Assignment 3

Training robust neural networks

Benjamin Negrevergne, Alexandre Vérine

PSL University - Paris Dauphine - Équipes MILES

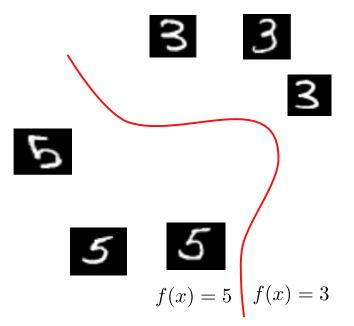
Outline

- Principle of adversarial attacks
- Whitebox attacks FGSM attack PGD attack Carlini & Wagner attack (C&W)
- Black box attacks
- Approaches to defend against adversarial attacks Adversarial training Randomized networks
- Projects

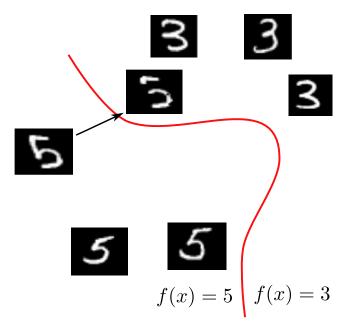
Adversarial examples explained

3

Adversarial examples explained

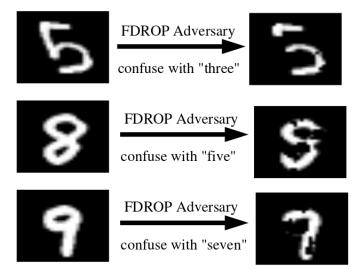


Adversarial examples explained



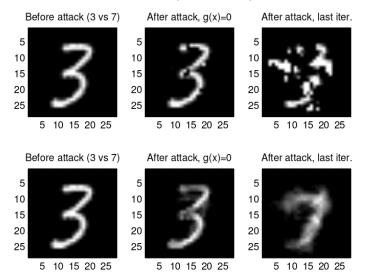
Early work on adversarial attacks

Globerson et al. (ICML, 2006)



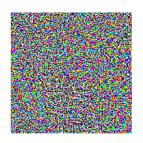
Early work on adversarial attacks

Biggio et al. (ECML, 2013)



FGSM (2015)

x
"panda"
57.7% confidence



 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

Goodfellow et al. (ICLR, 2015)

The modification is imperceptible!

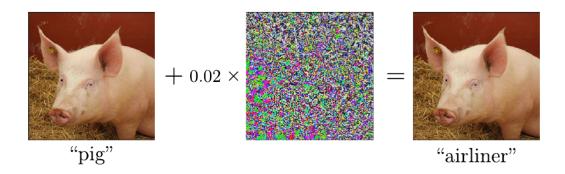
 $+.007 \times$

Modern attacks

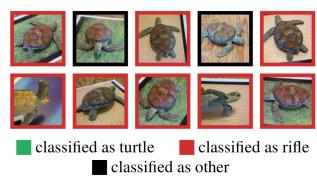
Natural	ℓ_1 – EAD 60	ℓ_2 – C&W 60	ℓ_{∞} – PGD 20
0.958	0.035	0.034	0.384

- \sim 3% accuracy under attack
- ▶ Almost every input image can be attacked!

Pig vs. Airliner



Real life adversarial examples



Synthesizing Robust Adversarial Examples, Athalye et al. 2017

Evading Real-Time Person Detectors by Adversarial T-shirt, Xu et al. 2019

Benjamin Negrevergne, Alexandre Vérine

3

Goal of this assignment

- Understand the weaknesses of machine learning models
 - Learn attack mechanisms
 - Learn defence mechanisms

• Learn how to reason about the decision boundary

Generating adversarial examples

Let $f: \mathbb{R}^n \to Y$ a classifier Given an example $x \in \mathbb{R}^n$ and its true label $y \in Y$ find a $\delta \in \mathbb{R}^n$ such that:

