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THE VARIOUS PERFORMANCES OF GENERATIVE MODELS
MOTIVATION

As the generation becomes better, the evaluation becomes more challenging.

?
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THE VARIOUS PERFORMANCES OF GENERATIVE MODELS
TRADITIONAL METRICS

Two metrics are often used to evaluate generative models:

▶ Inception Score (IS) [24]

▶ Fréchet Inception Distance (FID) [15]

Question : Can they separately evaluate quality and diversity of generative models?
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TRADITIONAL METRICS
INCEPTION SCORE

Assume that we have a pre-trained classifier Inception-v3:

Definition 1.1 (Inception Score)
Let denote P(Y|x) be the conditional class distribution of an image x given by the Inception-v3 model and P(Y) the class
distribution in dataset sampled from P. The Inception Score is defined as:

IS(P̂) = exp
(
Ex∼P̂ [DKL(P(Y|x)∥P(Y))]

)

where DKL is the Kullback-Leibler divergence.

With H being the entropy function, IS can be reformulated as:

log
(

IS(P̂)
)
= H

(
Ex∼P̂ [P(Y|x)]

)
− Ex∼P̂ [H (P(Y|x))] .
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TRADITIONAL METRICS
INCEPTION SCORE

log
(

IS(P̂)
)
= H

(
Ex∼P̂ [P(Y|x)]

)
− Ex∼P̂ [H (P(Y|x))] .

Inception Score is maximized :
▶ if for every x ∼ P̂, HY (P(Y|x)) is minimized. This suggests that the classification model is highly confident in

predicting a singular label per image, which implies that the images are clearly recognizable and of high quality.
▶ if the entropy of Ex∼P̂ [P(Y|x)] is maximized. The label predictions must be uniformly distributed over all possible

labels. This indicates that the generative model generates heterogeneous labels, thereby ensuring diversity.

Figure. Source: medium.com
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TRADITIONAL METRICS
IS FALLS SHORT

However, in practical applications, the Inception Score has revealed several shortcomings [11, 6, 3, 23]:
▶ The IS is not sensitive to measuring intraclass diversity. In particular, if the model generates only one high-quality

image per class, the IS will be high.
▶ The IS does not directly measure the realism of individual images. If the images are peripherally saturating, noisy,

or distorted, and if the classification confidence is high, they are evaluated as realistic.
▶ The IS is biased toward the classes represented in ImageNet, since the Inception-v3 model is trained on this dataset.

For instance, if the goal is to evaluate models that generate faces such as the CelebA dataset, IS will favor models
generating faces with glasses, sunglasses, or cowboy hat, since these attributes are ImageNet classes.

▶ IS is not necessarily optimal when the generated images are identical to the dataset. Since it does not directly
compare the generated distribution with the true data distribution, Barratt and Sharma [3] shows that IS(P) is not
always optimal.
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TRADITIONAL METRICS
FRÉCHET INCEPTION DISTANCE

The Fréchet Inception Distance (FID) compares the statistics of generated samples to real samples based on the features
extracted using the output of the last pooling layer of Inception-v3, which is in dimension 2048, we denote it
ϕ : Rd → Rm. We take two sets of samples

{
xreal

1 , . . . , xreal
N

}
drawn from both P and

{
xfake

1 , . . . , xfake
N

}
drawn from P̂. We

consider the empirical mean and covariance of the latent representation of the samples:

µ =
1
N

N∑

i=1

ϕ(xreal
i ) and Σ =

1
N − 1

N∑

i=1

(
ϕ(xreal

i )− µ
)(

ϕ(xreal
i )− µ

)⊤
,

µ̂ =
1
N

N∑

i=1

ϕ(xfake
i ) and Σ̂ =

1
N − 1

N∑

i=1

(
ϕ(xfake

i )− µ̂
)(

ϕ(xfake
i )− µ̂

)⊤

Definition 1.2 (Fréchet Inception Distance)
The Fréchet Inception Distance is defined as the Wasserstein-2 distance between two multivariate Gaussians N (µ,Σ) and
N (µ̂, Σ̂):

FID = ∥µ− µ̂∥2 + Tr
(
Σ+ Σ̂− 2(ΣΣ̂)1/2

)
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TRADITIONAL METRICS
FID FALLS SHORT

FID is still the most widely used metric to evaluate generative models, but it has several limitations [15, 6, 10]:
▶ The FID compares statistical summaries (mean and covariance) of the latent distributions of Inception, a

discriminative model. Therefore, it may not capture all aspects of image quality, such as texture and local structure,
that are perceptible to humans.

▶ FID assumes that the latent representations follow a Gaussian distribution, which may not hold true in practice.
This assumption can lead to inaccurate assessments of the similarity between real and generated data distributions.

▶ FID does not distinguish between different types of error in image generation. For example, it treats a noisy object
the same as a completely wrong object being generated, which may not align with human judgment.

▶ Similarly to IS, FID accounts for both quality and diversity, but without a clear trade-off.
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TRADITIONAL METRICS
FID FALLS SHORT

For example, Kynkäänniemi et al. [19] highlights the limitations of FID with samples drawn from StyleGAN:

(a) Set A - FID= 91.7 (b) Set B - FID= 16.9 (c) Set C - FID= 4.5 (d) Set D - FID= 16.7
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OUTLINE

In this presentation, we discuss on evaluating, optimizing and improving quality and diversity of generative models:

1. Evaluating: How can we assess quality and diversity independently in Generative Models?

2. Tuning: Can we optimize a specific trade-off between quality and diversity?

3. Improving: How can we improve the quality and diversity of a pre-trained generative models?
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CONTEXT AND MOTIVATION
CONTEXT

Evaluating:
How can we assess quality and

diversity independtly
in Generative Models?
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GENERATIVE MODELS
FRAMEWORK
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▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
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▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
▶ Goal: Learn a parameterized distribution P̂G that approximate P:

1. Consider a distribution Q in a latent space X ⊂ Rm, usually N (0, Im).
2. Take a generator model G represented by a neural network. Take P̂G = G#Q.
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PRECISION AND RECALL FOR GENERATIVE MODELS
METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity
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PRECISION AND RECALL FOR GENERATIVE MODELS
METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity

↓ ↓
Precision Recall

= =
What proportion of generated samples are realistic? What proportion of real samples can be generated?
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Definition 1.3 (Support-Based Precision and Recall - [19].)

For any distributions P ∈ P(X ) and P̂ ∈ P(X ), we say that the distribution P has precision ᾱ at recall β̄ with respect to P̂ if

ᾱ := P̂(Supp(P)) and β̄ := P(Supp(P̂)).

