
GENERATIVE MODELS
FROM GAUSSIAN SAMPLING TO DIFFUSION MODELS

Alexandre Vérine,
Research Fellow, ENS-PSL

Université PSL

IASD
Université Dauphine-PSL

September 21, 2025

WHO AM I?

▶ Alexandre Vérine
▶ Research Fellow, ENS-PSL
▶ Université PSL
▶ Previously: PhD student at Dauphine (2021-2024)
▶ Research interests: generative models, evaluation methods, quality diversity trade-off
▶ All my slides and code are available on www.alexverine.com

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 1 / 82

www.alexverine.com

ABOUT THIS COURSE

Outline of the course:
▶ Lecture 1 (22/09, 9h–12h15): From sampling to the first generative model
▶ Practical 1 (29/09, 9h–12h15): Building and training a VAE
▶ Lecture 2 (03/11, 9h–12h15): GANs (from the first GAN to f-GAN, WGAN, discriminator

rejection sampling)
▶ Practical 2 (08/12, 9h–12h15): Training a GAN
▶ Lecture 3 (15/12, 9h–12h15): Diffusion Models (DDPM to EDM, score-based and classifier

guidance)
▶ Practical 3 (26/01, 9h–12h15): Comparing ODE and SDE in small dimensions
▶ Lecture 4 (02/02, 9h–12h15): Evaluating generative models (IS, Precision and Recall) + Project

presentation
▶ Last session (10/02, 9h–12h15): Student Presentations

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 2 / 82

ABOUT THIS COURSE

Project Presentation:
▶ Depending on the number of students, you will have to work in pairs or groups of 3.
▶ Same model architecture for all groups.
▶ Each group will have to choose a paper for training, regularizing, sampling the model.
▶ Each project will be tested every morning for a month.
▶ Final presentation on the last session (10/02/2024). Depending on the number of students, each

group will have 5 to 7 minutes to present their work.
▶ Report to be handed the day before the project at 23:59.
▶ Report will be graded on the clarity of the presentation, the quality of the writing, the quality of

the intuition behind experiments but not the results.
▶ Grade: 40% presentation, 60% report.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 3 / 82

AI 101: FROM FUNDAMENTALS TO DEEP LEARNING

1 What is sampling? . 6

1.1 Definition . 6
1.2 Random and Pseudo-random sampling . 18
1.3 From uniform to Gaussian / Gaussian mixtures . 22

2 Generative Models . 38
2.1 Definition . 38
2.2 Implicit vs Explicit Models . 38
2.3 Divergences . 43
2.4 Examples of Generative Models . 52

3 Types of Generative Models . 54

3.1 Autoregressive Models . 54
3.2 Normalizing Flows . 59
3.3 Energy-Based Models . 69

4 From an Autoencoder to a Generative Model . 73
4.1 Autoencoder . 73
4.2 Variational Autoencoder . 75
4.3 Variants of VAE . 80

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 4 / 82

Part I

INTRODUCTION TO GENERATIVE MODELS

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 5 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

What constraints should a generated image satisfy?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

What constraints should a generated image satisfy?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How do we ensure resemblance to real images?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How do we ensure resemblance to real images?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How to cover the diversity of the dataset?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How to cover the diversity of the dataset?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

What about likelihood and novelty?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

What about likelihood and novelty?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How to incorporate stochasticity in generation?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82

WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Constraints for sampling:
▶ Resemblance: Generated images should look like real ones.
▶ Coverage: Samples should represent the full data distribution.
▶ Likelihood: Samples should have high probability under the model.
▶ Novelty: Samples should not simply replicate training data.
▶ Stochasticity: Sampling should reflect inherent randomness.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 7 / 82

WHAT IS SAMPLING?
WHY SAMPLING MATTERS

Definition:
Let P be a distribution on the sample space X . The goal is to sample points under the distribution p(x).
Often, we consider conditional distributions p(x|y) where y is some conditioning variable.

▶ Image generation : e.g., sampling new human faces (FFHQ, CelebA).
▶ Text generation : e.g., language models generating sentences.
▶ Image-to-image translation : e.g., translating day-to-night photos.
▶ Image-to-text generation : e.g., automatic image captioning.
▶ Text-to-image synthesis : e.g., generating images from text prompts.
▶ Text-to-text generation : e.g., machine translation.
▶ Speech-to-text transcription : e.g., transcribing audio to subtitles.
▶ Many other conditional generative tasks...

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 8 / 82

WHAT IS SAMPLING?
EXAMPLES: IMAGES-TO-IMAGES COLORIZATION

Example: Image Colorization

Original Image Grayscale Image Colorized Image

Task: Given a grayscale image, sample a plausible colorized version.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 9 / 82

WHAT IS SAMPLING?
EXAMPLES: IMAGES-TO-IMAGES INPAINTING

Example: Image Inpainting

Original Image Masked Image Filled Image

Task: Given an image with missing regions, sample a plausible completion.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 10 / 82

WHAT IS SAMPLING?
EXAMPLES: IMAGES-TO-IMAGES UNCROPPING

Example: Image Uncropping

Original Image Cropped Image Filled Image

Task: Given an image with missing regions, sample a plausible completion.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 11 / 82

WHAT IS SAMPLING?
EXAMPLES: IMAGES-TO-IMAGES JPEG ARTIFACT REMOVAL

Example: Image JPEG Artifact Removal

Original Image JPEG Compressed Image Restored Image

Task: Given a JPEG compressed image, sample a high-quality restoration.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 12 / 82

WHAT IS SAMPLING?
EXAMPLES: TEXT-TO-IMAGE SYNTHESIS

Example: Text-to-Image Synthesis

Task: Given a text description, sample a corresponding image.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 13 / 82

WHAT IS SAMPLING?
EXAMPLES: TEXT-TO-TEXT TRANSLATION

Example: Text-to-Text Translation

Input (English): Output (French):
A scenic view of a mountain during sunset. Une vue pittoresque d’une montagne au

coucher du soleil.
A bustling city street at night. Une rue animée de la ville la nuit.
A serene beach with palm trees. Une plage sereine avec des palmiers.