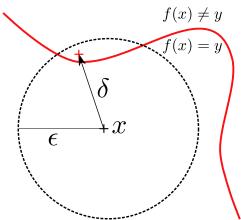
Untargeted attacks

$$\|\delta\| \le \epsilon$$
$$f(x+\delta) \ne y$$

Targeted attacks

$$\|\delta\| \le \epsilon$$

 $f(x+\delta) = t, t \ne y$



Generating adversarial examples

Let $f: \mathbb{R}^n \to Y$ a classifier Given an example $x \in \mathbb{R}^n$ and its true label $y \in Y$ find a $\delta \in \mathbb{R}^n$ such that:

Untargeted attacks

$$\|\delta\| \le \epsilon$$

$$f(x+\delta) \ne y$$

Targeted attacks

$$\|\delta\| \le \epsilon$$

 $f(x+\delta) = t, t \ne y$

Most damaging perturbation:

$$f(x) \neq y$$

$$f(x) = y$$

$$\epsilon$$

$$\delta^* = rg \max_{\|\delta\| \le \epsilon} \ \ell_f(x + \delta, y)$$

Measuring the magnitude of perturbations

■ Using ℓ_2 norm

$$\|\delta\|_2 \le \epsilon \quad = \quad \sqrt{\sum_i \delta_i^2} \le \epsilon$$

- ► Natural norm used in most loss functions.
- Using ℓ_{∞} norm

$$\|\delta\|_{\infty} \le \epsilon = \max_{i} \delta_{i} \le \epsilon$$

▶ Fits the human perception better when dealing with images.

Outline

- Principle of adversarial attacks
- Whitebox attacks FGSM attack PGD attack Carlini & Wagner attack (C&W)
- Black box attacks
- Approaches to defend against adversarial attacks Adversarial training Randomized networks
- Projects

FGSM attack

Target function for ϵ -bounded attack:

$$\max_{||\delta||\leq \epsilon} \ell_f(x+\delta,y)$$

FGSM attack

Target function for ϵ -bounded attack:

$$\max_{||\delta|| \le \epsilon} \ell_f(x + \delta, y)$$

If ϵ is small, the optimization problem can be approximated using one gradient step:

$$\max_{||\delta|| \le \epsilon} \delta^T \nabla_{x} \ell_f(x, y)$$

FGSM attack

Target function for ϵ -bounded attack:

$$\max_{||\delta|| \le \epsilon} \ell_f(x + \delta, y)$$

If ϵ is small, the optimization problem can be approximated using one gradient step:

$$\max_{||\delta|| \le \epsilon} \delta^T \nabla_{x} \ell_f(x, y)$$

If
$$||.|| = ||.||_{\infty}$$
, then:

$$\delta^* = \epsilon sign(\nabla_x \ell_f(x_t, y))$$

is a solution to the problem. (FGSM attack (Goodfellow, 2015))

PGD attack

PGD attack (Madry, 2017) is an iterative version of FGSM:

$$x_0 = x$$

$$x_{t+1} = \Pi_{B(x_0,\epsilon)}(x_t + \delta sign(\nabla_x \ell_f(x_t, y)))$$

With

- Π: projection operator
- $B(x_0, \epsilon)$: hyperball centered in x_0 with radius ϵ

PGD attack

PGD attack (Madry, 2017) is an iterative version of FGSM:

$$x_0 = x$$

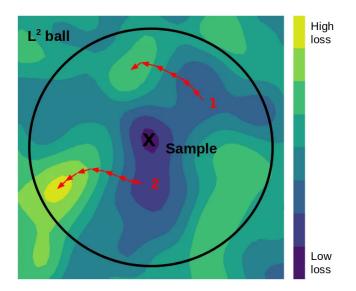
$$x_{t+1} = \Pi_{B(x_0,\epsilon)}(x_t + \delta sign(\nabla_x \ell_f(x_t, y)))$$

With

- Π: projection operator
- $B(x_0, \epsilon)$: hyperball centered in x_0 with radius ϵ

 \blacktriangleright Simple and very efficient bounded attack. Can be adapted to ℓ_1 and ℓ_2 constraints.

