The Data Science Lab

Alexandre Vérine, Constant Bourdrez (Benjamin Negrevergne)

PSL University - ENS PSL

Data Science Lab

■ What?

- 3 group assignments, focused on a series of selected problems
 - Recommendation with Collaborative filtering
 - Quality vs. diversity in Generative Models
 - Adversarial attacks in Classification Models
- For each problem, several alternative approaches are presented / discussed
- Students implement one approach of their choice, and compare with baselines
- Ideas & results are discusses during oral presentations

Data Science Lab

■ What?

- 3 group assignments, focused on a series of selected problems
 - Recommendation with Collaborative filtering
 - Quality vs. diversity in Generative Models
 - Adversarial attacks in Classification Models
- For each problem, several alternative approaches are presented / discussed
- Students implement one approach of their choice, and compare with baselines
- Ideas & results are discusses during oral presentations

■ Educational goals

- Apply theoretical knowledge acquired during other classes & support intuition
- Practice reading scientific publications and giving oral presentations
- Explore diverse research problems
- Go beyond the concept of traditional scholar evaluation (i.e. focus producing insights)

Course's website

Planning & info at:

https://www.lamsade.dauphine.fr/~averine/Datalab/

Or at:

 $\verb|https://www.alexverine.com-Teaching-Datalab||$

Assignment 1

Collaborative Filtering

Alexandre Vérine, Constant Bourdrez (Benjamin Negrevergne)

PSL University - ENS PSL

Recommendation: general setting

Content based filtering

Recommendations based on intra-user or intra-object relationships

Collaborative filtering

Recommendations based on user-object relationship

7

CF vs. CBF in recommender systems

■ Content-Based Filtering

- Able to deal with cold start
- Requires user/item features
- Disappointing performances

■ Collaborative filtering

- Works with ratings only
- Good performance in practice
- Unable to deal with cold start
- ▶ The first assignment will focus on collaborative filtering

Outline

- Neighborhood-based collaborative filtering
- 2 Model Based collaborative filtering
- Evaluation
- Expected work

Rating matrix

Remark

 Value 0 is ambiguous: not rated or rated as zero particularly relevant with unitary ratings (e.g. online store)

Neighborhood-based CF

■ Basic principle

- o compute similarity between users based on preferred items
- predict unobserved ratings by combining grades of the nearest users

Neighborhood-based CF

■ Basic principle

- compute similarity between users based on preferred items
- predict unobserved ratings by combining grades of the nearest users

■ Possible algorithm

How to predict unobserved rating \hat{R}_{iu} :

- For all users v compute Sim(u, v)
- **2** Retain top-k nearest neighbors v_1, \ldots, v_k
- $\mathbf{3} \text{ set } \hat{R}_{iu} = \sum_{i=1}^{k} Sim(u, v_i) \cdot R_{iv}$

Neighborhood-based CF

■ Basic principle

- compute similarity between users based on preferred items
- predict unobserved ratings by combining grades of the nearest users

■ Possible algorithm

How to predict unobserved rating \hat{R}_{iu} :

- For all users v compute Sim(u, v)
- ② Retain top-k nearest neighbors v_1, \ldots, v_k
- **Example of similarity measure:** Jaccard similarity

$$X_u = \{i : R_{iu} \ge 3\}$$

$$Sim(u, v) = Jaccard(X_u, X_v) = \frac{|X_u \cap X_v|}{|X_u \cup X_v|}$$

Pearson correlation coefficient

$$M_u = \{i : R_{iu} \text{ is observed } \}$$

▶ $M_u \cap M_v$ indexes of items rated by u and v

Pearson correlation coefficient

$$M_u = \{i : R_{iu} \text{ is observed } \}$$

▶ $M_u \cap M_v$ indexes of items rated by u and v

$$Sim(u, v) = Pearson(u, v)$$

$$= \frac{\sum_{k \in M_u \cap M_v} (r_{ku} - \mu_u) \cdot (r_{kv} - \mu_v)}{\sqrt{\sum_{k \in M_u \cap M_v} (r_{ku} - \mu_u)^2} \cdot \sqrt{\sum_{k \in I_u \cap I_v} (r_{kv} - \mu_v)^2}}$$

Where:
$$\mu_u = \frac{\sum_{k \in M_u} r_{ku}}{|M_u|}$$

Computational considerations

\blacksquare Computational complexity for k recommendation

Performing k recommendation: $\mathcal{O}(n \cdot k)$

(assuming upper-bounded number of ratings per user)

▶ With n = 58~000 and k = 28~000, an $\mathcal{O}(n \cdot k)$ algorithm running at 10 000 step / second takes ≈ 2 days to process.

