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Reptile classification challenge

Task: classify pictures of crocodiles and alligators

Crocodile Alligator
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Reptile classification challenge

Task: classify pictures of crocodiles and alligators

■ Representation 1: features[
beast color = Light
beast size = Large

] → f1 → crocodile

■ Representation 2: Use raw pixel data

→ f2 →

crocodile

Which representation of the input is easier to work with ? Why ?
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Reptile classification challenge

Task: classify pictures of crocodiles and alligators

■ Representation 1: features[
beast color = Dark
beast size = Small

] → f1 → alligator

■ Representation 2: Use raw pixel data

→ f2 →

crocodile

Which representation of the input is easier to work with ? Why ?
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What’s the difference?

f1 : R2 → R
Input space 1: R2

f2 : Rw×h×3 → R
Input space 2: Rw×h×3

Alexandre Vérine, Constant Bourdrez
(Benjamin Negrevergne)

5



What’s the difference?

f1 : R2 → R
Input space 1: R2

f2 : Rw×h×3 → R
Input space 2: Rw×h×3

Feature 1
(Color)

Feature 2
(Size)

darker lighter

sm
al
le
r

b
ig
ge
r
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What’s the difference?

f1 : R2 → R
Input space 1: R2

f2 : Rw×h×3 → R
Input space 2: Rw×h×3
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What’s the difference?

f1 : R2 → R
Input space 1: R2

f2 : Rw×h×3 → R
Input space 2: Rw×h×3

pixel(1,1)

pi
xe
l(
1,
2)

Data points are not linearly separable in Rw×h×3, Why?
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Pro/cons

■ Representation 1: hand-crafted features

+ Can be processed with simple (linear) models

Individual features are highly discriminant
Input data points are (almost) linearly separable

− Requires expertise and manual labor to be built

− No extra information in case of ties

■ Representation 2: raw pixel data

+ Contains all the information available

− Input data points are not (nearly) linearly separable
Features are individually non-discriminant

− Difficult to process with simple models

Can we build high level features automatically ?

Alexandre Vérine, Constant Bourdrez
(Benjamin Negrevergne)

6



Pro/cons

■ Representation 1: hand-crafted features

+ Can be processed with simple (linear) models

Individual features are highly discriminant
Input data points are (almost) linearly separable

− Requires expertise and manual labor to be built

− No extra information in case of ties

■ Representation 2: raw pixel data

+ Contains all the information available

− Input data points are not (nearly) linearly separable
Features are individually non-discriminant

− Difficult to process with simple models

Can we build high level features automatically ?
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Deep neural nets

f = f1 ◦ f2 ◦ . . . ◦ fn−1 ◦ fn

• f1 : X → Z1

• fi : Zi−1 → Zi

• fn : Zn−1 → Y
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Deep neural nets

f = f1 ◦ f2 ◦ . . . ◦ fn−1︸ ︷︷ ︸
g

◦ fn︸︷︷︸
h

Remarks

• h is a linear classifier: Zn−1 → Y
▶ Data points must be linearly separable in Zn−1

• Data points x are not linearly separable in the input space X

What is g?

• a function g : X → Zn−1

• such that data points are linearly separable in Zn−1

▶ a representation of the point in X that is adequate for the task at hand
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Learning deep representations
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Learning deep representations
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Deep representations: first lessons

• DNN learn how to projet inputs into a latent space

• The structure of the latent space is useful for the task at hand.

• Given an input x ∈ X we say that g(x) is an embedding of x , i.e. continuous vector
representations of input data (image, text, graph . . . )
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Image embeddings

• D: a database with 80 000 pictures.

• f = g ◦ h: a classifier trained on object recognition
g non-linear function, h linear classifier

• x a random picture from the internet

x1 = argmin
x ′∈D

||g(x)− g(x ′)|| and x2 = argmin
x ′∈D\{x1}

||g(x)− g(x ′)||

x x1 x2
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Query by image (2)

x

x1 x2
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Query by image (2)

x x1 x2

Result: The distance in the latent space seems to be meaningful!
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Query by image (2)

x x1 x2
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Word embeddings

We can train (monolingual) word embeddings,
i.e. representations trained to predict well words that appear in its context (ref here)

Image generated using pretrained embeddings available here. En avant guiGuan team, 2021.