Task: Given a English text description, sample a French translation.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 14 / 82

WHAT IS SAMPLING?
EXAMPLES: TEXT-TO-TEXT MATH PROBLEM SOLVING

Example: Text-to-Text Math Problem Solving

Input (Problem): Output (Solution):
If a car travels at 60 mph for 2 hours, how far
does it go?

The car travels 120 miles.

What is the derivative of x2 + 3x + 2? The derivative is 2x + 3.
Solve for x: 2x + 5 = 15. The solution is x = 5.

Task: Given a text description, sample a corresponding solutions.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 15 / 82

WHAT IS SAMPLING?
HOW DO WE ACTUALLY GENERATE AN IMAGE?

Prompt:
"A cute sloth holding a small treasure chest.
A bright golden glow is coming from the chest."

?

How should we generate something random corresponding to this?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 16 / 82

WHAT IS SAMPLING?
HOW DO WE ACTUALLY GENERATE AN IMAGE?

Prompt:
"A cute sloth holding a small treasure chest.
A bright golden glow is coming from the chest."

?

How should we generate something random corresponding to this?

It’s very complex.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 16 / 82

FROM COMPLEX TO SIMPLE
SIMPLIFYING THE PROBLEM

Prompt:
"A grey pixel"

?

The simplest generation we can do: how can we do this?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 17 / 82

FROM COMPLEX TO SIMPLE
SIMPLIFYING THE PROBLEM

Prompt:
"A grey pixel"

?

The simplest generation we can do: how can we do this?

Even this is not trivial!

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 17 / 82

RANDOM VS PSEUDO-RANDOM SAMPLING
DEFINITIONS AND DIFFERENCES

Random (true randomness). Numbers generated from nondeterministic physical processes.
▶ Examples: quantum effects (photon arrival, electron tunneling), radioactive decay, thermal/shot

noise.
▶ Properties: unpredictable, not reproducible from a finite state; entropy comes from physics.
▶ Uses: cryptography key generation, lotteries, high-stakes simulations.

Pseudo-random (PRNG). Numbers generated by deterministic algorithms.
▶ Defined by a recurrence/state update; reproducible given a seed.
▶ Aim for long period, good statistical tests, fast generation; not inherently cryptographically

secure.
▶ Uses: ML training, Monte Carlo, graphics, games; seeding controls reproducibility.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 18 / 82

RANDOM AND PSEUDO-RANDOM SAMPLING
SOURCES AND ALGORITHMS

True random sources (hardware/physical):
▶ Quantum RNGs (beam-splitter photon paths, vacuum fluctuations), radioactive decay counters.
▶ Electronic noise (thermal/Johnson–Nyquist, avalanche diode shot noise).
▶ External entropy (network jitter, disk timings) — lower quality, needs whitening.

Popular PRNG algorithms (software):
▶ Linear Congruential Generators (LCG), Xorshift / xoroshiro, PCG (permuted congruential

generator).
▶ Mersenne Twister (MT19937): long period, equidistribution; standard in many libraries.
▶ Cryptographic PRNGs (ChaCha20-CTR, AES-CTR-DRBG) for security-sensitive use.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 19 / 82

PSEUDO-RANDOM GENERATION
LINEAR CONGRUENTIAL GENERATOR (LCG)

Statement. We can generate uniform pseudo-random numbers efficiently with a simple PRNG (e.g.,
LCG) using a seed for reproducibility.
Algorithm 1: LCG (one-step)
Input: m, a, c,X0
Output: Ut ∈ (0, 1)
Xt+1 ← (aXt + c) mod m;
Ut+1 ← Xt+1/m

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 20 / 82

FROM UNIFORM TO MORE COMPLEX?
A NATURAL QUESTION

▶ OK, we can sample uniform variables quickly.
▶ What about more complex distributions? e.g., a Gaussian or a Gaussian mixture.
▶ Idea: transform uniforms into the target distribution. (Next: Box–Muller, Inverse CDF)

U ∼ Unif(0, 1) Box–Muller
=⇒ Z ∼ N (0, 1)

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 21 / 82

SAMPLING TRANSFORMATIONS
BOX–MULLER (UNIFORM→ GAUSSIAN)

Idea: map two i.i.d. uniforms (U1,U2) to two i.i.d.
Gaussians (Z1,Z2).
▶ Polar transform: R =

√
−2 lnU1, Θ = 2πU2; then

Z1 = R cosΘ, Z2 = R sinΘ.
▶ Produces pairs of normals; efficient reuse in vectorized

code.
▶ Alternative: Marsaglia polar method avoids costly trig

with rejection.

Algorithm 2: Box–Muller
Output: Z1,Z2 ∼ N (0, 1) i.i.d.
Draw U1,U2 ∼ Unif(0, 1) i.i.d.
R←

√
−2 logU1

Θ← 2πU2
Z1 ← R cosΘ; Z2 ← R sinΘ

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 22 / 82

INVERSE CDF
A.K.A. INVERSE TRANSFORM SAMPLING

▶ If U ∼ Unif(0, 1) and F is a CDF, then X = F−1(U)
has CDF F.

▶ Requires F to be strictly increasing / invertible;
otherwise use generalized inverse.

▶ In practice: precompute/discretize F, interpolate
F−1, or use spline/numerical root-finding.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 23 / 82

INVERSE CDF
A.K.A. INVERSE TRANSFORM SAMPLING

▶ If U ∼ Unif(0, 1) and F is a CDF, then X = F−1(U)
has CDF F.

▶ Requires F to be strictly increasing / invertible;
otherwise use generalized inverse.

▶ In practice: precompute/discretize F, interpolate
F−1, or use spline/numerical root-finding.

Question: What is the issue with this method in high dimensions?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 23 / 82

HIGH DIMENSIONAL SAMPLING
WHEN IS IT (RELATIVELY) EASY?

Fact: Sampling in high dimensions is generally hard, even if we know p(x1, . . . , xN).
Special cases where it becomes easy(er):
▶ Independence: p(x1, . . . , xN) =

∏N
i=1 pi(xi) — sample each coordinate independently.

