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WHO AM I?

▶ Alexandre Vérine
▶ Research Fellow, ENS-PSL
▶ Université PSL
▶ Previously: PhD student at Dauphine (2021-2024)
▶ Research interests: generative models, evaluation methods, quality diversity trade-off
▶ All my slides and code are available on www.alexverine.com
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ABOUT THIS COURSE

Outline of the course:
▶ Lecture 1 (22/09, 9h–12h15): From sampling to the first generative model
▶ Practical 1 (29/09, 9h–12h15): Building and training a VAE
▶ Lecture 2 (03/11, 9h–12h15): GANs (from the first GAN to f-GAN, WGAN, discriminator

rejection sampling)
▶ Practical 2 (08/12, 9h–12h15): Training a GAN
▶ Lecture 3 (15/12, 9h–12h15): Diffusion Models (DDPM to EDM, score-based and classifier

guidance)
▶ Practical 3 (26/01, 9h–12h15): Comparing ODE and SDE in small dimensions
▶ Lecture 4 (02/02, 9h–12h15): Evaluating generative models (IS, Precision and Recall) + Project

presentation
▶ Last session (10/02, 9h–12h15): Student Presentations
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ABOUT THIS COURSE

Project Presentation:
▶ Depending on the number of students, you will have to work in pairs or groups of 3.
▶ Same model architecture for all groups.
▶ Each group will have to choose a paper for training, regularizing, sampling the model.
▶ Each project will be tested every morning for a month.
▶ Final presentation on the last session (10/02/2024). Depending on the number of students, each

group will have 5 to 7 minutes to present their work.
▶ Report to be handed the day before the project at 23:59.
▶ Report will be graded on the clarity of the presentation, the quality of the writing, the quality of

the intuition behind experiments but not the results.
▶ Grade: 40% presentation, 60% report.
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Part I

INTRODUCTION TO GENERATIVE MODELS

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 5 / 82



WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:
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WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How do we ensure resemblance to real images?
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WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How to cover the diversity of the dataset?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82



WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How to cover the diversity of the dataset?

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 6 / 82



WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

What about likelihood and novelty?
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WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:

How to incorporate stochasticity in generation?
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OBJECTIVE OF SAMPLING IMAGES

Images distributed under a given distribution P:
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WHAT IS SAMPLING?
OBJECTIVE OF SAMPLING IMAGES

Constraints for sampling:
▶ Resemblance: Generated images should look like real ones.
▶ Coverage: Samples should represent the full data distribution.
▶ Likelihood: Samples should have high probability under the model.
▶ Novelty: Samples should not simply replicate training data.
▶ Stochasticity: Sampling should reflect inherent randomness.
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WHAT IS SAMPLING?
WHY SAMPLING MATTERS

Definition:
Let P be a distribution on the sample space X . The goal is to sample points under the distribution p(x).
Often, we consider conditional distributions p(x|y) where y is some conditioning variable.

▶ Image generation : e.g., sampling new human faces (FFHQ, CelebA).
▶ Text generation : e.g., language models generating sentences.
▶ Image-to-image translation : e.g., translating day-to-night photos.
▶ Image-to-text generation : e.g., automatic image captioning.
▶ Text-to-image synthesis : e.g., generating images from text prompts.
▶ Text-to-text generation : e.g., machine translation.
▶ Speech-to-text transcription : e.g., transcribing audio to subtitles.
▶ Many other conditional generative tasks...
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WHAT IS SAMPLING?
EXAMPLES: IMAGES-TO-IMAGES COLORIZATION

Example: Image Colorization

Original Image Grayscale Image Colorized Image

Task: Given a grayscale image, sample a plausible colorized version.
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WHAT IS SAMPLING?
EXAMPLES: IMAGES-TO-IMAGES INPAINTING

Example: Image Inpainting

Original Image Masked Image Filled Image

Task: Given an image with missing regions, sample a plausible completion.
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WHAT IS SAMPLING?
EXAMPLES: IMAGES-TO-IMAGES UNCROPPING

Example: Image Uncropping

Original Image Cropped Image Filled Image

Task: Given an image with missing regions, sample a plausible completion.
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WHAT IS SAMPLING?
EXAMPLES: IMAGES-TO-IMAGES JPEG ARTIFACT REMOVAL