■ Locality sensitive hashing functions

Properties:

•
$$h(u) = h(v) \Rightarrow sim(u, v) \ge \alpha$$

•
$$h(u) \neq h(w) \Rightarrow sim(u, w) \leq \beta$$

Recommendation with LSH

■ Algorithm

- **offline**: For all users u, compute $h(u_i)$
- online:

```
For all users u s.t. h(u) = h(v),
Compute Sim(v, u)
```

c.f. Mining massive datasets (Free book)
http://infolab.stanford.edu/~ullman/mmds/ch3.pdf
Chapter 3: Finding similar items

Outline

- Neighborhood-based collaborative filtering
- 2 Model Based collaborative filtering
- Evaluation
- Expected work

Matrix factorization for CF

Idea: if ratings are correlated, then R can be approximated with a low rank matrix

■ Low rank matrix factorization

$$R \approx I \times U^{\top}$$

Where

- $R \in \mathbb{R}^{m \times n}$
- $I \in \mathbb{R}^{m \times k}$
- $U \in \mathbb{R}^{n \times k}$

Remark: *I* and *U* can be interpreted.

Matrix factorization demo (k=2)

Machine Learning formulation

■ Regularized loss minimization on fixed-rank matrices using the Frobenius matrix norm $\|\cdot\|_{\mathcal{F}}$

$$\min_{I,U} \quad \|R - IU^{\top}\|_{\mathcal{F}}^2$$

Where:

- $I \in \mathbb{R}^{m,k}$
- $U \in \mathbb{R}^{n,k}$
- $\bullet \ \|X\|_{\mathcal{F}}^2 = tr(X^\top X)$

Machine Learning formulation

■ Regularized loss minimization on fixed-rank matrices using the Frobenius matrix norm $\|\cdot\|_{\mathcal{F}}$

$$\min_{I,U} \quad \|R - IU^{\top}\|_{\mathcal{F}}^2 \quad + \quad \lambda \|I\|_{\mathcal{F}}^2 \quad + \quad \mu \|U\|_{\mathcal{F}}^2$$

Where:

- $I \in \mathbb{R}^{m,k}$
- $II \in \mathbb{R}^{n,k}$
- $||X||_{\mathcal{F}}^2 = tr(X^\top X)$

■ Role of regularization

(same as always)

- avoid overfitting ("learning by heart")
- improve generalization ("prediction to unseen data")

Machine Learning formulation

■ Regularized loss minimization on fixed-rank matrices using the Frobenius matrix norm $\|\cdot\|_{\mathcal{F}}$

$$\min_{I,U} \quad \underbrace{\|R - IU^{\top}\|_{\mathcal{F}}^2 + \lambda \|I\|_{\mathcal{F}}^2 + \mu \|U\|_{\mathcal{F}}^2}_{C(I,U)}$$

Where:

- $I \in \mathbb{R}^{m,k}$
- $U \in \mathbb{R}^{n,k}$
- $\bullet \ \|X\|_{\mathcal{F}}^2 = tr(X^\top X)$
- Role of regularization

(same as always)

- avoid overfitting ("learning by heart")
- improve generalization ("prediction to unseen data")

How to optimize

■ Cost function *C*

$$C(I, U) = \|R - IU^{\top}\|_{\mathcal{F}}^2 + \lambda \|I\|_{\mathcal{F}}^2 + \mu \|U\|_{\mathcal{F}}^2$$

■ Properties of *C*

- non-convex in U and I
- convex in *U* (with *I* fixed)
- convex in *I* (with *U* fixed)

■ Optimization strategy

- aim for any local minimum
- alternated minimization over *U* and *I* (while the other is fixed)

Derivatives

■ Cost function *C*

$$C(I, U) = \|R - IU^{\top}\|_{\mathcal{F}}^{2} + \lambda \|I\|_{\mathcal{F}}^{2} + \mu \|U\|_{\mathcal{F}}^{2}$$

$$C(I, U) = tr(R^{\top}R) - 2tr(R^{\top}IU^{\top}) + tr(UI^{\top}IU^{\top}) + \lambda tr(U^{\top}U) + \mu tr(I^{\top}I)$$

Partial derivatives

- $\frac{\partial C}{\partial U}(I, U) = -2R^{\top}I + 2UI^{\top}I + 2\mu U$
- $\frac{\partial C}{\partial I}(I, U) = -2RU + 2IU^{\top}U + 2\lambda I$

c.f. The matrix cookbook

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf Section 2.5 derivatives of Traces.

- First approach: Gradient descent at every step t,
 - $I_{t+1} = I_t \eta_t \frac{\partial C}{\partial I} (I_t, U_t)$
 - $U_{t+1} = U_t \xi_t \frac{\partial C}{\partial U}(I_t, U_t)$

■ First approach: Gradient descent at every step *t*.

•
$$I_{t+1} = I_t - \eta_t \frac{\partial C}{\partial I}(I_t, U_t)$$

•
$$U_{t+1} = U_t - \xi_t \frac{\partial C}{\partial U}(I_t, U_t)$$

■ Second approach: Alternated Least-Square (ALS) Setting the partial derivatives to zero, we have :

$$\frac{\partial C}{\partial I}(I, U) = -2RU + 2IU^{\top}U + 2\lambda I = 0$$

$$\frac{\partial C}{\partial II}(I, U) = -2R^{\top}I + 2UI^{\top}I + 2\mu U = 0$$

■ First approach: Gradient descent at every step *t*.