▶ Markov (autoregressive) chain: p(x1:N) = p(x1)
∏N

i=2 p(xi | xi−1) — ancestral sampling along the
chain.

▶ Tree-structured Bayesian networks: order variables topologically and sample parents→
children.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 24 / 82

FROM UNIVARIATE TO MULTIVARIATE GAUSSIAN
DENSITIES AND PARAMETERS

Univariate (1D) Gaussian. For mean µ ∈ R and standard
deviation σ > 0,

X ∼ N (µ, σ2), p(x) =
1√

2π σ
exp

(
− (x− µ)2

2σ2

)
.

Parameters:
▶ µ (location): shifts the center of mass of the density.
▶ σ (scale): controls spread (variance σ2).

Multivariate (dD) Gaussian. For mean µ ∈ Rd and covariance
Σ ∈ Rd×d (symmetric PD),

X ∼ N (µ,Σ), p(x) =
1

(2π)d/2 |Σ|1/2 exp
(
−1

2(x−µ)
⊤Σ−1(x−µ)

)
.

Parameters:
▶ µ (location vector): shifts the center in Rd.
▶ Σ (covariance): encodes scale/shape/orientation; Σ ≻ 0.

Elliptical contours illustrating Σ in Rd.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 25 / 82

FROM UNIVARIATE TO MULTIVARIATE GAUSSIAN
COVARIANCE TYPES

Special cases.
▶ Isotropic: Σ = σ2I⇒ spherical contours.
▶ Diagonal: Σ = diag(σ2

1, . . . , σ
2
d)⇒

independent coordinates.

Elliptical contours illustrating Σ in Rd.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 26 / 82

FROM N (0, I) TO N (µ,Σ)
CHOLESKY FACTORIZATION AND SAMPLING

Cholesky factorization. For a symmetric positive-definite Σ,
there exists a unique lower-triangular L with positive
diagonal such that Σ = LL⊤.

Sampling recipe.
1. Draw z ∼ N (0, Id) (independent standard normals).
2. Compute L such that LL⊤ = Σ (Cholesky).
3. Set x← µ+ Lz ⇒ then x ∼ N (µ,Σ).

Why it works. E[z] = 0, Cov(z) = I and
Cov(Lz) = LIL⊤ = Σ.

Map unit sphere (standard normal) to
ellipse via L, then translate by µ.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 27 / 82

GAUSSIAN MIXTURES
DEFINITION AND INTUITION

Motivation. To increase the model complexity beyond a single Gaussian, we can mix several
Gaussians; this yields a flexible, multi-modal density.
Definition. A Gaussian Mixture Model (GMM) with K components on Rd is

p(x) =
K∑

k=1

πkN
(
x | µk,Σk

)
, πk ≥ 0,

∑
k

πk = 1.

Parameters: weights {πk}, means {µk}, covariances {Σk}.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 28 / 82

GAUSSIAN MIXTURES
WHY GAUSSIAN MIXTURES?

▶ Expressivity: universal approximator of smooth densities as K increases.

Example from [1]:

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 29 / 82

GAUSSIAN MIXTURES
SAMPLING FROM MIXTURE MODELS

Goal: draw X ∼ p(x) =
∑

k πkN (x | µk,Σk).
Algorithm 3: Sampling from a GMM
Input: weights {πk}, means {µk}, covariances {Σk}
Output: X ∈ Rd

Draw component index K ∼ Categorical(π1, . . . , πK)
Draw X ∼ N (µK,ΣK) (e.g., via Box–Muller/Cholesky)

Notes:
▶ Use prefix-sum table for the categorical draw; vectorize for batches.
▶ For ΣK: diagonal for speed; Cholesky factor L with LL⊤ = ΣK for full-cov.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 30 / 82

TRAINING GAUSSIAN MIXTURES
MAXIMUM LIKELIHOOD — PRINCIPLE

Hypothesis: we observe i.i.d. data x1, . . . , xN ∼ P and posit a parametric model pθ(x) (here, a GMM).
▶ Population objective:

θ∗ = argmax
θ

EX∼P
[
log pθ(X)

]
▶ Empirical log-likelihood (practice):

θ̂ = argmax
θ

1
N

N∑
n=1

log pθ(xn) = argmax
θ

log

N∏
n=1

pθ(xn).

▶ Why the log? Turns products into sums; numerically stable.

Notes: LLN links empirical and population objectives; for GMMs, regularize Σk with a small ϵ I to
avoid degeneracy.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 31 / 82

TRAINING GAUSSIAN MIXTURES
MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Objective (given data {xn}N
n=1):

L(Θ) =

N∑
n=1

log
(K∑

k=1

πkN (xn | µk,Σk)
)
=

N∑
n=1

LSEk

(
log πk + logN (xn | µk,Σk)

)
︸ ︷︷ ︸

log-sum-exp

.

where LSE(z1, . . . , zK) := log
∑K

k=1 ezk .
▶ Constraints: π ∈ ∆K−1 (simplex), Σk ≻ 0 (PD).
▶ Numerics: compute with the log-sum-exp trick (subtract maxk) for stability.
▶ EM connection: LSE is a smooth max; E-step computes responsibilities as a softmax:

γnk = softmaxk

(
log πk + logN (xn | µk,Σk)

)
.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 32 / 82

TRAINING GAUSSIAN MIXTURES
GRADIENT DESCENT APPROACH

Parameterization for constraints:
▶ Weights: raw logits wk with πk = softmax(w)k.
▶ Covariance: diagonal with σ2

k,j = exp(αk,j); or full-cov via Cholesky Σk = LkL⊤
k .

Stabilization:
▶ Compute log

∑
k via log-sum-exp; clip α; add ϵI to Σk.

▶ Mini-batch SGD/Adam; early stopping; multiple restarts.
Pseudocode (one step):

Algorithm 4: GD step for GMM MLE
Input: minibatch {xb}, current Θ
Compute ℓb = log

∑
k πkN (xb | µk,Σk) for all b (log-sum-exp)

J ← − 1
|B|

∑
b ℓb

// negative log-likelihood
Backprop to get∇ΘJ; update Θ← Θ− η∇ΘJ (Adam)

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 33 / 82

TRAINING GAUSSIAN MIXTURES
EM ALGORITHM — INTUITION

From LSE to EM. Using the LSE view, the softmax acts like a soft argmax: in the E-step we softly pick
the near-maximum component; in the M-step we optimize parameters using those soft weights
(points near the max matter more).