PR FOR GENERATIVE MODELS 16 / 81



PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Precision for finite support is the proportion of generated data that lies on the support of the real data:

ᾱ = P̂(Supp(P)).
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Recall for finite support is the proportion of the support of the real data that is covered by the generated data:

β̄ = P(Supp(P̂)).
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PRECISION AND RECALL FOR GENERATIVE MODELS
ESTIMATING THE PRECISION AND RECALL

?
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR LLMS
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PRECISION AND RECALL FOR GENERATIVE MODELS
IN PRACTICE

MNIST Dataset [32]
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PRECISION AND RECALL FOR GENERATIVE MODELS
IN PRACTICE

MNIST Dataset [32] High Precision Low Recall

Precision: 0.80 Recall: 0.70

Low Precision High Recall

Precision: 0.54 Recall: 0.91
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR LLMS

On open-ended generation, the quality and
diversity of LLMs can also be evaluated using

Precision and Recall: Bronnec et al. [8]
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR LLMS

We can also evaluate the quality and diversity of LLMs on Chatbot open-ended generation. We can for instance check
the impact of In-Context examples on the quality and diversity of the generated text. For instance on Wikipedia
Biographies generation:
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR INIFINITE SUPPORT
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR INIFINITE SUPPORT
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PR-CURVE FOR GENERATIVE MODELS
DEFINITION

Definition 1.4 (PR-Curve for Generative Models - Sajjadi et al. [23], Simon et al. [25])

Let P, P̂ ∈ P(X ) be two distributions such that P, P̂ ≪ µ. The PR-Curve is the set PRD(P, P̂) defined as:

PRD(P, P̂) = {(αλ, βλ) |λ ∈ [0,∞]}

with:

αλ =

∫

X
min (λp(x), p̂(x))dµ(x) and βλ =

∫

X
min (p(x), p̂(x)/λ)dµ(x).
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PR-CURVE FOR GENERATIVE MODELS
DEFINITION

For the Precision, λp is compared to p̂ for different threshold λ ∈ [0,+∞]:

αλ =

∫

X
min (λp(x), p̂(x))dµ(x) (1)
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PR-CURVE FOR GENERATIVE MODELS
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PR-CURVE FOR GENERATIVE MODELS
DEFINITION

For the Recall, p is compared to p̂/λ for different threshold λ ∈ [0,+∞]:

βλ =

∫

X
min (p(x), p̂(x)/λ)dµ(x) (2)
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PR-CURVE FOR GENERATIVE MODELS
DEFINITION

For the Recall, p is compared to p̂/λ for different threshold λ ∈ [0,+∞]:

βλ =

∫

X
min (p(x), p̂(x)/λ)dµ(x) (2)
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PR-CURVE FOR GENERATIVE MODELS
EXAMPLES
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Figure. Learning distribution with low recall and high precision.
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PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL
RELATION

The PR-Curve is a generalization of the Precision and Recall for finite support:

Theorem 1.5 (Support-based and PR-Curves - Siry et al. [26])

Let P, P̂ ∈ P(X ) be two distributions. Then, the support-based Precision and Recall (ᾱ, β̄) are related to the PR-Curve values
PRD(P, P̂) for λ = 0 and λ = ∞:

ᾱ = max
λ

αλ = α∞ and β̄ = max
λ

βλ = β0.
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PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL
RELATION
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PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL
RELATION
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PR-CURVE FOR GENERATIVE MODELS
IN PRACTICE
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PR-CURVE FOR GENERATIVE MODELS
IN NLP
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Figure. PR-Curve for distributions journal articles: AG News.
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ON THE PLATFORM

Metrics used to evaluate your models are:
▶ FID
▶ Precision (for finite support)
▶ Recall (for finite support)
▶ (Obviously) the visual inspection of the generated samples.
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS

Tuning:
How can we tune a model to
a specific trade-off between

Precision and Recall?
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
TRUNCATION

Hard Trunctation
Karras et al. [17]

Soft Trunctation
Kingma and Dhariwal [18]
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
HARD TRUNCATION

Figure. From left to right: ψ = 0.0, ψ = 0.3 ψ = 0.7 ψ = 1.0.

0.0 0.2 0.4 0.6 0.8 1.0
Truncation Ã

0.0

0.2

0.4

0.6

0.8

1.0
Precision
Recall

Figure. Source: [19]
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
SOFT TRUNCATION

(a) ψ = 0.04 (b) ψ = 0.5 (c) ψ = 1.0 (d) ψ = 2.0

Figure. Soft-Truncation on BigGAN. Source:[7].
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
TEMPERATURE SCALING

In LLMs, we can tune the temperature. Let’s assume that the model is outputting a categorical distribution with
probability P̂(xl|x<i) for a token xl with a given context x<i. We can tune the temperature t > 0 as follows:

P̂t(xl|x<i) =
P̂(xl|x<i)

1/t
∑

xi∈VL

P̂(xi|x<i)
1/t
.
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P̂t(xl|x<i) =
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1/t
∑

xi∈VL

P̂(xi|x<i)
1/t
.

0 0.05 0.10
0

0.15

0.30 Precision

Recall

Llama 3.1 8B Instruct

RLEF Llama 3.1 8B Instruct

Llama 3.1 70B Instruct

RLEF Llama 3.1 70B Instruct

t = 1

Figure. Effect on the PR-Curve for different temperatures for Coda Llama 2. Source: Verine et al. [30].
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TRAINING A GENERATIVE MODEL
IN GENERAL

Traditionally, the goal is to minimize a dissimilarity mea-
sure between the target distribution P and the learned
distribution P̂:

min
G

D(P, P̂G) (3)
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TRAINING A GENERATIVE MODEL
WITH f -DIVERGENCES

Traditionally, the goal is to minimize an f -divergence
between the target distribution P and the learned

distribution P̂:
min

G
Df (P∥P̂G) (3)
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f -DIVERGENCES
DEFINITION

Definition 2.1 (f -divergences)

For any two probability distributions P and P̂ in P(X ) such that P, P̂ ≪ µ. Let p and p̂ be the Radon-Nikodym densities of P and P̂
with respect to µ, respectively. Let f be any convex lower semi-continuous function f : [0,∞] →]−∞,+∞] such that f (1) = 0,
the f -divergence between P and P̂ is

Df (P∥P̂) =
∫

X
p̂(x)f

(
p(x)
p̂(x)

)
dµ(x). (4)
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f -DIVERGENCES
DEFINITION

Definition 2.1 (f -divergences)

For any two probability distributions P and P̂ in P(X ) such that P, P̂ ≪ µ. Let p and p̂ be the Radon-Nikodym densities of P and P̂
with respect to µ, respectively. Let f be any convex lower semi-continuous function f : [0,∞] →]−∞,+∞] such that f (1) = 0,
the f -divergence between P and P̂ is

Df (P∥P̂) =
∫

X
p̂(x)f

(
p(x)
p̂(x)

)
dµ(x). (4)

Usual divergences are f -divergences:
▶ Kullback-Leibler (KL),
▶ Reverse Kullback-Leibler (rKL),
▶ Jensen-Shannon (JS),
▶ Total Variation (TV),
▶ α−divergences.
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ESTIMATING f -DIVERGENCES
DUAL VARIATIONAL FORM

f -divergences are hardly tractable in practice. However, they can be approximated by a dual approximation.
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f -divergences are hardly tractable in practice. However, they can be approximated by a dual approximation.
▶ f ∗(t) = supu∈R {tu − f (u)} be the Fenchel conjugate of f .
▶ T be the set of all measurable functions X → R.
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ESTIMATING f -DIVERGENCES
DUAL VARIATIONAL FORM

f -divergences are hardly tractable in practice. However, they can be approximated by a dual approximation.
▶ f ∗(t) = supu∈R {tu − f (u)} be the Fenchel conjugate of f .
▶ T be the set of all measurable functions X → R.

