying structure of the data.

Objective Function

The learning process of an autoencoder is guided by the minimization of a loss function, typically involving a norm that
measures the difference between the input and the reconstructed output. Formally, the objective is to minimize:

min
θ

Ex∼P

[
∥x− x̂∥2

2

]
where x is the input data, θ represents the parameters of the encoder and decoder and x̂ = decoderθ(encoderθ(x)) in the
reconstruction.

ALEXANDRE VÉRINE DEEP LEARNING 2 128 / 131

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a lower-dimensional space,
facilitating faster data transfer by reducing the amount of data that needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can reconstruct cleaner versions
of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from these patterns,
when the reconstruction error is high, can indicate anomalies or outliers in the data.

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 131

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a lower-dimensional space,
facilitating faster data transfer by reducing the amount of data that needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can reconstruct cleaner versions
of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from these patterns,
when the reconstruction error is high, can indicate anomalies or outliers in the data.

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 131

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a lower-dimensional space,
facilitating faster data transfer by reducing the amount of data that needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can reconstruct cleaner versions
of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from these patterns,
when the reconstruction error is high, can indicate anomalies or outliers in the data.

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 131

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a lower-dimensional space,
facilitating faster data transfer by reducing the amount of data that needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can reconstruct cleaner versions
of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from these patterns,
when the reconstruction error is high, can indicate anomalies or outliers in the data.

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 131

TP2: BUILD AND USE AN AUTOENCODER
YOUR TURN !

Get the TP2 on the course website and start working on it.
▶ https://www.alexverine.com

▶ Teaching
▶ Deep Learning II
▶ Lien Notebooks Python

ALEXANDRE VÉRINE DEEP LEARNING 2 130 / 131

https://www.alexverine.com

REFERENCES I

[1] Brock, A., Donahue, J., and Simonyan, K. (2019). Large Scale GAN Training for High Fidelity Natural Image
Synthesis. arXiv:1809.11096 [cs, stat].

[2] Bronnec, F. L., Verine, A., Negrevergne, B., Chevaleyre, Y., and Allauzen, A. (2024). Exploring Precision and Recall
to assess the quality and diversity of LLMs. Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics. arXiv:2402.10693 [cs].

[3] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative Adversarial Networks. In 27th Conference on Neural Information Processing Systems (NeurIPS 2014). arXiv:
1406.2661.

[4] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020). Analyzing and Improving the Image
Quality of StyleGAN. arXiv:1912.04958 [cs, eess, stat].

[5] Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative Flow with Invertible 1x1 Convolutions. In 32nd Conference
on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada., volume 31.

[6] Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., and Aila, T. (2019). Improved Precision and Recall Metric for
Assessing Generative Models. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver,
Canada. arXiv: 1904.06991.

[7] Yann LeCun, Corinna Cortes, and Burges, C. (2010). MNIST handwritten digit database. ATT Labs, 2.

ALEXANDRE VÉRINE DEEP LEARNING 2 131 / 131

	AI 101: From Fundamentals to Deep Learning
	Introduction to Artificial Intelligence
	Deep Learning in the AI family
	Representation Learning

	Neural Networks Fundamentals
	Neurons
	Layers
	Activation Functions

	The Multi-layer Perceptron (MLP)
	The first Deep Learning Model
	Stochastic Gradient Descent
	Back-propagation
	Example : Image classification of handwritten digits from A to Z

	Deep Learning in Action: From Neural Networks to Transformer Models
	Convolutional Neural Networks
	The Two dimensional Convolution
	CNN : Convolutional in a network Networks
	CNN in practice: CIFAR 10

	Recurrent Neural Networks
	Recurrent Block
	LSTM and GRU

	Transformer and Attention Mechanism
	Self-Attention Mechanism
	Transformers Model

	TP2: Build and use an autoencoder
	Formal introduction of an autoencoder

	References