γnk = softmaxk

(
log πk + logN (xn | µk,Σk)

)
.

Latent variables: introduce znk ∈ {0, 1} (one-hot) with P(znk = 1) = πk.
▶ E-step: responsibilities γnk = P(znk = 1 | xn,Θ

(t)) (soft assignments).
▶ M-step: maximize the expected complete-data log-likelihood

Q(Θ,Θ(t)) =
∑
n,k

γnk

[
log πk + logN (xn | µk,Σk)

]
.

▶ Guarantees: each EM iteration non-decreasing in data log-likelihood; converges to a stationary
point.

When to prefer EM vs GD: closed-form M-steps (fast, stable) vs flexible constraints/priors with GD.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 34 / 82

TRAINING GAUSSIAN MIXTURES
EXPECTATION-MAXIMIZATION (EM) ALGORITHM (PSEUDO-CODE)

Algorithm 5: EM for Gaussian Mixture Models

Input: data {xn}N
n=1, number of components K

Output: parameters {πk, µk,Σk}K
k=1

Initialize πk, µk,Σk (e.g., k-means)
repeat

// E-step: responsibilities
for n = 1 to N do

for k = 1 to K do
rnk ← πkN (xn | µk,Σk)

end
γnk ← rnk/

∑K
j=1 rnj

end
// M-step: parameter updates

Nk ←
∑N

n=1 γnk for k = 1, . . . ,K
πk ← Nk/N
µk ← 1

Nk

∑N
n=1 γnkxn

Σk ← 1
Nk

∑N
n=1 γnk(xn − µk)(xn − µk)

⊤ + ϵ I
until convergence

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 35 / 82

GAUSSIAN MIXTURES
EXAMPLE

Fitting a GMM to 1D data points. In blue the density, in orange the histogram of data points.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 36 / 82

GAUSSIAN MIXTURES
EXAMPLE

Fitting a GMM to 1D data points. K = 1.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 36 / 82

GAUSSIAN MIXTURES
EXAMPLE

Fitting a GMM to 1D data points. K = 5.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 36 / 82

GAUSSIAN MIXTURES
EXAMPLE

Fitting a GMM to 1D data points. K = 150.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 36 / 82

GAUSSIAN MIXTURES
IN TERMS OF GENERATIVE MODELS

▶ Resemblance: If the modes are on the data, samples will look realistic.
▶ Coverage: More components→ better coverage of data distribution.
▶ Likelihood: GMMs provide explicit likelihoods for samples.
▶ Novelty: If not overfitting, samples can be novel.
▶ Stochasticity: Inherent randomness from component and Gaussian sampling.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 37 / 82

GAUSSIAN MIXTURES
IN TERMS OF GENERATIVE MODELS

▶ Resemblance: If the modes are on the data, samples will look realistic.
▶ Coverage: More components→ better coverage of data distribution.
▶ Likelihood: GMMs provide explicit likelihoods for samples.
▶ Novelty: If not overfitting, samples can be novel.
▶ Stochasticity: Inherent randomness from component and Gaussian sampling.

The GMM is a simple generative model! However, it has limitations in high dimensions and complex
data (e.g., images).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 37 / 82

GENERATIVE MODELS
TARGET DISTRIBUTION P AND MODEL P̂θ

Goal. Approximate the (unknown) data distribution P on X with a model family {P̂θ : θ ∈ Θ}.

Definition. A generative model is a probability distribution P̂θ over X , parameterized by θ, together
with a sampling procedure x ∼ P̂θ.

Types of generative models.
▶ Explicit models: provide a tractable density p̂θ(x) (e.g., GMMs, autoregressive, flows).
▶ Implicit models: define only a sampler x = Tθ(ε) with ε ∼ p(ε) (e.g., GANs, simulators).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 38 / 82

IMPLICIT VS EXPLICIT MODELS
DEFINITIONS

Explicit (likelihood-based).
▶ Provide tractable density p̂θ(x) (or exact likelihood via change of variables).
▶ Examples: autoregressive (exact), flows (exact via Jacobian), GMMs (explicit), diffusion (via

surrogate bounds).

What do explicit likelihood-based models allow us to do?
▶ Out-of-distribution (OOD) detection: Compute likelihoods for new samples; flag samples with low

likelihood as OOD or anomalous.
▶ Uncertainty quantification: Assign probabilities to possible outcomes, enabling principled ways to

measure uncertainty.
▶ Anomaly detection: Identify rare or unexpected events by their low likelihood under the model.
▶ Model comparison: Compare different generative models quantitatively using likelihoods or

information criteria.
▶ Principled training: Enable maximum likelihood estimation and evaluation on held-out data.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 39 / 82

IMPLICIT VS EXPLICIT MODELS
CHANGE OF VARIABLES FORMULA

Change of variables formula for densities:

Suppose F : X → Z is an invertible and differentiable function between open subsets of Rd. Let q(z) be a
density on Z . Then the induced density on X is:

p(x) = q(F(x)) · |det JacF(x)|

where JacF(x) is the Jacobian matrix of F at x.
Conditions:
▶ F must be invertible (bijection) and differentiable, with differentiable inverse.
▶ The determinant of the Jacobian must be nonzero everywhere in the domain.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 40 / 82

IMPLICIT VS EXPLICIT MODELS
CHANGE OF VARIABLES FORMULA

Illustration of the change-of-variables formula:
mapping a simple distribution (e.g., gaussian) through
a deterministic function F to obtain a more complex
distribution.