Theorem 2.2 (Dual variational form of an f -divergence- Nguyen et al. [20])

Let P, P̂ ∈ P(X ) two distributions such that P is absolutely continuous with respect to P̂ and f a suitable generator function. The
f -divergence between P and P̂ admits a dual variational form:

Df (P∥P̂) = sup
T∈T

(
Ex∼P [T(x)]− Ex∼P̂ [f

∗(T(x))]
)
. (5)

We use Topt ∈ T to denote the function that achieves the supremum.

PR FOR GENERATIVE MODELS 40 / 81



TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [T(x)]− Ex∼P̂G
[f ∗(T(x))]

︸ ︷︷ ︸
Ddual

f ,T

(6)
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By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [T(x)]− Ex∼P̂G
[f ∗(T(x))]

︸ ︷︷ ︸
Ddual

f ,T

(6)

▶ The discriminator T is trained to estimate the divergence.
▶ The generator G is trained to minimize the divergence.
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TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [log (D(x))]− Ex∼P̂G
[f ∗ (log(D(x)))] (6)

▶ The discriminator T is trained to estimate the divergence.
▶ The generator G is trained to minimize the divergence.

▶ With T(x) = log(D(x)) with D(x) ∈ [0, 1].
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TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [log (D(x))] + Ex∼P̂G
[log (1 − D(x)))] (6)

▶ The discriminator T is trained to estimate the divergence.
▶ The generator G is trained to minimize the divergence.

▶ With T(x) = log(D(x)) with D(x) ∈ [0, 1].
▶ f ∗(t) = f ∗JS(t) = − log(1 − exp(t)) for the Jensen-Shannon divergence.

We recover the original GAN framework.
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TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [T(x)]− Ex∼P̂G
[f ∗(T(x))]

︸ ︷︷ ︸
Ddual

f ,T

(6)

▶ The discriminator T is trained to estimate the divergence.
▶ The generator G is trained to minimize the divergence.

▶ Generative Adversarial Networks [12] for the Jensen-Shannon divergence.
▶ Extended to other f -divergences by Nowozin et al. [21].
▶ Extend to other generative models such as Normalizing Flows by Grover et al. [13].
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EFFECT OF THE f -DIVERGENCE ON THE LEARNED DISTRIBUTION

All f -divergences are not equal:

Df (P∥P̂) = Ex∼P̂

[
f
(

p(x)
p̂(x)

)]

0 1 2 3 4

u = p(x)/p̂(x)

−1

0

1

2

3

4

f
(u

)

fKL

frKL

PR FOR GENERATIVE MODELS 42 / 81
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All f -divergences are not equal:

Df (P∥P̂) = Ex∼P̂

[
f
(

p(x)
p̂(x)

)]

0 1 2 3 4

u = p(x)/p̂(x)

−1

0

1
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3

4

f
(u

)

fKL

frKL

Penalizing high values of p(x)
p̂(x)

Penalizing low values of p(x)
p̂(x)
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EFFECT OF THE f -DIVERGENCE ON THE LEARNED DISTRIBUTION

All f -divergences are not equal:

Df (P∥P̂) = Ex∼P̂

[
f
(

p(x)
p̂(x)

)]

0 1 2 3 4

u = p(x)/p̂(x)

−1

0

1

2

3

4

f
(u

)

fKL

frKL

Penalizing high values of p(x)
p̂(x)

Penalizing low values of p(x)
p̂(x)

Favors high recall

Favors high precision
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EXAMPLES OF f -DIVERGENCE MINIMIZATION
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EXAMPLES OF f -DIVERGENCE MINIMIZATION
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
CONTRIBUTIONS

Can we optimize a specific trade-off between Precision and Recall?
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
CONTRIBUTIONS

Can we optimize a specific trade-off between Precision and Recall?

▶ What is the relation between the Precision-Recall curve and f -divergences?
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PRECISION-RECALL DIVERGENCE
DEFINITION

Definition 2.3 (PR-Divergence generator function fλ)

Given a trade-off parameter λ ∈ [0,+∞], we define the generator function fλ : [0,+∞] →]−∞,+∞] given by

fλ(u) =

{
max(λu, 1)−max(λ, 1) for λ ∈ [0,+∞[,

1{u=0} for λ = +∞.
(7)

0.0 0.5 1.0 2.0 3.0 4.0

u = p(x)/p̂(x)

−1

0

1

2

3

4

f
(u

)

λ = 1/2

λ = 1

λ = 2
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PRECISION-RECALL DIVERGENCE
PROPERTIES

Proposition 2.4 (PR-Divergence)

For any distributions P, P̂ ∈ P(X ) such that P, P̂ ≪ µ, then for any λ ∈ [0,+∞] the PR-Divergence defined as

Dλ-PR(P∥P̂) =
∫

X
p̂(x)fλ

(
p(x)
p̂(x)

)
dµ(x) (8)

belongs to the class of f -divergences.
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PRECISION-RECALL DIVERGENCE
LINKING THE PR-DIVERGENCE TO THE PR-CURVE

Theorem 2.5 (PR-Curves as a function of Dλ-PR)

Given P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], the
PR-Curve ∂PRD is related to the PR-Divergence Dλ-PR(P∥P̂) as follows.

αλ(P∥P̂) = min(1, λ)−Dλ-PR(P∥P̂).

βλ(P∥P̂) = min(1, λ)−Dλ-PR(P̂∥P).

0 1
0

1

β

α

with λ = 0.2.

Dλ−PR(P‖P̂ )

Dλ−PR(P‖P̂ )
with λ = 1.

with λ = 5.

Dλ−PR(P‖P̂ )
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PRECISION-RECALL DIVERGENCE
LINKING THE PR-DIVERGENCE TO THE PR-CURVE

Theorem 2.5 (PR-Curves as a function of Dλ-PR)

Given P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], the
PR-Curve ∂PRD is related to the PR-Divergence Dλ-PR(P∥P̂) as follows.

