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Outline

@ What is a good representation ?
@ Learning representations with Deep Learning
© Intriguing properties of learned representations

@ Synthetic data generation
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Reptile classification challenge

Task: classify pictures of crocodiles and alligators

Crocodile Allgtor
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B Representation 1: features
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beast_size = Large
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Reptile classification challenge

Task: classify pictures of crocodiles and alligators

B Representation 1: features

beast_color = Dark —> f]_ — alligator

beast_size = Small

B Representation 2: Use raw pixel data

—> f'2 —> alligator

Which representation of the input is easier to work with ? Why 7
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What's the difference?

i : R - R fr + Rwxh3 L R
Input space 1: R? Input space 2: RWxhx3
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What's the difference?
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Data points are linearly separable in R?
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What's the difference?
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Data points are not linearly separable in R"*/*3 Why?
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Pro/cons

B Representation 1: hand-crafted features
+ Can be processed with simple (linear) models

o Individual features are highly discriminant
o Input data points are (almost) linearly separable

— Requires expertise and manual labor to be built

— No extra information in case of ties
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B Representation 1: hand-crafted features
+ Can be processed with simple (linear) models

o Individual features are highly discriminant
o Input data points are (almost) linearly separable

— Requires expertise and manual labor to be built

— No extra information in case of ties

B Representation 2: raw pixel data
+ Contains all the information available

— Input data points are not (nearly) linearly separable

Features are individually non-discriminant

— Difficult to process with simple models
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Pro/cons

B Representation 1: hand-crafted features
+ Can be processed with simple (linear) models

o Individual features are highly discriminant
o Input data points are (almost) linearly separable

— Requires expertise and manual labor to be built

— No extra information in case of ties

B Representation 2: raw pixel data
+ Contains all the information available

— Input data points are not (nearly) linearly separable

Features are individually non-discriminant

— Difficult to process with simple models

Can we build high level features automatically ?
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Deep neural nets
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Deep neural nets

f=foho...0of,_10 f,
b g h
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g
Remarks

® his a linear classifier: Z,_1 — )
» Data points must be linearly separable in Z,_1

e Data points x are not linearly separable in the input space X
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Deep neural nets

f=foho...0of,_10 f,
N ~ N
g h

Remarks

® his a linear classifier: Z,_1 — Y
» Data points must be linearly separable in Z,_1

e Data points x are not linearly separable in the input space X

What is g?
® a function g: X — 2,1
® such that data points are linearly separable in Z,_;
» a representation of the point in X’ that is adequate for the task at hand
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Learning deep representations
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Learning deep representations
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Learning deep representations
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Learning deep representations
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Deep representations: first lessons

e DNN learn how to projet inputs into a latent space
e The structure of the latent space is useful for the task at hand.

e Given an input x € X’ we say that g(x) is an embedding of x, i.e. continuous vector
representations of input data (image, text, graph ...)
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Outline

@ What is a good representation ?
@ Learning representations with Deep Learning
© Intriguing properties of learned representations

@ Synthetic data generation
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Image embeddings

e D: a database with 80 000 pictures.

e f = g o h: a classifier trained on object recognition
g non-linear function, h linear classifier

® x a random picture from the internet

xi = argmin||g(x) — g(x)|| and x = argmin [|g(x) — g(')|
x'eD x'€D\{x1}
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Image embeddings

e D: a database with 80 000 pictures.

e f = g o h: a classifier trained on object recognition
g non-linear function, h linear classifier

® x a random picture from the internet
x1 = argmin||g(x) — g(x")|| and
x'eD
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Image embeddings

e D: a database with 80 000 pictures.

e f = g o h: a classifier trained on object recognition
g non-linear function, h linear classifier

® x a random picture from the internet

X = arg min lg(x) —g(x)I| and
x'e

xp = argmin ||g(x) — g(x')]|
x'eD\{x1}

Alexandre Vérine, Constant Bourdrez
(Benjamin Negrevergne)

14



Query by image (2)
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Query by image (2)
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Query by image (2)
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Query by image (2)

X2
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Query by image (2)

X2
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Word embeddings

We can train (monolingual) word embeddings,
i.e. representations trained to predict well words that appear in its context (ref here)

oo
systématiqueme
- reconnus
chapels
anl] . rayons
systematically recrutement

Jecognised

Jecruitment
spokes

s s as a5 M

Image generated using pretrained embeddings available here. En avant guiGuan team, 2021.
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https://arxiv.org/abs/1607.04606
https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries

Word embeddings

We can train (monolingual) word embeddings,
i.e. representations trained to predict well words that appear in its context (ref here)

systématiquem

- reconnus
chapels
s . rayons
systematically recrutement
Jecognised
-an .
Jecruitment
spokes

Image generated using pretrained embeddings available here. En avant guiGuan team, 2021.

» The structure between word embeddings is preserved across languages
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https://arxiv.org/abs/1607.04606
https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries

Word to word translation using word embeddings

Exploit linear transformations and rotations to translate a word.

Y =WX
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Word to word translation using word embeddings

Exploit linear transformations and rotations to translate a word.

Y =WX

Learn W
e with a parallel corpus (e.g. supervised dataset FR-EN)
e without a parallel corpus using a minmax and a discriminator (GAN-like)
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Text manipulation with word embeddings

The embedding space is geometric!

