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Data Science Lab

B What?
e 3 group assignments, focused on a series of selected problems

o Recommendation with Collaborative filtering
o Quality vs. diversity in Generative Models
o Adversarial attacks in Classification Models

e For each problem, several alternative approaches are presented / discussed
e Students implement one approach of their choice, and compare with baselines

e |deas & results are discusses during oral presentations
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B Educational goals

e Apply theoretical knowledge acquired during other classes & support intuition
® Practice reading scientific publications and giving oral presentations
® Explore diverse research problems

e Go beyond the concept of traditional scholar evaluation (i.e. focus producing insights)
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Course’s website

Planning & info at:

https://www.lamsade.dauphine.fr/~averine/Datalab/

Or at:
https://www.alexverine.com - Teaching - Datalab
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Assignment 1

Collaborative Filtering
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Recommendation: general setting
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Content based filtering

Recommendations based on intra-user or intra-object relationships
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Collaborative filtering

Recommendations based on user-object relationship
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CF vs. CBF in recommender systems

B Content-Based Filtering
® Able to deal with cold start
® Requires user/item features

e Disappointing performances

H Collaborative filtering
® Works with ratings only
e Good performance in practice
e Unable to deal with cold start

» The first assignment will focus on collaborative filtering
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Outline

@ Neighborhood-based collaborative filtering
@ Model Based collaborative filtering
© Evaluation

@ Expected work
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® Value 0 is ambiguous: not rated or rated as zero

particularly relevant with unitary ratings (e.g. online store)
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Neighborhood-based CF

B Basic principle
@ compute similarity between users based on preferred items

@ predict unobserved ratings by combining grades of the nearest users
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Neighborhood-based CF

B Basic principle
@ compute similarity between users based on preferred items
@ predict unobserved ratings by combining grades of the nearest users

B Possible algorithm
How to predict unobserved rating Rj,:

@ For all users v compute Sim(u, v)
@ Retain top-k nearest neighbors vy, ... v
Q set I"é,'u = Zf:l Sim(u, V,') - R;
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Neighborhood-based CF

B Basic principle
@ compute similarity between users based on preferred items
@ predict unobserved ratings by combining grades of the nearest users

B Possible algorithm
How to predict unobserved rating Rj,:

@ For all users v compute Sim(u, v)

@ Retain top-k nearest neighbors vy, ... v
R P

Q set Riy = >, Sim(u,v;) - Ri,

B Example of similarity measure: Jaccard similarity
X, ={i: Ry >3}

_Xun X

Sim(u, V) = JaCCBrd(XU,XV) = m
u v
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Pearson correlation coefficient

M, = {i : R;, is observed }
» M, N M, indexes of items rated by u and v
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Pearson correlation coefficient

M, = {i : R;, is observed }
» M, N M, indexes of items rated by u and v

Sim(u, v) = Pearson(u, v)

Zkel\/lmlvlv(rku - Mu) : (rkv - Mv)

\/ZkeMuva(rku — fu)? \/Zkelmlv (Fw — f4y)?

_ Zkgl\/lu Tku

Where: u, = W]
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Computational considerations

B Computational complexity for kK recommendation
Performing k recommendation: O(n - k)
(assuming upper-bounded number of ratings per user)

» With n =58 000 and k = 28 000,
an O(n - k) algorithm running at 10 000 step / second takes ~ 2 days to process.

B Locality sensitive hashing functions
Properties:

e h(u) = h(v) = sim(u,v) > «
e h(u) # h(w) = sim(u,w) <
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Recommendation with LSH

B Algorithm
@ offline: For all users u, compute h(u;)

@ online:
For all users u s.t. h(u) = h(v),
Compute Sim(v, u)

c.f. Mining massive datasets (Free book)
http://infolab.stanford.edu/~ullman/mmds/ch3.pdf
Chapter 3: Finding similar items
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Outline

@ Neighborhood-based collaborative filtering
@ Model Based collaborative filtering
© Evaluation

@ Expected work
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Matrix factorization for CF

Idea: if ratings are correlated, then R can be approximated with a low rank matrix

B Low rank matrix factorization

R ~ IxUT
Where
Y RGRan
° /ERka
° UeRnxk
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Matrix factorization demo

We search for | x UT = R

uT
u up u3 uy us
2 4
b 3 6
B b 5 5 -5
a1 2
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Matrix factorization demo

We search for | x UT = R

1 2 1 1 -1 yuT
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Matrix factorization demo

We search for | x UT = R

1 2 1 1 -1 yuT

Remark: / and U can be interpreted.
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Matrix factorization demo (k
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Machine Learning formulation

B Regularized loss minimization on fixed-rank matrices
using the Frobenius matrix norm || - || =

. _ T2
min |[R—IU" %

Where:
e | c R™K
o Uc R
o [IX]|% = tr(XTX)
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Machine Learning formulation

B Regularized loss minimization on fixed-rank matrices
using the Frobenius matrix norm || - || =

min [[R—IUT|% + AF + wlUl%E

Where:

* | c R™K

e UecRM

o [IX]3 = tr(XTX)
B Role of regularization
(same as always)

e avoid overfitting (" learning by heart™)

® improve generalization (" prediction to unseen data”)
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Machine Learning formulation

B Regularized loss minimization on fixed-rank matrices
using the Frobenius matrix norm || - || #

min [[R—IUT|E + Al/E + wllUl3

)

c(1,v)