αλ(P∥P̂) = min(1, λ)−Dλ-PR(P∥P̂).

βλ(P∥P̂) = min(1, λ)−Dλ-PR(P̂∥P).

A direct consequence of Theorem 2.5:

argmin
P̂∈P(X )

Dλ-PR(P∥P̂) = argmax
P̂∈P(X )

αλ(P∥P̂).

0 1
0

1

β

α

with λ = 0.2.

Dλ−PR(P‖P̂ )

Dλ−PR(P‖P̂ )
with λ = 1.

with λ = 5.

Dλ−PR(P‖P̂ )
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EXPLAINING QUALITY/DIVERSITY
CONNECTION BETWEEN PR-DIVERGENCE AND f -DIVERGENCES

Theorem 2.6 (f -divergences as a weighted average of
PR-Divergences)

For any P, P̂ ∈ P(X ) supported on all X and any λ ∈ [0,+∞], then:

Df (P∥P̂) =
∫ ∞

0

1
λ3 f ′′

(
1
λ

)
Dλ-PR(P∥P̂)dλ,

0 1
0

1

β

α DKL(P‖P̂ )

DrKL(P‖P̂ )
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OPTIMIZING THE PR-DIVERGENCE
EXAMPLES
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OPTIMIZING THE PR-DIVERGENCE
EXAMPLES

0 1
0

1

β

α

λ = 0.1

0 1
0

1

β

α
λ = 1

0 1
0

1

β

α

λ = 10

PR FOR GENERATIVE MODELS 49 / 81



OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH
IN PRACTICE

(a) λ = 0.1 (b) λ = 1 (c) λ = 10

(d) λ = 0.1 (e) λ = 1 (f) λ = 10

High Rec
all

High Precision
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OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH
TRAINING GANS

Model CIFAR-10 32 × 32 CelebA 64 × 64
FID P R FID P R

Baseline Big-
GAN

13.37 86.51 65.66 9.16 78.41 51.42

λ = 0.05 13.29 81.10 70.63 - - -
λ = 0.1 11.62 81.78 74.58 - - -
λ = 0.2 13.36 84.85 65.13 8.79 83.37 44.07
λ = 0.5 14.50 83.27 68.23 6.03 77.60 55.98
λ = 1.0 14.03 83.04 69.35 13.07 81.70 36.85
λ = 2.0 16.94 84.93 59.79 14.23 82.98 32.87
λ = 5.0 32.54 83.39 56.94 22.45 83.96 25.81
λ = 10.0 39.69 84.11 39.29 - - -
λ = 20.0 67.03 90.03 21.81 - - -

When λ increases,

{
Precision ↑
Recall ↓

λ = 0.1 λ = 10
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OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH
FINE-TUNING GANS

Model ImageNet 128 × 128 FFHQ 256 × 256
FID P R FID P R

Baseline BigGAN 9.83 28.04 41.21 41.41 65.57 10.17
Soft ψ = 0.7 11.39 23.04 31.13 56.43 76.59 4.87
Soft ψ = 0.5 15.49 20.20 19.83 82.05 84.48 1.58
Hard ψ = 2.0 9.69 25.83 39.89 43.32 68.84 8.66
Hard ψ = 1.0 12.12 21.86 35.42 56.19 76.44 4.76
Hard ψ = 0.5 15.21 21.13 29.55 71.32 80.99 4.84
λ = 0.2 9.92 26.69 42.04 35.66 78.70 9.45
λ = 0.5 10.82 26.83 42.38 35.24 78.41 9.66
λ = 1.0 20.42 29.72 28.21 35.91 78.95 8.32
λ = 2.0 20.21 30.27 30.49 36.33 81.10 8.69
λ = 5.0 20.76 30.87 28.38 38.16 84.31 8.52

When λ increases,

{
Precision ↑
Recall ↓

with better performances than truncation.
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IMPROVING PRECISION AND RECALL IN GENERATIVE MODELS

Improving:
How can we improve the
quality and diversity of a

pre-trained generative models?
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SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P̂:
▶ Sample z ∼ Q.
▶ Compute x = G(z).

0.0 0.2 0.4 0.6 0.8 1.0

x

p(
x

) P

P̂
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SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P̂:
▶ Sample z ∼ Q.
▶ Compute x = G(z).

P ̸= P̂
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SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P̂:
▶ Sample z ∼ Q.
▶ Compute x = G(z).

We have an estimation of p(x)
p̂(x) using ∇f ∗(T(x)).

0.0 0.2 0.4 0.6 0.8 1.0

x

p(
x

) P

P̂
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

To sample a point from the refined distribution P̃:
▶ Sample z ∼ Q.
▶ Compute x = G(z).
▶ Accept x with probability a(x).

Using p(x)
p̂(x) in a(x) allows sampling from P.
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

To sample a point from the refined distribution P̃:
▶ Sample z ∼ Q.
▶ Compute x = G(z).
▶ Accept x with probability a(x).

The acceptance rate is :

EP̂ [a(x)] .
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x
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

To sample a point from the refined distribution P̃:
▶ Sample z ∼ Q.
▶ Compute x = G(z).
▶ Accept x with probability a(x).

It defines a new distribution P̃.
0.0 0.2 0.4 0.6 0.8 1.0

x

p(
x

)

P

P̂

P̃
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING IN HIGH DIMENSION
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BUDGETED REJECTION SAMPLING
TUNING THE ACCEPTANCE RATE

Definition 3.1 (Discriminator Rejection Sampling (DRS) - Azadi et al. [2])
Let γ ∈ R, the acceptance probability is:

aDRS(x) =
r(x)

r(x) (1 − eγ) + Meγ
.

If γ < 0, then the acceptance rate increases.
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BUDGETED REJECTION SAMPLING
TUNING THE ACCEPTANCE RATE

Definition 3.1 (Discriminator Rejection Sampling (DRS) - Azadi et al. [2])
Let γ ∈ R, the acceptance probability is:

aDRS(x) =
r(x)

r(x) (1 − eγ) + Meγ
.

If γ < 0, then the acceptance rate increases.
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Traditionally, the goal is:

min
G

Df (P∥P̂G)
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Traditionally, the goal is:

min
G

Df (P∥P̂G)

An acceptance function a(x) such that the acceptance
rate is greater than 1/K defines a refined distribution
P̃a in a convex set that contains P̂G.
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

With a given P̂G, our goal is:

min
a

Df (P∥P̃a)

s.t.

{
EP̂ [a(x)] ≥ 1/K,
∀x ∈ X , 0 ≤ a(x) ≤ 1.