PGD attack



Carlini and Wagner attack

Norm bounded attack:

$$\min_{\ell_f(x+\delta,y)\geq\kappa}\|\delta\|$$

Carlini & Wagner solves the Lagrangian relaxation:

$$\min_{\delta} \|\delta\|_2 + \lambda \times g(x+\delta)$$

Where
$$g(x + \delta) < 0$$
 iff $\ell_f(x + \delta, y) \ge \kappa$

Carlini and Wagner attack

Norm bounded attack:

$$\min_{\ell_f(x+\delta,y)\geq\kappa}\|\delta\|$$

Carlini & Wagner solves the Lagrangian relaxation:

$$\min_{\delta} \|\delta\|_2 + \lambda \times g(x+\delta)$$

Where $g(x + \delta) < 0$ iff $\ell_f(x + \delta, y) \ge \kappa$

E.g.

$$g(x) = \max \left(f_c(x) - \max_{i \neq c} (f_i(x)), -\kappa \right)$$

- $f_i(x)$: i^{th} component of vector f(x)
- c: index of the actual class y of x

Outline

- Principle of adversarial attacks
- Whitebox attacks FGSM attack PGD attack Carlini & Wagner attack (C&W)
- Black box attacks
- Approaches to defend against adversarial attacks Adversarial training Randomized networks
- Projects

Black box attacks

Goal: craft an attack without accessing the network weights.

▶ In most case, the goal is to estimate gradients.

- Finite difference (Chen, 2017): Not very efficient, because it requires a huge number of queries.
- NES (Ilyas, 2018): Uses random directions instead of coordinate directions: simple and efficient
- Other methods bases on combinatorial optimization (Moon, 2019) and evolutionary strategies (Meunier, 2019).

Outline

- Principle of adversarial attacks
- Whitebox attacks FGSM attack PGD attack Carlini & Wagner attack (C&W)
- Black box attacks
- Approaches to defend against adversarial attacks Adversarial training Randomized networks
- Projects

Adversarial training

Train the network with the adversarial risk (Goodfellow, 2015):

$$\min_{\theta} \mathbb{E}_{(x,y)} \left(\max_{\|\delta\| \le \epsilon} \ell_{f_{\theta}}(x+\delta,y) \right)$$

▶ Inner maximization problem is approximated with PGD or FGSM attack.

Adversarial training

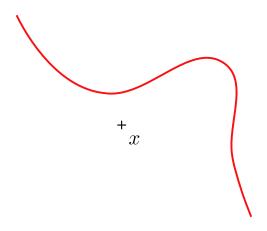
Train the network with the adversarial risk (Goodfellow, 2015):

$$\min_{\theta} \mathbb{E}_{(x,y)} \left(\max_{\|\delta\| \le \epsilon} \ell_{f_{\theta}}(x+\delta,y) \right)$$

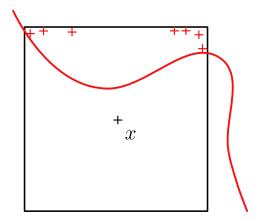
▶ Inner maximization problem is approximated with PGD or FGSM attack.

- Efficient in practice
- No theoretical guarantees

ℓ_{∞} Adversarial training

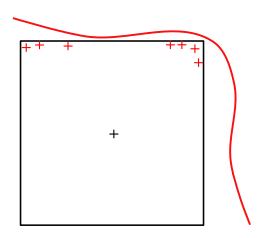


ℓ_{∞} Adversarial training



+ Linf adversarial examples

ℓ_{∞} Adversarial training



$$\forall \delta \text{ s.t. } \delta < \|\epsilon\|_{\infty}$$
 $f(x+\delta) = f(x)$

+ Linf adversarial examples

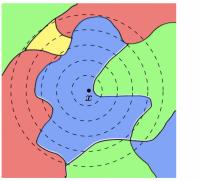
Accuracy under attacks

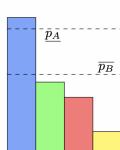
Model	Natural examples	ℓ_∞ Attack
normal training	95%	0.8%
ℓ_∞ adv. training	high	40%