Where:
e | cR™k
e UeRMk
o XI5 = tr(XTX)
B Role of regularization
(same as always)
e avoid overfitting (" learning by heart™)
® improve generalization (" prediction to unseen data”)
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How to optimize

B Cost function C

LUy = [R=WTIE + AlE + wlul%

B Properties of C
® non-convex in U and /
e convex in U (with [ fixed)

e convex in [ (with U fixed)

B Optimization strategy
® aim for any local minimum
e alternated minimization over U and / (while the other is fixed)
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Derivatives

B Cost function C

C(Lu)y = [R=WTE + AlE + wlulF

C(1,U) = tr(RTR) = 2tr(RTIUT) + tr(UITIUT) + Atr(UT U) + putr(171)

B Partial derivatives

o IC(I,U) = =2RTI+2UITI+2uU
e (1 U) = —2RU+2IUTU+2)I

c.f. The matrix cookbook
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
Section 2.5 derivatives of Traces.
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Algorithm

B First approach: Gradient descent
at every step t,

® ly1 =1 — Wt%(ln Ut)
® Up1=U — ft%(lta Ut)
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Algorithm

B First approach: Gradient descent
at every step t,

® ly1 =1 — nt%(ln Ut)
® Up1=U — gt%(’h Ut)

B Second approach: Alternated Least-Square (ALS)
Setting the partial derivatives to zero, we have :

%(I,U):—ZRU—|—2IUTU+2/\I =0
oc T T
Syl V) = —2RT1+ 2011 +2uU =0
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Algorithm

B First approach: Gradient descent
at every step t,

® li1=1— nt%_(/:(lta Ut)
® Upi1= U — 51:%(% Ut)

B Second approach: Alternated Least-Square (ALS)

Setting the partial derivatives to zero, we have :

I =RUUTU 4 AT)™?
U=RTI(ITI 4 D)7t
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Algorithm

B First approach: Gradient descent
at every step t,

® li1=1— nt%_(/:(lta Ut)
® Upi1= U — 51:%(% Ut)

B Second approach: Alternated Least-Square (ALS)

Setting the partial derivatives to zero, we have :

liy1 = RUL(US Uy + A1) 7!
Uiy = RTIL(LT 1+ pl) 7t

Alexandre Vérine, Constant Bourdrez
(Benjamin Negrevergne)

22



Missing values

S ={i,j: rjis observed}

aC «
S(LU)=2- ) (fﬁziis'ujs> (—Ujq) + 2Xiiq
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Other alternatives

PCA and variants (including non-linear PCA) Generalized Principal Component Analysis
by René Vidal Yi Ma and S.Shankar Sastry
See section PCA with Robustness to Missing Entries.

Lapacian Embedding - Dimension reduction with a local only approach

Deep Matrix Factorization

Sparse Knn

Optimal Transport based methods
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Incroporating background knowledge

Items/users often come with features, how to incorporate them
® Train multiple independent models

® |ncorporate features into embedding
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Outline

@ Neighborhood-based collaborative filtering
@ Model Based collaborative filtering
© Evaluation

@ Expected work
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A Copy of the Movie Lens Dataset

ratings_train.npy: 1600 Movies and 600 users. ~ 30k ratings

ratings_test.npy: 1600 Movies and 600 users. ~ 30k ratings, to test your own method.
ratings_eval.npy: Our dataset for the platform.

namesngenre.npy: Movie names and genres to conduct an analysis on the dataset.
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Classification vs. Collaborative Filtering

! |
Independant dependant
variables variable

Standard classification

training
rows

test
rows

-l No bounderies
between train

and test entries

No bounderies between
independant and dependant variables

Collaborative filtering
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Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

User 1

User 2

User 3

Our setting

Movies vs Users Matrix

User 4

User 5 User 6 User 7 User 8 User 9 User 10

. Train dataset
. Test dataset

Eval dataset
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Evaluation metric

To evaluate the quality of your predictions, we will use the Rooted Mean Squared Error

(RMSE):
R/u o 2
RMSE(R, R, T) = \/Z’“ GT‘(H Ru)
Where:
® Rin the rating matrix (sparse)

e R is the estimated rating matrix (dense) based on train-+test
o T={(u,i)| Ri is in the eval set }
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The Evaluation Platform

You will be evaluated on a platform based on:
e RMSE
e Accuracy for exact ratings

e Time
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Outline

@ Neighborhood-based collaborative filtering
@ Model Based collaborative filtering
© Evaluation

@ Expected work
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Expected work

e Implement at least MF with ALS or Gradient Descent

® Implement one/several alternative method of your choice
o LSH, PCA, Optimal transport, etc.

e Write a small report & present your work to the class
o Discuss hyperparameter tuning (e.g. how to set k)
o Discuss how to incorporate genre (or other features)
o Theoretical comparison vs. baseline
o Experimental comparison vs. baseline
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Source code/results

Code, slides and reports must be uploaded on github.

B Classroom

How to join the classroom and get a github repository

@ Create a github account (or use an existing one)
@ Join the git classroom for assignment 1 (see course website)

@ Click on your name in the list
Warning: Do not click on someone else’s name!

@ Create a group, or join an existing group
Warning: Do not create a team without coordinating with your partners!
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Typical errors to avoid.

Don't copy paste the lecture in your slides and report.

Don't use screenshot of equation

Don’t use screenshot of your code.

Go check what the PALM method is and don’t mention it in your slides or your report.
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