(9)
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Theorem 3.2 (Optimal Acceptance Function)

For a sampling budget K ≥ 1 and finite X , the solution is,

aOBRS(x) = min

(
p(x)
p̂(x)

cK

M
, 1
)
, (10)

where cK ≥ 1 is such that Ex∼p̂[aOBRS(x)] = 1/K.
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IMPROVING PRECISION AND RECALL
EFFECT OF THE OBRS

Proposition 3.3 (Precision and Recall Improvement)

Let K ≤ M be the budget for the OBRS. For any (α, β) ∈ PRD(P, P̂) we have (α′, β) ∈ PRD(P, P̃aOBRS) with α′ = min {1,Kα}.
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IMPROVING PRECISION AND RECALL
IN PRACTICE
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OTHER METHODS TO IMPROVE PRECISION AND RECALL
BOOSTING

Boosting Generative models:

Figure. Left: Samples from the dataset given high weights by the discriminator. Right: Samples from the dataset given low weights
by the discriminator. The next model will focus on the sample on the right. Source: Tolstikhin et al. [28]

▶ Tolstikhin et al. [28]
▶ Grover and Ermon [14]
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OTHER METHODS TO IMPROVE PRECISION AND RECALL
GRADIENT ASCENT

Using the discriminator as a classifier and perform a gradient descent:
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<latexit sha1_base64="fhkMZ6Cz3k+/GfKZRljbeis8DPE=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkVwVZLa2HZlwY3LCvYBbSiT6aQdO8mEmYlQQv/BjQtF3Po/7vwLP8FJWsTXgQuHc+7l3nu8iFGpLOvdyK2srq1v5DcLW9s7u3vF/YOO5LHApI0546LnIUkYDUlbUcVILxIEBR4jXW96mfrdOyIk5eGNmkXEDdA4pD7FSGmpMxATPrSHxZJVtjKYf4m9JKWLD8jQGhbfBiOO44CECjMkZd+2IuUmSCiKGZkXBrEkEcJTNCZ9TUMUEOkm2bVz80QrI9PnQleozEz9PpGgQMpZ4OnOAKmJ/O2l4n9eP1Z+3U1oGMWKhHixyI+ZqbiZvm6OqCBYsZkmCAuqbzXxBAmElQ6okIXQqNqO4+jfG+dO5ayRkrpjVWtfIXQqZdspW9fVUrO1SAPycATHcAo21KAJV9CCNmC4hXt4hCeDGw/Gs/GyaM0Zy5lD+AHj9RMPxJCJ</latexit>⇢1

<latexit sha1_base64="/z5Qxvad+w0mroRAGz58xLX9PXo=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkVwVZLa2HZlwY3LCvYBbSiT6aQdO8mEmYlQQv/BjQtF3Po/7vwLP8FJWsTXgQuHc+7l3nu8iFGpLOvdyK2srq1v5DcLW9s7u3vF/YOO5LHApI0546LnIUkYDUlbUcVILxIEBR4jXW96mfrdOyIk5eGNmkXEDdA4pD7FSGmpMxATPqwMiyWrbGUw/xJ7SUoXH5ChNSy+DUYcxwEJFWZIyr5tRcpNkFAUMzIvDGJJIoSnaEz6moYoINJNsmvn5olWRqbPha5QmZn6fSJBgZSzwNOdAVIT+dtLxf+8fqz8upvQMIoVCfFikR8zU3Ezfd0cUUGwYjNNEBZU32riCRIIKx1QIQuhUbUdx9G/N86dylkjJXXHqta+QuhUyrZTtq6rpWZrkQbk4QiO4RRsqEETrqAFbcBwC/fwCE8GNx6MZ+Nl0ZozljOH8APG6ycRSJCK</latexit>⇢2
<latexit sha1_base64="LM02lYj2Pax/xmlOvDp8k9ynilU=">AAAB7XicbVDLSsNAFL2pr1pfVZdugkVwVZLa2HZlwY0rqWBboQ1lMp20YyeZMDMRSug/uHGhiFv/x51/4Sc4SYv4OnDhcM693HuPFzEqlWW9G7ml5ZXVtfx6YWNza3unuLvXkTwWmLQxZ1zceEgSRkPSVlQxchMJggKPka43OU/97h0RkvLwWk0j4gZoFFKfYqS01OmLMR9cDoolq2xlMP8Se0FKZx+QoTUovvWHHMcBCRVmSMqebUXKTZBQFDMyK/RjSSKEJ2hEepqGKCDSTbJrZ+aRVoamz4WuUJmZ+n0iQYGU08DTnQFSY/nbS8X/vF6s/Lqb0DCKFQnxfJEfM1NxM33dHFJBsGJTTRAWVN9q4jESCCsdUCELoVG1HcfRvzdOncpJIyV1x6rWvkLoVMq2U7auqqVma54G5OEADuEYbKhBEy6gBW3AcAv38AhPBjcejGfjZd6aMxYz+/ADxusnO7iQpg==</latexit>⇢N