Illustration of the change-of-variables formula:
mapping a simple distribution (e.g., gaussian) through
a stochastic function to obtain a more complex
distribution.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 41 / 82

IMPLICIT VS EXPLICIT MODELS
PUSH-FORWARD AND LIMITATIONS OF CHANGE OF VARIABLES

Invertibility and Differentiability: Not always possible

Most functions F from X to Z are not invertible and differentiable everywhere, especially when
mapping between spaces of different dimensions or when F is not one-to-one.
▶ The change-of-variables formula applies only when F is a bijection between open subsets of Rd

and both F and F−1 are differentiable.
▶ In practice, many interesting mappings (e.g., neural networks with bottlenecks, dimensionality

reduction) do not satisfy these conditions.

Push-forward distribution (formal definition)

Given a measurable function F : Z → X and a probability distribution Q on Z , the push-forward
distribution P = F#Q on X is defined by:

P(B) = Q(F−1(B)) for any measurable set B ⊆ X .

That is, P is the distribution of x = F(z) when z ∼ Q.
Summary: The push-forward framework generalizes change-of-variables to cases where F may not be
invertible or differentiable, but in those cases, we cannot write a simple density formula for p(x).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 42 / 82

DIVERGENCES
DEFINITION AND ESTIMATION TARGET

Divergence D(P∥Q). A non-negative functional with D(P∥Q) ≥ 0 and D(P∥Q) = 0 iff P = Q. Not
necessarily symmetric; no triangle inequality (not a distance).

Learning objective.
θ∗ = argmin

θ∈Θ
D
(
P ∥ P̂θ

)
.

Examples next: KL, Total Variation, Wasserstein.

Goal: Find θ by minimizing a divergence D
(
P ∥ P̂θ

)
or a surrogate (e.g., ELBO).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 43 / 82

DIVERGENCES
KULLBACK–LEIBLER (FORWARD KL)

For P≪ Q with densities p, q,

DKL(P∥Q) =

∫
p(x) log

p(x)
q(x)

dx = EX∼P
[
log p(X)− log q(X)

]
.

▶ Asymmetric; mode-covering when used as DKL(P∥Q) in many settings.
▶ MLE link: EP[log qθ(X)] = −DKL(P∥Qθ)−H(P).
▶ Requires q > 0 wherever p > 0 (absolute continuity).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 44 / 82

DIVERGENCES
TOTAL VARIATION (TV)

TV(P,Q) = sup
A⊆X
|P(A)−Q(A)| = 1

2

∫
|p(x)− q(x)| dx.

▶ Metric on probability measures; bounded in [0, 1].
▶ Interpretable as maximum test error gap over events.
▶ Hard to estimate directly in high dimension.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 45 / 82

DIVERGENCES
WASSERSTEIN (OPTIMAL TRANSPORT)

For cost c(x, y) = ∥x− y∥ and couplings Π(P,Q),

W1(P,Q) = inf
π∈Π(P,Q)

E(X,Y)∼π[∥X − Y∥].

▶ Sensitive to the geometry of X ; finite even with disjoint supports.
▶ Dual (Kantorovich–Rubinstein): W1 = sup∥f∥Lip≤1

(
EP[f]− EQ[f]

)
.

▶ Basis for WGAN objectives.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 46 / 82

DIVERGENCES
KL VS REVERSE KL

Forward KL DKL(P∥Q) tends to be mode-covering; Reverse KL DKL(Q∥P) tends to be mode-seeking.
▶ Forward KL penalizes missing mass where p > 0 and q ≈ 0 (heavy penalty).
▶ Reverse KL penalizes placing mass where q > 0 but p ≈ 0; may ignore small modes.
▶ Choice impacts behavior of trained models.

−10 −5 0 5 10

x

p(
x

) Target P

argmin DrKL(P‖P̂)

argmin DKL(P‖P̂)

argmin DTV(P‖P̂)

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 47 / 82

HOW TO COMPUTE A DIVERGENCE?
KL AND MAXIMUM LIKELIHOOD

From KL to log-likelihood (derivation).

DKL
(
P∥Qθ

)
=

∫
p(x) log

p(x)
qθ(x)

dx

= EX∼P
[
log p(X)− log qθ(X)

]
= EP[log p(X)]︸ ︷︷ ︸

−H(P)

− EP[log qθ(X)]

= −EP[log qθ(X)] − H(P).

Therefore,
EP[log qθ(X)] = −DKL

(
P∥Qθ

)
− H(P),

and since H(P) does not depend on θ,

θ∗ = argmax
θ

EP[log qθ(X)] ≡ argmin
θ

DKL
(
P∥Qθ

)
.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 48 / 82

HOW TO COMPUTE A DIVERGENCE?
LATENT VARIABLES AND LOW-DIMENSIONAL STRUCTURE

Idea. Introduce a latent space Z = Rk with k≪ d (data in Rd) to capture low-dimensional structure.
▶ Generative story: sample z ∼ q(z) (prior), then x ∼ pθ(x | z) (decoder/model).
▶ Inference: approximate the posterior with qϕ(z | x) (encoder) since pθ(z | x) is intractable.
▶ Benefits: compression, structure, disentanglement, controllable generation.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 49 / 82

HOW TO COMPUTE A DIVERGENCE?
DERIVING THE ELBO

Goal: maximize log pθ(x) where pθ(x) =
∫

pθ(x, z) dz.
For any distribution qϕ(z | x),

log pθ(x) = log

∫
qϕ(z | x)

pθ(x, z)
qϕ(z | x)

dz

≥
∫

qϕ(z | x) log
pθ(x, z)
qϕ(z | x)

dz

= Eqϕ(z|x)

[
log pθ(x, z)− log qϕ(z | x)

]
= Eqϕ(z|x)[log pθ(x | z) + log p(z)− log qϕ(z | x)]
= Eqϕ(z|x)[log pθ(x | z)]−DKL

(
qϕ(z | x)∥p(z)

)
Define the ELBO:

ELBO(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x | z)]−DKL
(
qϕ(z | x)∥p(z)

)
.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 50 / 82

HOW TO COMPUTE A DIVERGENCE?
APPROXIMATE MLE AND ELBO

ELBO in KL form.

ELBO(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x | z)] − DKL
(
qϕ(z | x) ∥ p(z)

)
.

And the exact evidence decomposes as

log pθ(x) ≥ ELBO(θ, ϕ; x) − DKL
(
qϕ(z | x) ∥ pθ(z | x)

)
,

so maximizing ELBO minimizes the posterior KL.