•
$$I_{t+1} = I_t - \eta_t \frac{\partial C}{\partial I}(I_t, U_t)$$

•
$$U_{t+1} = U_t - \xi_t \frac{\partial C}{\partial U}(I_t, U_t)$$

■ Second approach: Alternated Least-Square (ALS) Setting the partial derivatives to zero, we have :

$$\frac{\partial C}{\partial I}(I, U) = -2RU + 2IU^{\top}U + 2\lambda I = 0$$

$$\frac{\partial C}{\partial II}(I, U) = -2R^{\top}I + 2UI^{\top}I + 2\mu U = 0$$

- First approach: Gradient descent at every step t,
 - $I_{t+1} = I_t \eta_t \frac{\partial C}{\partial I}(I_t, U_t)$
 - $U_{t+1} = U_t \xi_t \frac{\partial C}{\partial U}(I_t, U_t)$
- Second approach: Alternated Least-Square (ALS)

Setting the partial derivatives to zero, we have :

$$I = RU(U^{\top}U + \lambda \mathbb{I})^{-1}$$
$$U = R^{\top}I(I^{\top}I + \mu \mathbb{I})^{-1}$$

Algorithm

- First approach: Gradient descent at every step t,
 - $I_{t+1} = I_t \eta_t \frac{\partial C}{\partial I}(I_t, U_t)$
 - $U_{t+1} = U_t \xi_t \frac{\partial C}{\partial U}(I_t, U_t)$
- Second approach: Alternated Least-Square (ALS)

Setting the partial derivatives to zero, we have :

$$I_{t+1} = RU_t(U_t^\top U_t + \lambda \mathbb{I})^{-1}$$

$$U_{t+1} = R^\top I_t(I_t^\top I_t + \mu \mathbb{I})^{-1}$$

Missing values

$$S = \{i, j : r_{ij} \text{ is observed}\}$$

$$\frac{\partial C}{\partial i_{iq}}(I,U) = 2 \cdot \sum_{j:(i,j) \in S} \left(r_{ij} - \sum_{s=1}^{k} i_{is} \cdot u_{js} \right) (-u_{jq}) + 2\lambda i_{iq}$$

$$\frac{\partial C}{\partial u_{jq}}(I,U) = 2 \cdot \sum_{i:(i,j) \in S} \left(r_{ij} - \sum_{s=1}^{k} i_{is} \cdot u_{js} \right) (-i_{iq}) + 2\mu u_{jq}$$

Other alternatives

 PCA and variants (including non-linear PCA) Generalized Principal Component Analysis by René Vidal Yi Ma and S.Shankar Sastry See section PCA with Robustness to Missing Entries.

• Lapacian Embedding - Dimension reduction with a local only approach

• Deep Matrix Factorization

Sparse Knn

Optimal Transport based methods

Incroporating background knowledge

Items/users often come with features, how to incorporate them

- Train multiple independent models
- Incorporate features into embedding
- ...

Outline

- Neighborhood-based collaborative filtering
- 2 Model Based collaborative filtering
- Expected work

A Copy of the Movie Lens Dataset

- ratings_train.npy: 1600 Movies and 600 users. ∼ 30k ratings
- ratings_test.npy: 1600 Movies and 600 users. ~ 30k ratings, to test your own method.
- ratings_eval.npy: Our dataset for the platform.
- namesngenre.npy: Movie names and genres to conduct an analysis on the dataset.

Classification vs. Collaborative Filtering

Collaborative filtering

Our setting

Movies vs Users Matrix

Evaluation metric

To evaluate the quality of your predictions, we will use the *Rooted Mean Squared Error* (RMSE):

$$RMSE(R, \hat{R}, T) = \sqrt{\frac{\sum_{(i,u) \in T} (R_{iu} - \hat{R}_{iu})^2}{|T|}}$$

Where:

- *R* in the eval rating matrix (sparse)
- \hat{R} is the estimated rating matrix (dense) based on train+test
- $T = \{(u, i) \mid R_{iu} \text{ is in the eval set } \}$

The Evaluation Platform

You will be evaluated on a platform based on:

- RMSE
- Accuracy for exact ratings
- Time

Outline

- Neighborhood-based collaborative filtering
- 2 Model Based collaborative filtering
- Evaluation
- Expected work

Expected work

- Implement at least MF with ALS or Gradient Descent
- Implement one/several alternative method of your choice
 - LSH, PCA, Optimal transport, etc.
- Write a small report & present your work to the class
 - Discuss hyperparameter tuning (e.g. how to set k)
 - Discuss how to incorporate genre (or other features)
 - Theoretical comparison vs. baseline
 - Experimental comparison vs. baseline

Source code/results

Code, slides and reports must be uploaded on github.

■ Classroom

How to join the classroom and get a github repository

- Create a github account (or use an existing one)
- Join the git classroom for assignment 1 (see course website)
- Click on your name in the listWarning: Do not click on someone else's name!
- Create a group, or join an existing group
 Warning: Do not create a team without coordinating with your partners!

Typical errors to avoid.

- Don't copy paste the lecture in your slides and report.
- Don't use screenshot of equation
- Don't use screenshot of your code.
- Go check what the PALM method is and don't mention it in your slides or your report.