<latexit sha1_base64="9WQ0ovCF7XQMTmxOcaIqJkpwB3U=">AAAB63icbVDLSsNAFL3xWeur6tLNYBFclaQ2tl1ZcOOygn1AG8pkOm2HzkzCzEQoob/gxoUibv0hd/6Fn2CSFvF14MLhnHu59x4/5Ewb2363VlbX1jc2c1v57Z3dvf3CwWFbB5EitEUCHqiujzXlTNKWYYbTbqgoFj6nHX96lfqdO6o0C+StmYXUE3gs2YgRbFKpr5kYFIp2yc6A/hJnSYqXH5ChOSi89YcBiQSVhnCsdc+xQ+PFWBlGOJ3n+5GmISZTPKa9hEosqPbi7NY5Ok2UIRoFKilpUKZ+n4ix0Hom/KRTYDPRv71U/M/rRWZU82Imw8hQSRaLRhFHJkDp42jIFCWGzxKCiWLJrYhMsMLEJPHksxDqFcd13eT3+oVbPq+npObalepXCO1yyXFL9k2l2Ggu0oAcHMMJnIEDVWjANTShBQQmcA+P8GQJ68F6tl4WrSvWcuYIfsB6/QTn6o/l</latexit> ⇠ <latexit sha1_base64="9WQ0ovCF7XQMTmxOcaIqJkpwB3U=">AAAB63icbVDLSsNAFL3xWeur6tLNYBFclaQ2tl1ZcOOygn1AG8pkOm2HzkzCzEQoob/gxoUibv0hd/6Fn2CSFvF14MLhnHu59x4/5Ewb2363VlbX1jc2c1v57Z3dvf3CwWFbB5EitEUCHqiujzXlTNKWYYbTbqgoFj6nHX96lfqdO6o0C+StmYXUE3gs2YgRbFKpr5kYFIp2yc6A/hJnSYqXH5ChOSi89YcBiQSVhnCsdc+xQ+PFWBlGOJ3n+5GmISZTPKa9hEosqPbi7NY5Ok2UIRoFKilpUKZ+n4ix0Hom/KRTYDPRv71U/M/rRWZU82Imw8hQSRaLRhFHJkDp42jIFCWGzxKCiWLJrYhMsMLEJPHksxDqFcd13eT3+oVbPq+npObalepXCO1yyXFL9k2l2Ggu0oAcHMMJnIEDVWjANTShBQQmcA+P8GQJ68F6tl4WrSvWcuYIfsB6/QTn6o/l</latexit> ⇠ <latexit sha1_base64="9WQ0ovCF7XQMTmxOcaIqJkpwB3U=">AAAB63icbVDLSsNAFL3xWeur6tLNYBFclaQ2tl1ZcOOygn1AG8pkOm2HzkzCzEQoob/gxoUibv0hd/6Fn2CSFvF14MLhnHu59x4/5Ewb2363VlbX1jc2c1v57Z3dvf3CwWFbB5EitEUCHqiujzXlTNKWYYbTbqgoFj6nHX96lfqdO6o0C+StmYXUE3gs2YgRbFKpr5kYFIp2yc6A/hJnSYqXH5ChOSi89YcBiQSVhnCsdc+xQ+PFWBlGOJ3n+5GmISZTPKa9hEosqPbi7NY5Ok2UIRoFKilpUKZ+n4ix0Hom/KRTYDPRv71U/M/rRWZU82Imw8hQSRaLRhFHJkDp42jIFCWGzxKCiWLJrYhMsMLEJPHksxDqFcd13eT3+oVbPq+npObalepXCO1yyXFL9k2l2Ggu0oAcHMMJnIEDVWjANTShBQQmcA+P8GQJ68F6tl4WrSvWcuYIfsB6/QTn6o/l</latexit> ⇠ <latexit sha1_base64="9WQ0ovCF7XQMTmxOcaIqJkpwB3U=">AAAB63icbVDLSsNAFL3xWeur6tLNYBFclaQ2tl1ZcOOygn1AG8pkOm2HzkzCzEQoob/gxoUibv0hd/6Fn2CSFvF14MLhnHu59x4/5Ewb2363VlbX1jc2c1v57Z3dvf3CwWFbB5EitEUCHqiujzXlTNKWYYbTbqgoFj6nHX96lfqdO6o0C+StmYXUE3gs2YgRbFKpr5kYFIp2yc6A/hJnSYqXH5ChOSi89YcBiQSVhnCsdc+xQ+PFWBlGOJ3n+5GmISZTPKa9hEosqPbi7NY5Ok2UIRoFKilpUKZ+n4ix0Hom/KRTYDPRv71U/M/rRWZU82Imw8hQSRaLRhFHJkDp42jIFCWGzxKCiWLJrYhMsMLEJPHksxDqFcd13eT3+oVbPq+npObalepXCO1yyXFL9k2l2Ggu0oAcHMMJnIEDVWjANTShBQQmcA+P8GQJ68F6tl4WrSvWcuYIfsB6/QTn6o/l</latexit> ⇠ <latexit sha1_base64="9WQ0ovCF7XQMTmxOcaIqJkpwB3U=">AAAB63icbVDLSsNAFL3xWeur6tLNYBFclaQ2tl1ZcOOygn1AG8pkOm2HzkzCzEQoob/gxoUibv0hd/6Fn2CSFvF14MLhnHu59x4/5Ewb2363VlbX1jc2c1v57Z3dvf3CwWFbB5EitEUCHqiujzXlTNKWYYbTbqgoFj6nHX96lfqdO6o0C+StmYXUE3gs2YgRbFKpr5kYFIp2yc6A/hJnSYqXH5ChOSi89YcBiQSVhnCsdc+xQ+PFWBlGOJ3n+5GmISZTPKa9hEosqPbi7NY5Ok2UIRoFKilpUKZ+n4ix0Hom/KRTYDPRv71U/M/rRWZU82Imw8hQSRaLRhFHJkDp42jIFCWGzxKCiWLJrYhMsMLEJPHksxDqFcd13eT3+oVbPq+npObalepXCO1yyXFL9k2l2Ggu0oAcHMMJnIEDVWjANTShBQQmcA+P8GQJ68F6tl4WrSvWcuYIfsB6/QTn6o/l</latexit> ⇠

<latexit sha1_base64="TxOLwtrqxYa962CDZiyFpSa5SDo=">AAAB8XicbVDLSsNAFL2pr1pfVZdugkVwY0lqY9uVBTeupIJ9YBvKZDpth04mYWYilNC/cONCEbf+jTv/wk9wkhbxdeDC4Zx7ufceL2RUKst6NzJLyyura9n13Mbm1vZOfnevJYNIYNLEAQtEx0OSMMpJU1HFSCcUBPkeI21vcpH47TsiJA34jZqGxPXRiNMhxUhp6bYnxkE/vjqxZ/18wSpaKcy/xF6QwvkHpGj082+9QYAjn3CFGZKya1uhcmMkFMWMzHK9SJIQ4Qkaka6mHPlEunF68cw80srAHAZCF1dmqn6fiJEv5dT3dKeP1Fj+9hLxP68bqWHVjSkPI0U4ni8aRsxUgZm8bw6oIFixqSYIC6pvNfEYCYSVDimXhlAr247j6N9rZ07ptJaQqmOVK18htEpF2yla1+VCvTFPA7JwAIdwDDZUoA6X0IAmYOBwD4/wZEjjwXg2XuatGWMxsw8/YLx+AuFjkiQ=</latexit>⇢N�1

<latexit sha1_base64="xy2sbao8BBZLYl4t2P7Y1iAm3gc=">AAAB6nicbVDJSgNBEK1xjXGLevQyGARPoSdmTHIy4MVjRLNAMoSeTk/SpGehu0eIQz7BiwdFvPpF3vwLP8GeSRC3BwWP96qoqudGnEmF0LuxtLyyurae28hvbm3v7Bb29tsyjAWhLRLyUHRdLClnAW0ppjjtRoJi3+W0404uUr9zS4VkYXCjphF1fDwKmMcIVlq6vhugQaGISiiD+ZdYC1I8/4AMzUHhrT8MSezTQBGOpexZKFJOgoVihNNZvh9LGmEywSPa0zTAPpVOkp06M4+1MjS9UOgKlJmp3ycS7Es59V3d6WM1lr+9VPzP68XKqzkJC6JY0YDMF3kxN1Vopn+bQyYoUXyqCSaC6VtNMsYCE6XTyWch1CuWbdv69/qZXT6tp6Rmo0r1K4R2uWTZJXRVKTaa8zQgB4dwBCdgQRUacAlNaAGBEdzDIzwZ3Hgwno2XeeuSsZg5gB8wXj8B1XOPPw==</latexit>z0

