Assignment 2

Learning latent space representations

and application to image generation

Alexandre Vérine, Constant Bourdrez (Benjamin Negrevergne)

PSL University - ENS PSL

Outline

- ① What is a good representation?
- 2 Learning representations with Deep Learning
- 3 Intriguing properties of learned representations
- 4 Synthetic data generation

Task: classify pictures of crocodiles and alligators

Crocodile

Alligator

Task: classify pictures of crocodiles and alligators

■ Representation 1: features

beast_color = Light beast_size = Large ightarrow f

 \rightarrow

crocodile

Task: classify pictures of crocodiles and alligators

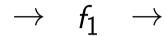
■ Representation 1: features

beast_color = Dark beast_size = Small ightarrow f_1 ightarrow

alligator

Task: classify pictures of crocodiles and alligators

■ Representation 1: features



alligator

■ Representation 2: Use raw pixel data

$$\rightarrow$$
 f_2 \rightarrow

crocodile

Task: classify pictures of crocodiles and alligators

■ Representation 1: features

$$ightarrow$$
 f_1 $ightarrow$

alligator

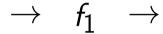
■ Representation 2: Use raw pixel data

$$\rightarrow$$
 f_2 \rightarrow

alligator

Task: classify pictures of crocodiles and alligators

■ Representation 1: features



alligator

■ Representation 2: Use raw pixel data

$$\rightarrow$$
 f_2 \rightarrow

alligator

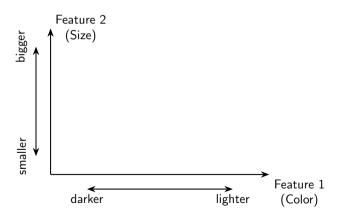
Which **representation** of the input is easier to work with? Why?

 $f_1: \mathbb{R}^2
ightarrow \mathbb{R}$ Input space 1: \mathbb{R}^2

 $f_2: \mathbb{R}^{w \times h \times 3} \to \mathbb{R}$ Input space 2: $\mathbb{R}^{w \times h \times 3}$

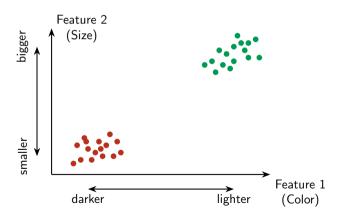
 $f_1: \mathbb{R}^2 o \mathbb{R}$ Input space 1: \mathbb{R}^2

 f_2 : $\mathbb{R}^{w \times h \times 3} \rightarrow \mathbb{R}$ Input space 2: $\mathbb{R}^{w \times h \times 3}$



 $egin{array}{ll} f_1 &:& \mathbb{R}^2 &
ightarrow \mathbb{R} \ & & \\ \hline ext{Input space 1: } \mathbb{R}^2 \end{array}$

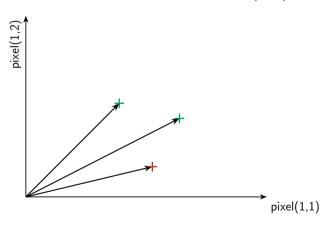
 $f_2: \mathbb{R}^{w \times h \times 3} \rightarrow \mathbb{R}$ Input space 2: $\mathbb{R}^{w \times h \times 3}$



Data points are linearly separable in \mathbb{R}^2

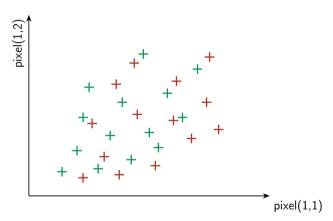
 $f_1: \mathbb{R}^2 o \mathbb{R}$ Input space 1: \mathbb{R}^2

 $f_2: \mathbb{R}^{w \times h \times 3} \rightarrow \mathbb{R}$ Input space 2: $\mathbb{R}^{w \times h \times 3}$



 $f_1: \mathbb{R}^2
ightarrow \mathbb{R}$ Input space 1: \mathbb{R}^2

 $f_2: \mathbb{R}^{w \times h \times 3} \rightarrow \mathbb{R}$ Input space 2: $\mathbb{R}^{w \times h \times 3}$



Data points are not linearly separable in $\mathbb{R}^{w \times h \times 3}$, Why?