The embeddings space is geometric:
v(king) — v(man) 4+ v(woman) = 7
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Text manipulation with word embeddings

The embedding space is geometric!

The embeddings space is geometric:
v(king) — v(man) + v(woman) = queen
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Visualising the data manifold

Dimensionality reduction by learning an invariant mapping.
Hadsell, R., Chopra, S., LeCun, Y. CVPR (2006)
Learns a mapping g that maps inputs with few controlled variations to a low dimensional
space
® all pictures are pictures of planes with different poses
e 9 different elevations and 18 different azimuth (orientation).
® input pictures are projected into a low 3-dimensional space
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Visualising the data manifold

Dimensionality reduction by learning an invariant mapping.
Hadsell, R., Chopra, S., LeCun, Y. CVPR (2006)
Learns a mapping g that maps inputs with few controlled variations to a low dimensional
space
® all pictures are pictures of planes with different poses
e 9 different elevations and 18 different azimuth (orientation).
® input pictures are projected into a low 3-dimensional space

.‘P“'ﬁ.*ﬁ 37| 20| Y= P

Result:
e Most input data lies on a well defined subspace of the output space
® There is a clear relation between spacial coordinates and features (elevation, azimuth)
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Continuous Representation

What if we enforce continuity and a specific structure in the latent space?

p* True Data

/ Distribution P* q k q

~ /,’ \
F A

Normalizing Direction
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Continuous Representation

What if we enforce continuity and a specific structure in the latent space?

* True Data

p / Distribution P* q* q

~_ /' !
F [/

Normalizing Direction

p Approximut(‘(LDnhl

/ Distribution P

Fﬁl

Generative Direction

We can generate new data points by sampling in the latent space!
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Visualising the latent space

Interpolating between two points in the latent space:

and more examples in this blog post: StyleGAN2 latent space exploration
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https://amarsaini.github.io/Epoching-Blog/jupyter/2020/08/10/Latent-Space-Exploration-with-StyleGAN2.html

Outline

@ What is a good representation ?
@ Learning representations with Deep Learning
© Intriguing properties of learned representations

@ Synthetic data generation

Alexandre Vérine, Constant Bourdrez
(Benjamin Negrevergne)

24



Data generation with VAE

Decoder
po(x|z)

Encoder
g (2[x)

VAE, image from https://lilianweng.github.io

B Main differences with AE
e Use a probabilistic encoder
® Regularize the latent space during training
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Data generation with VAE

Decoder
po(x|z)

Encoder
g (2[x)

VAE, image from https://lilianweng.github.io

B Main differences with AE
e Use a probabilistic encoder
® Regularize the latent space during training
B Training procedure
@ take a training data point x, obtain u, and o, from the encoder
@ sample z ~ N (ux, 0x), decode z into x’
@ compute the loss and update parameters
Joss(x. x') = [|x — x'[| + KL (tx, 0:). N°(0, 1))
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companent 2

component 2

component 1

component 1
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Data generation with VAE

Pros:
® The latent space is continuous and well structured
e Easy to sample from the latent space

Cons:
e Generated images are often blurry
e Difficult to train
e Need to tune the weight of the KL term

Alexandre Vérine, Constant Bourdrez
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Generative Adversarial Networks

Generator

G(2)

Discriminator

D(x)

GAN, image from https://lilianweng.github.io

B Main difference with VAE
e VAE reconstructs inputs; GANs instead match the data distribution: train a generator
G(z) so its samples look real.
e Representation view: G maps a low-dimensional code z to data; a discriminator D(x)
provides the learning signal so G(z) and real x share the same statistics.
e Adversarial training (min—-max): G tries to fool D, and D learns to tell real from fake.
B Training procedure
G and D are trained simultaneously to solve the following min-max problem:

llog 1 — D(x)]

mGjn max E~pllog D(x)] + E

xg~Po

Alexandre Vérine, Constant Bourdrez
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Generative Adversarial Networks

Generator

G(z)

Discriminator

D(x)

GAN, image from https://lilianweng.github.io

References:

® Generative Adversarial Nets
https://arxiv.org/pdf/1406.2661

e Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks https://arxiv.org/abs/1511.06434
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https://arxiv.org/pdf/1406.2661
https://arxiv.org/abs/1511.06434

Goal of Assignment 2

@ Train a GAN on MNIST.
@ The structure of the Generator is fixed.

© Use different one or two possible improvements to improve the data generation.
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Requirements Assighment 2

@ Train a Generator (decoder) model to generate MNIST digits.
@ Write a script generate.py that generate 10000 samples in the folder samples (use mine).

© Based on these 10k samples, you will be evaluated on FID, Precision and Recall.
Precision/Recall

Base repo of the Assignment 2: Link
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https://arxiv.org/abs/1904.06991
https://github.com/AlexVerine/DataLabAssignement2/blob/main/train.py

Requirements Assighment 2

Program of next week session:
e Review of different GAN implement for trading off quality of the samples with diversity.

® How to compute FID, Precision and Recall to measure the quality and the diversity of
generated samples.

® How to run training on GPU cluster.

® Group session to help you start on Assignment 2.

To do list for next week:
e Read the GAN paperGenerative Adversarial Nets
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https://arxiv.org/pdf/1406.2661.pdf
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