<latexit sha1_base64="uVD/zNv0BVxSPwWpT8fEo//eJ0Q=">AAAB6nicbVDJSgNBEK1xjXGLevTSGARPYSZmTHIy4MVjRLNAMoSeTk/SpGehu0eIQz7BiwdFvPpF3vwLP8GeSRC3BwWP96qoqudGnEllmu/G0vLK6tp6biO/ubW9s1vY22/LMBaEtkjIQ9F1saScBbSlmOK0GwmKfZfTjju5SP3OLRWShcGNmkbU8fEoYB4jWGnp+m5gDQpFs2RmQH+JtSDF8w/I0BwU3vrDkMQ+DRThWMqeZUbKSbBQjHA6y/djSSNMJnhEe5oG2KfSSbJTZ+hYK0PkhUJXoFCmfp9IsC/l1Hd1p4/VWP72UvE/rxcrr+YkLIhiRQMyX+TFHKkQpX+jIROUKD7VBBPB9K2IjLHAROl08lkI9Ypl27b+vX5ml0/rKanZZqX6FUK7XLLsknlVKTaa8zQgB4dwBCdgQRUacAlNaAGBEdzDIzwZ3Hgwno2XeeuSsZg5gB8wXj8B1vePQA==</latexit>z1
<latexit sha1_base64="LI6Fy3dR2XwS5huObHxtsAfzF2c=">AAAB6nicbVDJSgNBEK1xjXGLevTSGARPYSZmTHIy4MVjRLNAMoSeTk/SpGehu0eIQz7BiwdFvPpF3vwLP8GeSRC3BwWP96qoqudGnEllmu/G0vLK6tp6biO/ubW9s1vY22/LMBaEtkjIQ9F1saScBbSlmOK0GwmKfZfTjju5SP3OLRWShcGNmkbU8fEoYB4jWGnp+m5QHhSKZsnMgP4Sa0GK5x+QoTkovPWHIYl9GijCsZQ9y4yUk2ChGOF0lu/HkkaYTPCI9jQNsE+lk2SnztCxVobIC4WuQKFM/T6RYF/Kqe/qTh+rsfztpeJ/Xi9WXs1JWBDFigZkvsiLOVIhSv9GQyYoUXyqCSaC6VsRGWOBidLp5LMQ6hXLtm39e/3MLp/WU1KzzUr1K4R2uWTZJfOqUmw052lADg7hCE7Agio04BKa0AICI7iHR3gyuPFgPBsv89YlYzFzAD9gvH4C2HuPQQ==</latexit>z2

<latexit sha1_base64="/KfKslhV40K5pmaIvJNqcYDghIY=">AAAB7nicbVDLSsNAFL2pr1pfVZdugkVwY0lqY9uVBTeupIJ9QBvKZDpth04mYWYi1NCPcONCEbd+jzv/wk9wkhbxdeDC4Zx7ufceL2RUKst6NzJLyyura9n13Mbm1vZOfnevJYNIYNLEAQtEx0OSMMpJU1HFSCcUBPkeI21vcpH47VsiJA34jZqGxPXRiNMhxUhpqX3Xj69O7Fk/X7CKVgrzL7EXpHD+ASka/fxbbxDgyCdcYYak7NpWqNwYCUUxI7NcL5IkRHiCRqSrKUc+kW6cnjszj7QyMIeB0MWVmarfJ2LkSzn1Pd3pIzWWv71E/M/rRmpYdWPKw0gRjueLhhEzVWAmv5sDKghWbKoJwoLqW008RgJhpRPKpSHUyrbjOPr32plTOq0lpOpY5cpXCK1S0XaK1nW5UG/M04AsHMAhHIMNFajDJTSgCRgmcA+P8GSExoPxbLzMWzPGYmYffsB4/QSj4ZDb</latexit>zN�1

<latexit sha1_base64="LbPhcHT5FBPDjAb3MnfpCKvTg5s=">AAAB7HicbVDLSsNAFL3xWeur6tJNsAiuSlIb264suHElFUxbaEOZTKft0MkkzEyEGvoNblwo4tYPcudf+AlO0iK+Dlw4nHMv997jR4xKZVnvxtLyyuraem4jv7m1vbNb2NtvyTAWmLg4ZKHo+EgSRjlxFVWMdCJBUOAz0vYnF6nfviVC0pDfqGlEvACNOB1SjJSW3Lt+cjXrF4pWycpg/iX2ghTPPyBDs1946w1CHAeEK8yQlF3bipSXIKEoZmSW78WSRAhP0Ih0NeUoINJLsmNn5rFWBuYwFLq4MjP1+0SCAimnga87A6TG8reXiv953VgNa15CeRQrwvF80TBmpgrN9HNzQAXBik01QVhQfauJx0ggrHQ++SyEesV2HEf/Xj9zyqf1lNQcq1L9CqFVLtlOybquFBvNeRqQg0M4ghOwoQoNuIQmuICBwj08wpPBjQfj2XiZty4Zi5kD+AHj9RPHsZBp</latexit>zN

<latexit sha1_base64="mFFGxi1fTY2GXkwgcONw6QgB+fI=">AAAB8nicbVDLSsNAFL3xWeur6tJNsAiuSlIb264suHFZwT40DWUynbZDJ5kwMxFK6Ge4caGIW7/GnX/hJzhJi/g6MHA4517m3ONHjEplWe/G0vLK6tp6biO/ubW9s1vY229LHgtMWpgzLro+koTRkLQUVYx0I0FQ4DPS8ScXqd+5I0JSHl6raUS8AI1COqQYKS25vQCpMUYsuZ31C0WrZGUw/xJ7QYrnH5Ch2S+89QYcxwEJFWZISte2IuUlSCiKGZnle7EkEcITNCKupiEKiPSSLPLMPNbKwBxyoV+ozEz9vpGgQMpp4OvJNKL87aXif54bq2HNS2gYxYqEeP7RMGam4mZ6vzmggmDFppogLKjOauIxEggr3VI+K6FesR3H0bfXz5zyaT0lNceqVL9KaJdLtlOyrirFxs28DcjBIRzBCdhQhQZcQhNagIHDPTzCk6GMB+PZeJmPLhmLnQP4AeP1E2FKkxc=</latexit>Z

<latexit sha1_base64="RS0k4pr8/SKbewoEcp6us17aHP0=">AAAB9HicbVDLTgIxFL2DL8QX6tJNIzFxRWaQEVhJ4sYlJvIwMCGdUqCh87DtkJAJ3+HGhca49WPc+Rd+gp2BGF8naXJyzr25p8cNOZPKNN+NzMrq2vpGdjO3tb2zu5ffP2jJIBKENknAA9FxsaSc+bSpmOK0EwqKPZfTtju5TPz2lArJAv9GzULqeHjksyEjWGnJ6XlYjQnmcWPeL/XzBbNopkB/ibUkhYsPSNHo5996g4BEHvUV4VjKrmWGyomxUIxwOs/1IklDTCZ4RLua+tij0onT0HN0opUBGgZCP1+hVP2+EWNPypnn6skkpPztJeJ/XjdSw6oTMz+MFPXJ4tAw4kgFKGkADZigRPGZJpgIprMiMsYCE6V7yqUl1MqWbdv677Vzu3RWS0jVNsuVrxJapaJlF83rcqF+u2gDsnAEx3AKFlSgDlfQgCYQuIN7eIQnY2o8GM/Gy2I0Yyx3DuEHjNdPgTiTsg==</latexit>P2