What to optimize:
▶ w.r.t. θ (decoder/model): increase the reconstruction term Eqϕ(z|x)[log pθ(x | z)]; use Monte Carlo

gradients with reparameterized z.
▶ w.r.t. ϕ (encoder/inference): tighten the bound by driving qϕ(z | x) toward pθ(z | x) (reducing the

posterior KL above), while also respecting the regularizer DKL(qϕ(z | x)∥p(z)).
▶ Training recipe: joint SGD on (θ, ϕ) with mini-batches and the reparameterization trick

z = µϕ(x) + σϕ(x)⊙ ε, ε ∼ N (0, I).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 51 / 82

FAMILIES OF GENERATIVE MODELS
VISUAL TAXONOMY

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 52 / 82

MODEL LANDSCAPE
AT A GLANCE

Model Density Sampling Training Latents Architecture Discussed

ARM Exact, fast Slow MLE None Sequential Here
Flows Exact, slow/fast Slow MLE Rd Invertible Here
EBM Approx, slow Slow MLE-A Optional Discriminative Here
VAE LB, fast Fast MLE-LB Rm Encoder–Decoder Here and TP1
GAN Jensen Approx Fast Min–max Rm Generator–Discriminator Session 2 and TP2
Diffusion LB Slow MLE-LB Rd Encoder–Decoder Session 3 and TP3

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 53 / 82

AUTOREGRESSIVE MODELS
LIKELIHOOD DECOMPOSITION

Chain rule factorization. For x = (x1, . . . , xd) and any fixed ordering,

pθ(x) =
d∏

i=1

pθ
(
xi | x<i

)
⇐⇒ log pθ(x) =

d∑
i=1

log pθ
(
xi | x<i

)
.

▶ The ordering (sequence order, raster scan for images, etc.) defines the conditional structure.
▶ Each factor is a simple conditional model (e.g., categorical over tokens/pixels, Gaussian for reals).
▶ Tractable likelihood: evaluation and gradients are exact.

x1 x2 · · · xn

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 54 / 82

AUTOREGRESSIVE MODELS
TRAINING OBJECTIVE

Maximum likelihood = sum of conditional cross-entropies.

max
θ

Ex∼P
[
log pθ(x)

]
= max

θ
Ex∼P

[d∑
i=1

log pθ(xi | x<i)
]
.

▶ Empirical objective: − 1
N
∑

n
∑

i log pθ
(
xn,i | xn,<i

)
.

▶ Teacher forcing: condition on true prefixes x<i during training.
▶ Implementation: causal masking (sequences), masked convolutions (images), parallel loss over

all positions.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 55 / 82

AUTOREGRESSIVE MODELS
GENERATION (ANCESTRAL SAMPLING)

Ancestral sampling: draw variables one-by-one following the factorization order.

Algorithm 6: Autoregressive ancestral sampling
Input: learned conditionals pθ(xi | x<i), dimension d
Output: sample x = (x1, . . . , xd)
for i← 1 to d do

Sample xi ∼ pθ(· | x<i)
end

Notes:
▶ Exact and simple; sequential cost O(d) (limited parallelism at inference).
▶ For discrete outputs (text, pixels): categorical sampling; for continuous: Gaussian or mixture.
▶ Temperature/top-k/nucleus (p) sampling often used for text (heuristics, not MLE).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 56 / 82

AUTOREGRESSIVE MODELS
LLMS AS AUTOREGRESSIVE NEXT-TOKEN PREDICTORS

Token sequence factorization. For tokens w1:T,

pθ(w1:T) =

T∏
t=1

pθ
(
wt | w<t

)
, log pθ(w1:T) =

T∑
t=1

log pθ(wt | w<t).

▶ Transformer decoder-only with causal mask models pθ(wt | w<t).
▶ Training: minimize cross-entropy to true next token (teacher forcing, parallel over positions).
▶ Tokenization: subword units (BPE/WordPiece) turn text into discrete tokens; softmax over vocab.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 57 / 82

AUTOREGRESSIVE MODELS
PIXELCNN / PIXELRNN

Image factorization. Raster-scan ordering over pixels (and optionally channels):

pθ(x) =
HW·C∏

i=1

pθ
(
xi | x<i

)
.

▶ Masked convolutions enforce causality (no access to future pixels).
▶ Receptive field grows with layers; PixelRNN uses recurrent structure.
▶ Discrete pixels: categorical over 256 bins or mixture of logistics (PixelCNN++).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 58 / 82

NORMALIZING FLOWS
OVERVIEW

A Normalizing Flow is usually seen as:
▶ a generative model,
▶ a bijective mapping,
▶ an invertible neural network,
▶ a density estimator.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 59 / 82

NORMALIZING FLOWS
MAPPING BETWEEN DISTRIBUTIONS — POINT TO POINT

Figure. A mapping between two probability distributions
Point to point

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 60 / 82

NORMALIZING FLOWS
MAPPING BETWEEN DISTRIBUTIONS — SUBSET TO SUBSET

Figure. A mapping between two probability distributions
Subset to subset

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 61 / 82

NORMALIZING FLOWS
MATHEMATICAL FRAMEWORK

Normalizing Flow

A Normalizing Flow is a bijective function between a data space X and a latent space Z , both subsets
of Rd.

F : X 7−→ Z
x 7−→ z = F(x)

Data and Latent Distributions
In theory, a NF maps a target distribution P (the data distribution) to a simple latent distribution Q.
Usually, Q is set to be a multivariate normal N (0, Id). p and q denote the densities of P and Q
respectively.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 62 / 82

NORMALIZING FLOWS
HOW DOES IT WORK?

In practice, the mapping is not perfect. P induces a distribution Q through F, and the latent distribution
Q induces P̂ through F−1, which is the learned distribution. The forward pass F is called the
normalizing direction while the inverse pass F−1 is called the generative direction.