Smoothing

• Use randomized smoothing

$$f(x) = \underset{y \in Y}{\operatorname{arg\,max}} \mathbb{E}_{z \sim \mathcal{N}(0, \sigma^2 I)} h_c(x + z)$$

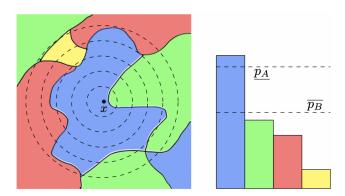




Smoothing

• Use randomized smoothing

$$f(x) = \underset{y \in Y}{\operatorname{arg\,max}} \mathbb{E}_{z \sim \mathcal{N}(0, \sigma^2 I)} h_c(x + z)$$



 \rightarrow Limited robustness

Smoothing

• Use randomized smoothing

$$f(x) = \underset{y \in Y}{\operatorname{arg max}} \mathbb{E}_{z \sim \mathcal{N}(0, \sigma^2 I)} h_c(x + z)$$

→ Limited robustness

• Train neural network with a bounded Lipschitz constant (e.g. See Regularisation of neural networks by enforcing Lipschitz continuity)

Randomized networks

• Noise injection (Lecuyer, 2018; Cohen, 2019; Pinot et al., 2019) Inject noise at inference time (and training time).

• Random Mixtures of Classifiers : More about it next week !

Outline

- Principle of adversarial attacks
- Whitebox attacks FGSM attack PGD attack Carlini & Wagner attack (C&W)
- Black box attacks
- Approaches to defend against adversarial attacks Adversarial training Randomized networks
- Projects

2-stage project

- Stage-1: (1 week)
 - Train a basic classifier
 - Dataset: CIFAR-10
 - Basic Architecture: (Conv+MaxPool+Conv+FC+FC+FC)
 - Implement attack mechanisms
 - FGSM
 - PGD
 - Implement Adversarial Training

- Stage-2: innovate
 - consider new defense mechanisms (e.g. randomized networks, lipschitz regularization, models robust against multiple defense mechanisms, etc. see refs)
 - consider new attack mechanisms
 - test and experiment

References

- Goodfellow, 2015 (FGSM + Adversarial Training)
- Madry 2017 (PGD+Adversarial Training)
- Carlini & Wagner, 2017: Towards Evaluating the Robustnessof Neural Networks
- Athalye et al.: Obfuscated Gradients Give a False Sense of Security:Circumventing Defenses to Adversarial Examples
- Ilyas, 2018 (NES attack): Black-box Adversarial Attacks with Limited Queries and Information
- Randomized networks: Cohen, 2019: Certified Adversarial Robustness via Randomized Smoothing, Pinot,2019: Theoretical evidence for adversarial robustness through randomization
- Araujo et al.: Advocating for Multiple Defense Strategies against Adversarial Examples

Testing platform

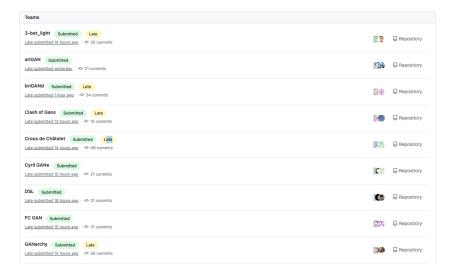
https://www.lamsade.dauphine.fr/~testplatform/prds-a3/

Typical errors to avoid.

- Don't focus the presentation on FGSM and PGD.
- Presenting results, make the difference between clean accuracy, attack accuracy and robust accuracy.
- Don't plot the loss AND the accuracy.
- Anticipate a little bit the experiments on Mesonet (it might be full).

Deadline:

62% of late submission:



To fit in 3 hours:

- Only **5 minutes** per presentation.
- 2 points malus (on the presentation grade) if the slides are not uploaded the day before.
- 2 points malus (on the report grade) if the report is not uploaded the day before.