<latexit sha1_base64="iOq8Wfn0e/oOROk20POxHTx426M="></latexit>

zi+1 = zi � ⌘rzi
f 0(e�d�(g✓(zi))) +

p
2⌘�⇠i

<latexit sha1_base64="GdWocFUgrZ8ZKKu03vpMcFrqh+A=">AAACAHicbVBNixNBEK1Zdc1Gdze6Bw9emg1C9jL0TDLJzMmAIB4jmA/IZENPpydp0vNBd48Qhlz8K148uIhXf8be/Bf+BHsmIrvig4LHe1VU1YtywZXG+Kd19ODho+PHjZPmk6enZ+etZ88nKiskZWOaiUzOIqKY4Ckba64Fm+WSkSQSbBpt31T+9COTimfpB73L2SIh65THnBJtpGXrRZgQvaFElG/3yzApruNOKDfZ1bLVxjYe9B3sImy73a7f8w3x+oPA7SPHxjXar39BjdGydRuuMlokLNVUEKXmDs71oiRScyrYvhkWiuWEbsmazQ1NScLUoqwf2KNXRlmhOJOmUo1q9e5ESRKldklkOqtz1b9eJf7Pmxc69hclT/NCs5QeFsWFQDpDVRpoxSWjWuwMIVRycyuiGyIJ1SazZh1C0HM8zzO/B33P7QYV8T3cG/wNYeLajmfj9732cHRIAxrwEi6hAw4MYAjvYARjoLCHz/AVbqxP1hfrm/X90Hpk/Zm5gHuwfvwGyWSYSQ==</latexit>

Ff
µ (⇢)

Figure. Source: Ansari et al. [1]

▶ Ansari et al. [1]
▶ Tanaka [27]
▶ Che et al. [9]
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OTHER METHODS TO IMPROVE PRECISION AND RECALL
GAUSSIAN MIXTURES

Training a Gaussian Mixture N (µk, σI) in the latent space:

(a) σ = 0.1 (b) σ = 1 (c) σ = 2 (d) Precision and Recall

Figure. Source: Ben-Yosef and Weinshall [4]

▶ Ben-Yosef and Weinshall [4]
▶ Pandeva and Schubert [22]
▶ Alternative idea: Use Expectation-Maximization Bishop [5]PR FOR GENERATIVE MODELS 64 / 81



RECAP

References to evaluate generative models:
▶ FID: Heusel et al. [15]
▶ PR-Curves: Sajjadi et al. [23]
▶ Support based metrics: Kynkäänniemi et al. [19]

Methods to tune precision and recall:
▶ Truncation: Karras et al. [17], Kingma and Dhariwal [18]
▶ f -GAN: Nowozin et al. [21]
▶ PR-GAN: Verine et al. [31]
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RECAP

Methods to improve precision and recall:
▶ Rejecting samples: Azadi et al. [2], Verine et al. [31], Turner et al. [29], Tanaka [27]
▶ Boosting: Tolstikhin et al. [28], Grover and Ermon [14]
▶ Gradient Ascent: Ansari et al. [1], Tanaka [27], Che et al. [9]
▶ Latent Space Reshaping: Ben-Yosef and Weinshall [4], Pandeva and Schubert [22], Issenhuth et al. [16]
▶ EM in the latent space: Bishop [5]
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CONCLUSION

Thanks !

PR FOR GENERATIVE MODELS 67 / 81



HOW TO SLURM ?
DATA SCIENCE LAB

Constant Bourdrez

PhD Student,
Centre des Données, ENS-PSL

October 29, 2025

PR FOR GENERATIVE MODELS 68 / 81



WHAT IS SLURM?

▶ Open-source workload manager for high-performance
clusters.

▶ Schedules and queues jobs; matches jobs to available nodes.
▶ Allocates requested resources (CPU, GPU, memory) reliably.
▶ Provides monitoring and accounting tools (e.g., squeue,

sacct).

PR FOR GENERATIVE MODELS 69 / 81



TRADITIONAL SLURM WORKFLOW

Figure. Typical SLURM job submission and execution workflow.
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SLURM BACKFILL

▶ Jobs at the top of the queue have highest priority.
▶ Slurm can run lower-priority jobs without delaying higher-priority jobs.
▶ Helps smaller jobs run and prevents large jobs from blocking the system.
▶ Especially useful for multi-node job scheduling.
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SUBMITTING A SLURM JOB

name="GAN_TRAINING"
outdir="outputs"

echo "Launching job $name"

sbatch <<EOT
#!/bin/bash
#SBATCH -p mesonet
#SBATCH -N 1
#SBATCH -c 28
#SBATCH --gres=gpu:${n_gpu}
#SBATCH --time=00:20:00
#SBATCH --mem=256G
#SBATCH --account=m25146
#SBATCH --job-name=${name}
#SBATCH --cpus-per-task=4
#SBATCH --output=$outdir/path.txt

source activate venv/bin/activate
python my_program.py
EOT
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BASIC COMMANDS

Submit a job:

sbatch myscript.sh
chmod +x myscript.sh
./myscript.sh

Check your jobs:
squeue -u $USER

Cancel a job:
scancel JOB_ID
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GENERATING AN SSH KEY FOR MESONET

Step 1: Generate a new SSH key
ssh-keygen -t ed25519 -C "your_email@example.com"

▶ Press Enter to accept the default file location. (.ssh/id_ed25519)
▶ Enter a passphrase if you want extra security (optional).

Step 2: Copy the public key
cat .ssh/id_ed25519.pub

This prints your public key in the terminal.

Step 3: Add your key to MesoNET
1. Log in to your MesoNET account.
2. Go to the SSH Keys section and paste the public key you copied from the terminal.
3. Save your changes.

PR FOR GENERATIVE MODELS 74 / 81



CONNECTING TO JULIET (MESONET)

Prerequisites:
▶ A valid MesoNET account
▶ An SSH key associated with your account

Connect via SSH:
ssh username@juliet.mesonet.fr

Replace username with your MesoNET ID. Optional SSH configuration:

Host juliet
Hostname juliet.mesonet.fr
User username
IdentityFile [PathToYourSSHKey]
IdentitiesOnly yes

Replace username and [PathToYourSSHKey] with your information.
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CONCLUSION

Thanks !
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