Figure. 1D Normalizing Flow process.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 63 / 82

NORMALIZING FLOWS
CHANGE OF VARIABLES

Change of Variables Formula

For a bijective and continuous function F and a latent distribution Q, the distribution induced by Q
and F is defined by:

∀x ∈ X , p̂(x) =
∣∣ det JacF(x)

∣∣ q(F(x)). (1)

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 64 / 82

NORMALIZING FLOWS
CHANGE OF VARIABLES — VISUAL INTUITION

∀x ∈ X , p̂(x) =
∣∣ det JacF(x)

∣∣ q(F(x)).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 65 / 82

NORMALIZING FLOWS
CHANGE OF VARIABLES — VISUAL INTUITION

∀x ∈ X , p̂(x) =
∣∣ det JacF(x)

∣∣ q(F(x)).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 65 / 82

NORMALIZING FLOWS
CHANGE OF VARIABLES — VISUAL INTUITION

∀x ∈ X , p̂(x) =
∣∣ det JacF(x)

∣∣ q(F(x)).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 65 / 82

NORMALIZING FLOWS
CHANGE OF VARIABLES — VISUAL INTUITION

∀x ∈ X , p̂(x) =
∣∣ det JacF(x)

∣∣ q(F(x)).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 65 / 82

NORMALIZING FLOWS
CHANGE OF VARIABLES — VISUAL INTUITION

∀x ∈ X , p̂(x) =
∣∣ det JacF(x)

∣∣ q(F(x)).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 65 / 82

NORMALIZING FLOWS
DENSITY ESTIMATION

To perform density estimation:
1. Draw x ∼ P,
2. Compute F(x) and

∣∣det JacF(x)
∣∣,

3. Compute p̂(x) = q(F(x))
∣∣det JacF(x)

∣∣.

Figure. 1D Normalizing Flow process of density estimation.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 66 / 82

NORMALIZING FLOWS
DATA GENERATION

To perform data generation:
1. Draw z ∼ Q,
2. Compute x = F−1(z).

Figure. 1D Normalizing Flow process of generation.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 67 / 82

NORMALIZING FLOWS
LEARNING STEPS

Figure. Learning process for a 1D Normalizing Flow.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 68 / 82

ENERGY-BASED MODELS
PARTITION FUNCTION CHALLENGE

Definition. An Energy-Based Model (EBM) defines

pθ(x) =
exp(−Eθ(x))

Z(θ)
, Z(θ) =

∫
exp(−Eθ(x)) dx.

▶ Eθ(x) is an energy function (low energy = high probability).
▶ Z(θ) is the partition function ensuring normalization.
▶ Problem: computing Z(θ) is generally intractable (high-dimensional integral).

Takeaway: normalization constant is the main pain in EBMs.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 69 / 82

ENERGY-BASED MODELS
TRAINING — LOG-LIKELIHOOD AND GRADIENT

Log-likelihood for one sample x:

log pθ(x) = −Eθ(x)− logZ(θ), with Z(θ) =
∫

e−Eθ(u) du.

Gradient derivation:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZ(θ)

Compute ∇θ logZ(θ) explicitly:

Z(θ) =
∫

e−Eθ(u) du, ∇θZ(θ) =
∫

e−Eθ(u)
(
−∇θEθ(u)

)
du,

∇θ logZ(θ) =
1

Z(θ)
∇θZ(θ)

= −
∫

e−Eθ(u)

Z(θ)
∇θEθ(u) du

= −Eu∼pθ
[
∇θEθ(u)

]
.

Substitute back:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZ(θ) = −∇θEθ(x) + Eu∼pθ
[
∇θEθ(u)

]
.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 70 / 82

ENERGY-BASED MODELS
TRAINING — PRACTICAL GRADIENT STEP

Empirical objective (dataset {xn}):

∇θ
1
N

N∑
n=1

log pθ(xn) = −
1
N

N∑
n=1

∇θEθ(xn) + Eu∼pθ
[
∇θEθ(u)

]
.

Gradient step (schematic):

θ ← θ − η
(
− 1

N

∑
n

∇θEθ(xn) + Eu∼pθ [∇θEθ(u)]
)
.

▶ Pull down energy on data (first term), push up on model samples (second term).
▶ Trade-offs: bias vs. mixing time; stability tricks (noise scale, step size, gradient clipping, spectral

norm).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 71 / 82

ENERGY-BASED MODELS
SAMPLING

Goal: generate x ∼ pθ(x) ∝ e−Eθ(x).
▶ Direct sampling is impossible (requires Z(θ)).
▶ Use MCMC methods (e.g., Langevin dynamics, Hamiltonian Monte Carlo).
▶ Iteratively update x← x− η∇xEθ(x) +

√
2η ξ, ξ ∼ N (0, I).

▶ Paths follow the energy landscape toward low-energy regions (data modes).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 72 / 82

AUTOENCODER
BASIC ARCHITECTURE AND OBJECTIVE

Architecture:
▶ Encoder: maps input x to a low-dimensional latent representation z = fϕ(x).
▶ Decoder: reconstructs input from latent z, i.e., x̂ = gθ(z).
▶ The model is trained end-to-end to minimize the difference between x and x̂.

Objective:
min
θ,ϕ

Ex∼Pdata [ℓ(x, gθ(fϕ(x)))]

where ℓ is typically mean squared error: ℓ(x, x̂) = ∥x− x̂∥2. Limitations for generative modeling:

▶ No explicit generative process for sampling new data from the latent space.
▶ Latent space may not follow a known distribution—sampling z at random often yields unrealistic

outputs.
▶ Not a true probabilistic model; lacks explicit likelihood or regularization of latent space.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 73 / 82

AUTOENCODER
ILLUSTRATION AND EXAMPLE

Architecture:
▶ Input: x (e.g., image, signal)
▶ Encoder: compresses x to latent z
▶ Decoder: reconstructs x̂ from z