Example: Image JPEG Artifact Removal

Original Image JPEG Compressed Image Restored Image

Task: Given a JPEG compressed image, sample a high-quality restoration.
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WHAT IS SAMPLING?
EXAMPLES: TEXT-TO-IMAGE SYNTHESIS

Example: Text-to-Image Synthesis

Task: Given a text description, sample a corresponding image.
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WHAT IS SAMPLING?
EXAMPLES: TEXT-TO-TEXT TRANSLATION

Example: Text-to-Text Translation

Input (English): Output (French):
A scenic view of a mountain during sunset. Une vue pittoresque d’une montagne au

coucher du soleil.
A bustling city street at night. Une rue animée de la ville la nuit.
A serene beach with palm trees. Une plage sereine avec des palmiers.

Task: Given a English text description, sample a French translation.
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WHAT IS SAMPLING?
EXAMPLES: TEXT-TO-TEXT MATH PROBLEM SOLVING

Example: Text-to-Text Math Problem Solving

Input (Problem): Output (Solution):
If a car travels at 60 mph for 2 hours, how far
does it go?

The car travels 120 miles.

What is the derivative of x2 + 3x + 2? The derivative is 2x + 3.
Solve for x: 2x + 5 = 15. The solution is x = 5.

Task: Given a text description, sample a corresponding solutions.
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WHAT IS SAMPLING?
HOW DO WE ACTUALLY GENERATE AN IMAGE?

Prompt:
"A cute sloth holding a small treasure chest.
A bright golden glow is coming from the chest."

?

How should we generate something random corresponding to this?
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Prompt:
"A cute sloth holding a small treasure chest.
A bright golden glow is coming from the chest."

?

How should we generate something random corresponding to this?

It’s very complex.
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FROM COMPLEX TO SIMPLE
SIMPLIFYING THE PROBLEM

Prompt:
"A grey pixel"

?

The simplest generation we can do: how can we do this?
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FROM COMPLEX TO SIMPLE
SIMPLIFYING THE PROBLEM

Prompt:
"A grey pixel"

?

The simplest generation we can do: how can we do this?

Even this is not trivial!
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RANDOM VS PSEUDO-RANDOM SAMPLING
DEFINITIONS AND DIFFERENCES

Random (true randomness). Numbers generated from nondeterministic physical processes.
▶ Examples: quantum effects (photon arrival, electron tunneling), radioactive decay, thermal/shot

noise.
▶ Properties: unpredictable, not reproducible from a finite state; entropy comes from physics.
▶ Uses: cryptography key generation, lotteries, high-stakes simulations.

Pseudo-random (PRNG). Numbers generated by deterministic algorithms.
▶ Defined by a recurrence/state update; reproducible given a seed.
▶ Aim for long period, good statistical tests, fast generation; not inherently cryptographically

secure.
▶ Uses: ML training, Monte Carlo, graphics, games; seeding controls reproducibility.
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RANDOM AND PSEUDO-RANDOM SAMPLING
SOURCES AND ALGORITHMS

True random sources (hardware/physical):
▶ Quantum RNGs (beam-splitter photon paths, vacuum fluctuations), radioactive decay counters.
▶ Electronic noise (thermal/Johnson–Nyquist, avalanche diode shot noise).
▶ External entropy (network jitter, disk timings) — lower quality, needs whitening.

Popular PRNG algorithms (software):
▶ Linear Congruential Generators (LCG), Xorshift / xoroshiro, PCG (permuted congruential

generator).
▶ Mersenne Twister (MT19937): long period, equidistribution; standard in many libraries.
▶ Cryptographic PRNGs (ChaCha20-CTR, AES-CTR-DRBG) for security-sensitive use.
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PSEUDO-RANDOM GENERATION
LINEAR CONGRUENTIAL GENERATOR (LCG)

Statement. We can generate uniform pseudo-random numbers efficiently with a simple PRNG (e.g.,
LCG) using a seed for reproducibility.
Algorithm 1: LCG (one-step)
Input: m, a, c,X0
Output: Ut ∈ (0, 1)
Xt+1 ← (aXt + c) mod m;
Ut+1 ← Xt+1/m
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FROM UNIFORM TO MORE COMPLEX?
A NATURAL QUESTION