Pro/cons

■ Representation 1: hand-crafted features

- + Can be processed with simple (linear) models
 - Individual features are highly discriminant
 - Input data points are (almost) linearly separable
- Requires expertise and manual labor to be built
- No extra information in case of ties

Pro/cons

■ Representation 1: hand-crafted features

- + Can be processed with simple (linear) models
 - Individual features are highly discriminant
 - Input data points are (almost) linearly separable
- Requires expertise and manual labor to be built
- No extra information in case of ties

■ Representation 2: raw pixel data

- + Contains all the information available
- Input data points are not (nearly) linearly separable
 Features are individually non-discriminant
- Difficult to process with simple models

Pro/cons

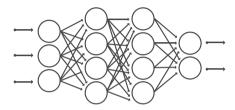
■ Representation 1: hand-crafted features

- + Can be processed with simple (linear) models
 - Individual features are highly discriminant
 - Input data points are (almost) linearly separable
- Requires expertise and manual labor to be built
- No extra information in case of ties

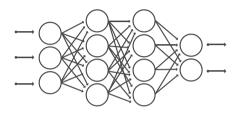
■ Representation 2: raw pixel data

- + Contains all the information available
- Input data points are not (nearly) linearly separable
 Features are individually non-discriminant
- Difficult to process with simple models

Can we build high level features automatically?



$$f = f_1 \circ f_2 \circ \ldots \circ f_{n-1} \circ f_n$$



$$f = f_1 \circ f_2 \circ \ldots \circ f_{n-1} \circ f_n$$

- ullet $f_1:\mathcal{X} o\mathcal{Z}_1$
- $\bullet \ f_i: \mathcal{Z}_{i-1} \to \mathcal{Z}_i$
- $\bullet \ f_n: \mathcal{Z}_{n-1} \to \mathcal{Y}$

$$f = \underbrace{f_1 \circ f_2 \circ \ldots \circ f_{n-1}}_{g} \circ \underbrace{f_n}_{h}$$

Remarks

- h is a linear classifier: $\mathcal{Z}_{n-1} \to \mathcal{Y}$
 - ▶ Data points **must be** linearly separable in \mathcal{Z}_{n-1}
- ullet Data points x are not linearly separable in the input space ${\mathcal X}$

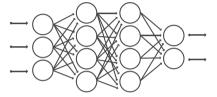
$$f = \underbrace{f_1 \circ f_2 \circ \ldots \circ f_{n-1}}_{g} \circ \underbrace{f_n}_{h}$$

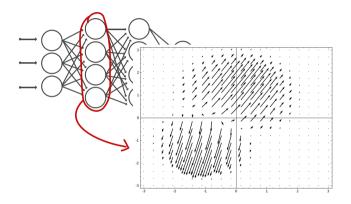
Remarks

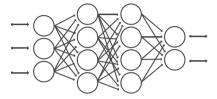
- h is a linear classifier: $\mathcal{Z}_{n-1} \to \mathcal{Y}$
 - ▶ Data points **must be** linearly separable in \mathcal{Z}_{n-1}
- ullet Data points x are not linearly separable in the input space ${\mathcal X}$

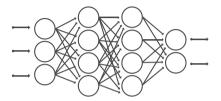
What is g?

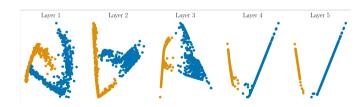
- ullet a function $g:\mathcal{X} o\mathcal{Z}_{n-1}$
- such that data points are linearly separable in \mathcal{Z}_{n-1}
- lacktriangle a representation of the point in ${\mathcal X}$ that is adequate for the task at hand











Deep representations: first lessons

- DNN learn how to projet inputs into a latent space
- The structure of the latent space is useful for the task at hand.
- Given an input $x \in \mathcal{X}$ we say that g(x) is an **embedding** of x, i.e. continuous vector representations of input data (image, text, graph . . .)

Outline

- What is a good representation?
- 2 Learning representations with Deep Learning
- 3 Intriguing properties of learned representations
- 4 Synthetic data generation

Outline

- ① What is a good representation?
- 2 Learning representations with Deep Learning
- 3 Intriguing properties of learned representations
- 4 Synthetic data generation

Image embeddings

- *D*: a database with 80 000 pictures.
- $f = g \circ h$: a classifier trained on object recognition g non-linear function, h linear classifier
- x a random picture from the internet

$$x_1 = \arg\min_{x' \in D} ||g(x) - g(x')||$$
 and $x_2 = \arg\min_{x' \in D \setminus \{x_1\}} ||g(x) - g(x')||$