Applications:
▶ Dimensionality reduction, denoising,

anomaly detection, feature learning
▶ Not directly suited for generating novel

samples

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 74 / 82

VARIATIONAL AUTOENCODER
INTUITION BEHIND VAE

Key ideas:
▶ Probabilistic encoder: Instead of mapping x→ z deterministically, encode x as a distribution over

latent variables: qϕ(z|x) (e.g., Gaussian with mean and variance predicted by encoder).
▶ Probabilistic decoder: Model pθ(x|z), i.e., generate x from latent z.
▶ Latent variable modeling: Place a prior p(z) (usually standard normal) on the latent space to

encourage structure and enable sampling.
▶ Regularization: Use KL divergence DKL(qϕ(z|x)∥p(z)) to encourage qϕ(z|x) to be close to the

prior, making the latent space well-behaved and suitable for generative sampling.
Summary: VAE is a probabilistic autoencoder that learns both to reconstruct data and to regularize
the latent space for generative use.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 75 / 82

VARIATIONAL AUTOENCODER
EVIDENCE LOWER BOUND (ELBO)

Objective: Evidence Lower Bound (ELBO)

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z))

▶ First term: Expected log-likelihood (reconstruction accuracy)
▶ Second term: KL divergence between encoder distribution and prior (regularization)

Relation to MLE: Maximizing ELBO approximates maximizing the marginal likelihood pθ(x) (i.e.,
maximum likelihood estimation for latent variable models).

Training strategy:
▶ Optimize the ELBO jointly with respect to encoder (ϕ) and decoder (θ) parameters.
▶ Use stochastic gradient descent with the reparameterization trick to backpropagate through

stochastic nodes.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 76 / 82

VARIATIONAL AUTOENCODER
REPARAMETERIZATION TRICK

Intuition:
▶ Allows gradients to flow through random sampling by expressing sampling as a deterministic

function of parameters and noise.
▶ Enables efficient and low-variance gradient estimation for stochastic variables.

Mathematical formulation:
▶ For qϕ(z|x) = N (z;µϕ(x), σϕ(x)2),
▶ Sample z as:

z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I)
▶ Now, z is a deterministic function of x, ϕ, and random noise ϵ.

Benefits:
▶ Enables backpropagation through stochastic sampling.
▶ Crucial for training VAEs with gradient-based methods.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 77 / 82

VARIATIONAL AUTOENCODER
LOSS

VAE Loss Function:

LVAE(x) = Eqϕ(z|x)[− log pθ(x|z)]︸ ︷︷ ︸
Reconstruction loss

+ DKL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
KL divergence (regularization)

▶ Reconstruction loss: Measures how well the decoder can reconstruct the input from the latent
code.

▶ KL divergence: Encourages the approximate posterior qϕ(z|x) to match the prior p(z) (e.g.,
standard normal), regularizing the latent space.

▶ Trade-off: Balances data fidelity (reconstruction) and latent space regularity (generative quality).
Too much weight on KL: blurry reconstructions; too little: latent space collapse.

Typical formula:

LVAE(x) =
1
2

∑
j

(
σ2

j (x) + µj(x)2 − 1− log σ2
j (x)

)
+ Reconstruction loss

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 78 / 82

VARIATIONAL AUTOENCODER
LOSS

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 79 / 82

VARIANTS OF VAE
EXTENSIONS AND IMPROVEMENTS

Key VAE Variants:
▶ Conditional VAE (CVAE): Conditions both encoder and decoder on auxiliary information (e.g.,

labels, attributes) to enable conditional generation [5].
▶ β-VAE: Introduces a hyperparameter β to scale the KL term, encouraging disentangled latent

representations [2].
▶ Other notable extensions:

• VampPrior: Learnable mixture prior for more flexible latent space.
• Vector Quantized VAE (VQ-VAE) [4]: Discrete latent variables via vector quantization.
• Hierarchical VAE: Multiple layers of latent variables.
• FactorVAE, InfoVAE, WAE (Wasserstein Autoencoder), etc.

References:
▶ Original VAE paper: [3]
▶ Conditional VAE: [5]
▶ β-VAE : [2]
▶ VQ-VAE: [4]

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 80 / 82

VQ-VAE (VAN DEN OORD ET AL., 2017)
VECTOR QUANTIZED VAE

Key ideas:
▶ Introduces discrete latent representations via vector quantization—the encoder outputs are

mapped to the nearest entry in a learned codebook.
▶ The decoder reconstructs x from the quantized latent code.
▶ Enables modeling of discrete structure in data (e.g., language, audio, images).
▶ Discrete latents are particularly beneficial for combining VAEs with powerful generative models

(such as PixelCNN or Transformers) in the latent space.
▶ Facilitates improved sample quality and more interpretable representations.

Benefits:
▶ Enables use of GAN-like or autoregressive models in discrete latent space.
▶ Improved performance on high-fidelity image and audio generation tasks.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 81 / 82

REFERENCES I

[1] Kate Bibbings, Peter J. Harding, Ian D. Loram, Nicholas Combes, and Emma F. Hodson-Tole.
Foreground Detection Analysis of Ultrasound Image Sequences Identifies Markers of Motor
Neurone Disease across Diagnostically Relevant Skeletal Muscles. Ultrasound in Medicine &
Biology, 45(5):1164–1175, May 2019. ISSN 1879-291X. doi: 10.1016/j.ultrasmedbio.2019.01.018.

[2] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: LEARNING BASIC VISUAL CONCEPTS
WITH A CONSTRAINED VARIATIONAL FRAMEWORK. 2017.

[3] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2022. URL
http://arxiv.org/abs/1312.6114. arXiv:1312.6114 [cs, stat].

[4] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete Representation
Learning, May 2018. URL http://arxiv.org/abs/1711.00937. arXiv:1711.00937 [cs].

[5] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output Representation using
Deep Conditional Generative Models. In Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://papers.nips.cc/paper_files/
paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 82 / 82

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1711.00937
https://papers.nips.cc/paper_files/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html

	Introduction to Generative Models
	What is sampling?
	Definition
	Random and Pseudo-random sampling
	From uniform to Gaussian / Gaussian mixtures

	Generative Models
	Definition
	Implicit vs Explicit Models
	Divergences
	Examples of Generative Models

	Types of Generative Models
	Autoregressive Models
	Normalizing Flows
	Energy-Based Models

	From an Autoencoder to a Generative Model
	Autoencoder
	Variational Autoencoder
	Variants of VAE

	References

	anm2:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