▶ OK, we can sample uniform variables quickly.
▶ What about more complex distributions? e.g., a Gaussian or a Gaussian mixture.
▶ Idea: transform uniforms into the target distribution. (Next: Box–Muller, Inverse CDF)

U ∼ Unif(0, 1) Box–Muller
=⇒ Z ∼ N (0, 1)
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SAMPLING TRANSFORMATIONS
BOX–MULLER (UNIFORM→ GAUSSIAN)

Idea: map two i.i.d. uniforms (U1,U2) to two i.i.d.
Gaussians (Z1,Z2).
▶ Polar transform: R =

√
−2 lnU1, Θ = 2πU2; then

Z1 = R cosΘ, Z2 = R sinΘ.
▶ Produces pairs of normals; efficient reuse in vectorized

code.
▶ Alternative: Marsaglia polar method avoids costly trig

with rejection.

Algorithm 2: Box–Muller
Output: Z1,Z2 ∼ N (0, 1) i.i.d.
Draw U1,U2 ∼ Unif(0, 1) i.i.d.
R←

√
−2 logU1

Θ← 2πU2
Z1 ← R cosΘ; Z2 ← R sinΘ
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INVERSE CDF
A.K.A. INVERSE TRANSFORM SAMPLING

▶ If U ∼ Unif(0, 1) and F is a CDF, then X = F−1(U)
has CDF F.

▶ Requires F to be strictly increasing / invertible;
otherwise use generalized inverse.

▶ In practice: precompute/discretize F, interpolate
F−1, or use spline/numerical root-finding.
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INVERSE CDF
A.K.A. INVERSE TRANSFORM SAMPLING

▶ If U ∼ Unif(0, 1) and F is a CDF, then X = F−1(U)
has CDF F.

▶ Requires F to be strictly increasing / invertible;
otherwise use generalized inverse.

▶ In practice: precompute/discretize F, interpolate
F−1, or use spline/numerical root-finding.

Question: What is the issue with this method in high dimensions?
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HIGH DIMENSIONAL SAMPLING
WHEN IS IT (RELATIVELY) EASY?

Fact: Sampling in high dimensions is generally hard, even if we know p(x1, . . . , xN).
Special cases where it becomes easy(er):
▶ Independence: p(x1, . . . , xN) =

∏N
i=1 pi(xi) — sample each coordinate independently.

▶ Markov (autoregressive) chain: p(x1:N) = p(x1)
∏N

i=2 p(xi | xi−1) — ancestral sampling along the
chain.

▶ Tree-structured Bayesian networks: order variables topologically and sample parents→
children.
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FROM UNIVARIATE TO MULTIVARIATE GAUSSIAN
DENSITIES AND PARAMETERS

Univariate (1D) Gaussian. For mean µ ∈ R and standard
deviation σ > 0,

X ∼ N (µ, σ2), p(x) =
1√

2π σ
exp

(
− (x− µ)2

2σ2

)
.

Parameters:
▶ µ (location): shifts the center of mass of the density.
▶ σ (scale): controls spread (variance σ2).

Multivariate (dD) Gaussian. For mean µ ∈ Rd and covariance
Σ ∈ Rd×d (symmetric PD),

X ∼ N (µ,Σ), p(x) =
1

(2π)d/2 |Σ|1/2 exp
(
−1

2(x−µ)
⊤Σ−1(x−µ)

)
.

Parameters:
▶ µ (location vector): shifts the center in Rd.
▶ Σ (covariance): encodes scale/shape/orientation; Σ ≻ 0.

Elliptical contours illustrating Σ in Rd.
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FROM UNIVARIATE TO MULTIVARIATE GAUSSIAN
COVARIANCE TYPES

Special cases.
▶ Isotropic: Σ = σ2I⇒ spherical contours.
▶ Diagonal: Σ = diag(σ2

1, . . . , σ
2
d)⇒

independent coordinates.

