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Early work on adversarial attacks

Globerson et al. (ICML, 2006)
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Early work on adversarial attacks

Biggio et al. (ECML, 2013)
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FGSM (2015)
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Goodfellow et al. (ICLR, 2015)

The modification is imperceptible!
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Modern attacks

Natural ¢, -EADG60 /(,-C&W60 /(. -PGD 20

0.958 0.035 0.034 0.384

~ 3% accuracy under attack

» Almost every input image can be attacked!



Pig vs. Airliner

“airliner”
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Real life adversarial examples
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Synthesizing Robust Adversarial Examples, Athalye et al. 2017

digital example
TPS transformation

Evading Real-Time Person Detectors by Adversarial T-shirt, Xu et al. 2019
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Goal of this assignment

e Understand the weaknesses of machine learning models

o Learn attack mechanisms
o Learn defence mechanisms

® | earn how to reason about the decision boundary
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Generating adversarial

Let f : R” — Y a classifier
Given an example x € R" and its true label y € Y
find a 6 € R" such that:

Untargeted attacks
18] <€
f(x+6) #y

Targeted attacks
6] < e
fx+0)=tt#y
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Generating adversarial examples

Let f : R" — Y a classifier

Given an example x € R" and its true label y € Y

find a 6 € R” such that:

Untargeted attacks
18] <€
f(x+6) #y

Targeted attacks
6] < e
fx+0)=tt#y

Most damaging perturbation:

0" = argmax fr(x+6,y)
lsll<e
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Measuring the magnitude of perturbations

B Using ¢, norm

» Natural norm used in most loss functions.

B Using /., norm

10, <€ = m’axé,- <e

» Fits the human perception better when dealing with images.
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FGSM attack

Target function for e-bounded attack:

max f¢(x + 6,
max £ 2
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FGSM attack

Target function for e-bounded attack:

max f¢(x + 6,
max £ 2

If € is small, the optimization problem can be approximated using one gradient step:

max 07 Vl¢(x,
lloll<e rxy)
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FGSM attack

Target function for e-bounded attack:

max f¢(x + 6,
max £ 2

If € is small, the optimization problem can be approximated using one gradient step:

max 07 Vl¢(x,
lloll<e rxy)

If [|.]| = 1].||cc. then:
§* = esign(Vile(xt,y))

is a solution to the problem.
(FGSM attack (Goodfellow, 2015))

Benjamin Negrevergne, Alexandre Vérine

13



PGD attack

PGD attack (Madry, 2017) is an iterative version of FGSM:
Xo = X

Xe+1 = MB(q,e) (Xe + 05ign(Vile(xt, y)))
With
® [1: projection operator
® B(xp,¢€): hyperball centered in xo with radius e
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PGD attack

PGD attack (Madry, 2017) is an iterative version of FGSM:
Xo = X

Xe+1 = MB(q,e) (Xe + 05ign(Vile(xt, y)))
With
® [1: projection operator
® B(xp,¢€): hyperball centered in xo with radius e

» Simple and very efficient bounded attack. Can be adapted to ¢; and ¢ constraints.
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PGD attack
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High
loss

loss
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Carlini and Wagner attack

Norm bounded attack:

min |4
Le(x+8,y) >k

Carlini & Wagner solves the Lagrangian relaxation:
min 18], + A x g(x +9)

Where g(x +0) <0 iff le(x +d,y) > K
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Carlini and Wagner attack

Norm bounded attack:

min |4
Le(x+8,y) >k

Carlini & Wagner solves the Lagrangian relaxation:
min 3]+ X x g(x + 6)
Where g(x +0) <0 iff le(x +d,y) > K
E.g.
g6) = max () ~ max(#(x).
e fi(x): ith component of vector f(x)

® c: index of the actual class y of x
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Black box attacks

Goal: craft an attack without accessing the network weights.
P In most case, the goal is to estimate gradients.

e Finite difference (Chen, 2017): Not very efficient, because it requires a huge number of
queries.