▶ The structure between word embeddings is preserved across languages
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https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
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Word to word translation using word embeddings

Exploit linear transformations and rotations to translate a word.

Y = WX

Learn W

• with a parallel corpus (e.g. supervised dataset FR-EN)

• without a parallel corpus using a minmax and a discriminator (GAN-like)
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Text manipulation with word embeddings

The embedding space is geometric!

The embeddings space is geometric:
v(king)− v(man) + v(woman) = ?
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Text manipulation with word embeddings

The embedding space is geometric!

The embeddings space is geometric:
v(king)− v(man) + v(woman) = queen

Alexandre Vérine, Constant Bourdrez
(Benjamin Negrevergne)

20



Visualising the data manifold

Dimensionality reduction by learning an invariant mapping.

Hadsell, R., Chopra, S., LeCun, Y. CVPR (2006)

Learns a mapping g that maps inputs with few controlled variations to a low dimensional
space

• all pictures are pictures of planes with different poses
• 9 different elevations and 18 different azimuth (orientation).
• input pictures are projected into a low 3-dimensional space

Result:
• Most input data lies on a well defined subspace of the output space
• There is a clear relation between spacial coordinates and features (elevation, azimuth)
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Continuous Representation

What if we enforce continuity and a specific structure in the latent space?
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Continuous Representation

What if we enforce continuity and a specific structure in the latent space?

We can generate new data points by sampling in the latent space!
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Visualising the latent space

Interpolating between two points in the latent space:

and more examples in this blog post: StyleGAN2 latent space exploration
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Data generation with VAE

VAE, image from https://lilianweng.github.io

■ Main differences with AE
• Use a probabilistic encoder
• Regularize the latent space during training

■ Training procedure

1 take a training data point x , obtain µx and σx from the encoder

2 sample z ∼ N (µx , σx), decode z into x ′

3 compute the loss and update parameters

loss(x , x ′) = ∥x − x ′∥+ KL(N (µx , σx),N (0, I ))
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Alexandre Vérine, Constant Bourdrez
(Benjamin Negrevergne)

25



AE vs. VAE
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Data generation with VAE

Pros:

• The latent space is continuous and well structured

• Easy to sample from the latent space

Cons:

• Generated images are often blurry

• Difficult to train

• Need to tune the weight of the KL term
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Generative Adversarial Networks

GAN, image from https://lilianweng.github.io

■ Main difference with VAE
• VAE reconstructs inputs; GANs instead match the data distribution: train a generator
G (z) so its samples look real.

• Representation view: G maps a low-dimensional code z to data; a discriminator D(x)
provides the learning signal so G (z) and real x share the same statistics.

• Adversarial training (min–max): G tries to fool D, and D learns to tell real from fake.
■ Training procedure

G and D are trained simultaneously to solve the following min-max problem:

min
G

max
D

Exr∼P [logD(x)] + Exg∼P̂G
[log 1− D(x)]
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Generative Adversarial Networks

GAN, image from https://lilianweng.github.io

References:

• Generative Adversarial Nets
https://arxiv.org/pdf/1406.2661

• Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks https://arxiv.org/abs/1511.06434
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Goal of Assignment 2

1 Train a GAN on MNIST.

2 The structure of the Generator is fixed.

3 Use different one or two possible improvements to improve the data generation.
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Requirements Assignment 2

1 Train a Generator (decoder) model to generate MNIST digits.

2 Write a script generate.py that generate 10000 samples in the folder samples (use mine).

3 Based on these 10k samples, you will be evaluated on FID, Precision and Recall.
Precision/Recall

Base repo of the Assignment 2: Link

Alexandre Vérine, Constant Bourdrez
(Benjamin Negrevergne)
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Requirements Assignment 2

Program of next week session:

• Review of different GAN implement for trading off quality of the samples with diversity.

• How to compute FID, Precision and Recall to measure the quality and the diversity of
generated samples.

• How to run training on GPU cluster.

• Group session to help you start on Assignment 2.

To do list for next week:

• Read the GAN paperGenerative Adversarial Nets

Alexandre Vérine, Constant Bourdrez
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