Image embeddings

- *D*: a database with 80 000 pictures.
- $f = g \circ h$: a classifier trained on object recognition g non-linear function, h linear classifier
- x a random picture from the internet

$$x_1 = \underset{x' \in D}{\operatorname{arg\,min}} ||g(x) - g(x')||$$
 and $x_2 = \underset{x' \in D \setminus \{x_1\}}{\operatorname{arg\,min}} ||g(x) - g(x')||$

X

Image embeddings

- *D*: a database with 80 000 pictures.
- $f = g \circ h$: a classifier trained on object recognition g non-linear function, h linear classifier
- x a random picture from the internet

$$x_1 = \arg\min_{x' \in D} ||g(x) - g(x')||$$
 and $x_2 = \arg\min_{x' \in D \setminus \{x_1\}} ||g(x) - g(x')||$

 X_1

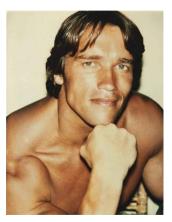
 X_2

X

X

 x_1

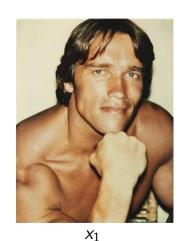
*X*₂



X

 x_1

*X*₂



*X*₂

X

Result: The distance in the latent space seems to be meaningful!

Word embeddings

We can train (monolingual) *word embeddings*, i.e. representations trained to predict well words that appear in its context (ref here)

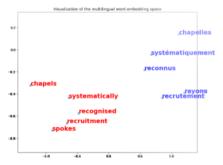


Image generated using pretrained embeddings available here. En avant guiGuan team, 2021.

Word embeddings

We can train (monolingual) *word embeddings*, i.e. representations trained to predict well words that appear in its context (ref here)

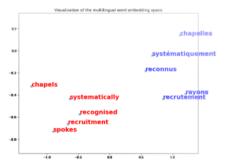
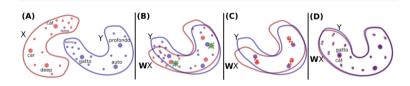


Image generated using pretrained embeddings available here. En avant guiGuan team, 2021.

▶ The structure between word embeddings is preserved across languages

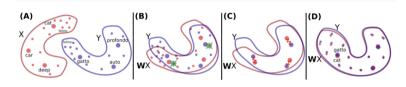
Word to word translation using word embeddings



Exploit linear transformations and rotations to translate a word.

$$Y = \mathbf{W}X$$

Word to word translation using word embeddings



Exploit linear transformations and rotations to translate a word.

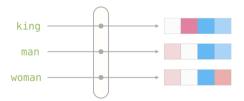
$$Y = \mathbf{W}X$$

Learn W

- with a parallel corpus (e.g. supervised dataset FR-EN)
- without a parallel corpus using a minmax and a discriminator (GAN-like)

Text manipulation with word embeddings

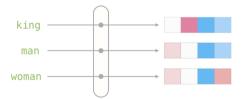
The embedding space is geometric!



The embeddings space is geometric:
$$v(king) - v(man) + v(woman) = ?$$

Text manipulation with word embeddings

The embedding space is geometric!



The embeddings space is geometric:
$$v(king) - v(man) + v(woman) = queen$$

Visualising the data manifold

Dimensionality reduction by learning an invariant mapping.

Hadsell, R., Chopra, S., LeCun, Y. CVPR (2006)

Learns a mapping g that maps inputs with few controlled variations to a low dimensional space

- all pictures are pictures of planes with different poses
- 9 different elevations and 18 different azimuth (orientation).
- input pictures are projected into a low 3-dimensional space

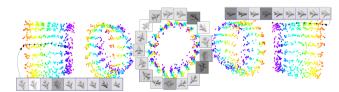
Visualising the data manifold

Dimensionality reduction by learning an invariant mapping.

Hadsell, R., Chopra, S., LeCun, Y. CVPR (2006)

Learns a mapping g that maps inputs with **few controlled variations** to a **low dimensional space**

- all pictures are pictures of planes with different poses
- 9 different elevations and 18 different azimuth (orientation).
- input pictures are projected into a low 3-dimensional space

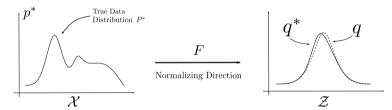


Result:

- Most input data lies on a well defined subspace of the output space
- There is a clear relation between spacial coordinates and features (elevation, azimuth)

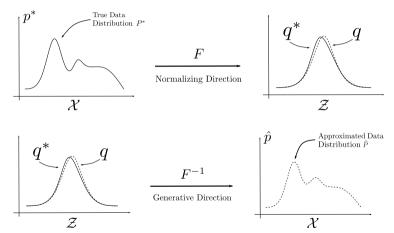
Continuous Representation

What if we enforce continuity and a specific structure in the latent space?