e NES (llyas, 2018): Uses random directions instead of coordinate directions: simple and
efficient

e Other methods bases on combinatorial optimization (Moon, 2019) and evolutionary
strategies (Meunier, 2019).
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Adversarial training

Train the network with the adversarial risk (Goodfellow, 2015):

min () <|r§|a<x6€fg (x+9, y)>

» Inner maximization problem is approximated with PGD or FGSM attack.
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Adversarial training

Train the network with the adversarial risk (Goodfellow, 2015):

min () <|r§|a<x6€fg (x+9, y)>

» Inner maximization problem is approximated with PGD or FGSM attack.

e Efficient in practice

® No theoretical guarantees
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{~ Adversarial training
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{~ Adversarial training

T

+++

+ Linf adversarial examples
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{~ Adversarial training

++ +

+++

+ Linf adversarial examples
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Accuracy under attacks

‘ Model

‘ Natural examples ‘ l~ Attack

normal training

ls adv. training

95% 0.8%
high 40%
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® Use randomized smoothing

Smoothing

f(x) = arg max ]EZNN(O,oz,)hC(X +2)
yey
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® Use randomized smoothing

— Limited robustness

Smoothing

f(x) = arg max ]EZNN(O,oz,)hC(X +2)
yey
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Smoothing

® Use randomized smoothing
f(x) = arg max ]EZNN'(O,UZ,)hC(X +2z)
yeyYy

— Limited robustness

e Train neural network with a bounded Lipschitz constant (e.g. See Regularisation of neural
networks by enforcing Lipschitz continuity)
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https://link.springer.com/article/10.1007/s10994-020-05929-w
https://link.springer.com/article/10.1007/s10994-020-05929-w

Randomized networks

¢ Noise injection (Lecuyer, 2018; Cohen, 2019; Pinot et al., 2019)
Inject noise at inference time (and training time).

o Random Mixtures of Classifiers : More about it next week !
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2-stage project

e Stage-1: (1 week)
o Train a basic classifier

o Dataset: CIFAR-10
o Basic Architecture: (Conv+MaxPool+4Conv+FC+FC+FC)

o Implement attack mechanisms

o FGSM
o PGD

o Implement Adversarial Training

e Stage-2: innovate
o consider new defense mechanisms (e.g. randomized networks, lipschitz regularization,
models robust against multiple defense mechanisms, etc. see refs)
o consider new attack mechanisms
o test and experiment
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Testing platform

https://www.lamsade.dauphine.fr/~testplatform/prds-a3/
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https://www.lamsade.dauphine.fr/~testplatform/prds-a3/

Typical errors to avoid.

Don't focus the presentation on FGSM and PGD.

Presenting results, make the difference between clean accuracy, attack accuracy and
robust accuracy.

Don't plot the loss AND the accuracy.

Anticipate a little bit the experiments on Mesonet (it might be full).

Benjamin Negrevergne, Alexandre Vérine
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Deadline:

62% of late submission

Teams

3-bet_light  submitted Late
® R Repository
Late submitted 14 hours ago <0~ 25 commits <

ariGAN  submitted

& Repositor)
Lste submitted yesterday 0~ 21 commits &9 [ Repository

briGANd  submitted  Late

Repositorn
Late submitted Thour ago -0~ 34 commits H Repository
Clash of Gans  submitted  Late
Late submitied 13 hours & @ H Repository
Late submitted 13 hours ago -0 15 commits
Crous de Chatelet  submitted  Late

L H Repository
Late submitted 14 hours ago <0~ 49 commits

Cyril GANe  submitted 5
H Repository
Late submitted 15 hours ago -0~ 21 commits (S pository

DSL  submitted g
Repositor)
Late submited 1 hours s 021 commis @ & reposion

FC GAN Submitted
; W O Repository
Late submitted 15 hours ago  -O- 31 commits

GANarchy  submitted Late =]
[ Repository

Late submitted 14 hours ago -G~ 50 commits
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To fit in 3 hours:

e Only 5 minutes per presentation.

® 2 points malus (on the presentation grade) if the slides are not uploaded the day before.

® 2 points malus (on the report grade) if the report is not uploaded the day before.
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