Continuous Representation

What if we enforce continuity and a specific structure in the latent space?



We can generate new data points by sampling in the latent space!

Visualising the latent space

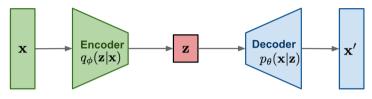
Interpolating between two points in the latent space:

and more examples in this blog post: StyleGAN2 latent space exploration

Outline

- ① What is a good representation?
- 2 Learning representations with Deep Learning
- 3 Intriguing properties of learned representations
- 4 Synthetic data generation

Data generation with VAE

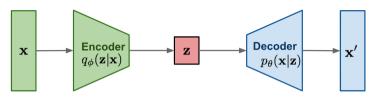


VAE, image from https://lilianweng.github.io

■ Main differences with AE

- Use a probabilistic encoder
- Regularize the latent space during training

Data generation with VAE



VAE, image from https://lilianweng.github.io

Main differences with AE

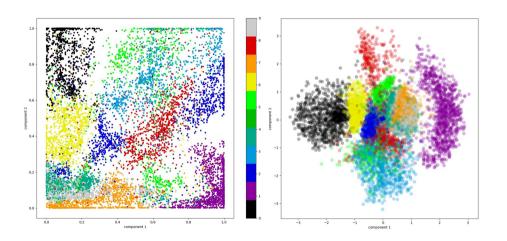
- Use a probabilistic encoder
- Regularize the latent space during training

■ Training procedure

- **1** take a training data point x, obtain μ_x and σ_x from the encoder
- ② sample $z \sim \mathcal{N}(\mu_x, \sigma_x)$, decode z into x'
- 3 compute the loss and update parameters

$$loss(x, x') = ||x - x'|| + KL(\mathcal{N}(\mu_x, \sigma_x), \mathcal{N}(0, I))$$

AE vs. VAE



Data generation with VAE

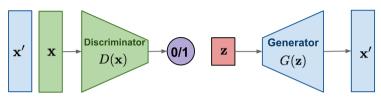
Pros:

- The latent space is continuous and well structured
- Easy to sample from the latent space

Cons:

- Generated images are often blurry
- Difficult to train
- Need to tune the weight of the KL term

Generative Adversarial Networks



GAN, image from https://lilianweng.github.io

■ Main difference with VAE

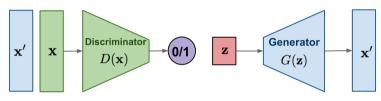
- VAE reconstructs inputs; GANs instead match the data distribution: train a generator G(z) so its samples look real.
- Representation view: G maps a low-dimensional code z to data; a discriminator D(x) provides the learning signal so G(z) and real x share the same statistics.
- Adversarial training (min-max): G tries to fool D, and D learns to tell real from fake.

■ Training procedure

G and D are trained simultaneously to solve the following min-max problem:

$$\min_{G} \max_{D} \mathbb{E}_{x_r \sim P}[\log D(x)] + \mathbb{E}_{x_g \sim \hat{P}_G}[\log 1 - D(x)]$$

Generative Adversarial Networks



GAN, image from https://lilianweng.github.io

References:

- Generative Adversarial Nets https://arxiv.org/pdf/1406.2661
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks https://arxiv.org/abs/1511.06434

Goal of Assignment 2

- Train a GAN on MNIST.
- The structure of the Generator is fixed.
- Use different one or two possible improvements to improve the data generation.

```
0123456789
0123456789
0123456789
0123456789
0123456789
0123456789
```

Requirements Assignment 2

- Train a Generator (decoder) model to generate MNIST digits.
- Write a script generate.py that generate 10000 samples in the folder samples (use mine).
- Based on these 10k samples, you will be evaluated on FID, Precision and Recall. Precision/Recall

Base repo of the Assignment 2: Link

Requirements Assignment 2

Program of next week session:

- Review of different GAN implement for trading off quality of the samples with diversity.
- How to compute FID, Precision and Recall to measure the quality and the diversity of generated samples.
- How to run training on GPU cluster.
- Group session to help you start on Assignment 2.

To do list for next week:

Read the GAN paperGenerative Adversarial Nets