Elliptical contours illustrating Σ in Rd.
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FROM N (0, I) TO N (µ,Σ)
CHOLESKY FACTORIZATION AND SAMPLING

Cholesky factorization. For a symmetric positive-definite Σ,
there exists a unique lower-triangular L with positive
diagonal such that Σ = LL⊤.

Sampling recipe.
1. Draw z ∼ N (0, Id) (independent standard normals).
2. Compute L such that LL⊤ = Σ (Cholesky).
3. Set x← µ+ Lz ⇒ then x ∼ N (µ,Σ).

Why it works. E[z] = 0, Cov(z) = I and
Cov(Lz) = LIL⊤ = Σ.

Map unit sphere (standard normal) to
ellipse via L, then translate by µ.
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GAUSSIAN MIXTURES
DEFINITION AND INTUITION

Motivation. To increase the model complexity beyond a single Gaussian, we can mix several
Gaussians; this yields a flexible, multi-modal density.
Definition. A Gaussian Mixture Model (GMM) with K components on Rd is

p(x) =
K∑

k=1

πkN
(
x | µk,Σk

)
, πk ≥ 0,

∑
k

πk = 1.

Parameters: weights {πk}, means {µk}, covariances {Σk}.
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GAUSSIAN MIXTURES
WHY GAUSSIAN MIXTURES?

▶ Expressivity: universal approximator of smooth densities as K increases.

Example from [1]:

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 29 / 82



GAUSSIAN MIXTURES
SAMPLING FROM MIXTURE MODELS

Goal: draw X ∼ p(x) =
∑

k πkN (x | µk,Σk).
Algorithm 3: Sampling from a GMM
Input: weights {πk}, means {µk}, covariances {Σk}
Output: X ∈ Rd

Draw component index K ∼ Categorical(π1, . . . , πK)
Draw X ∼ N (µK,ΣK) (e.g., via Box–Muller/Cholesky)

Notes:
▶ Use prefix-sum table for the categorical draw; vectorize for batches.
▶ For ΣK: diagonal for speed; Cholesky factor L with LL⊤ = ΣK for full-cov.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 30 / 82



TRAINING GAUSSIAN MIXTURES
MAXIMUM LIKELIHOOD — PRINCIPLE

Hypothesis: we observe i.i.d. data x1, . . . , xN ∼ P and posit a parametric model pθ(x) (here, a GMM).
▶ Population objective:

θ∗ = argmax
θ

EX∼P
[
log pθ(X)

]
▶ Empirical log-likelihood (practice):

θ̂ = argmax
θ

1
N

N∑
n=1

log pθ(xn) = argmax
θ

log

N∏
n=1

pθ(xn).

▶ Why the log? Turns products into sums; numerically stable.

Notes: LLN links empirical and population objectives; for GMMs, regularize Σk with a small ϵ I to
avoid degeneracy.
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TRAINING GAUSSIAN MIXTURES
MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Objective (given data {xn}N
n=1):

L(Θ) =

N∑
n=1

log
( K∑

k=1

πkN (xn | µk,Σk)
)
=

N∑
n=1

LSEk

(
log πk + logN (xn | µk,Σk)

)
︸ ︷︷ ︸

log-sum-exp

.

where LSE(z1, . . . , zK) := log
∑K

k=1 ezk .
▶ Constraints: π ∈ ∆K−1 (simplex), Σk ≻ 0 (PD).
▶ Numerics: compute with the log-sum-exp trick (subtract maxk) for stability.
▶ EM connection: LSE is a smooth max; E-step computes responsibilities as a softmax:

γnk = softmaxk

(
log πk + logN (xn | µk,Σk)

)
.
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TRAINING GAUSSIAN MIXTURES
GRADIENT DESCENT APPROACH

Parameterization for constraints:
▶ Weights: raw logits wk with πk = softmax(w)k.
▶ Covariance: diagonal with σ2

k,j = exp(αk,j); or full-cov via Cholesky Σk = LkL⊤
k .

Stabilization:
▶ Compute log

∑
k via log-sum-exp; clip α; add ϵI to Σk.

▶ Mini-batch SGD/Adam; early stopping; multiple restarts.
Pseudocode (one step):

Algorithm 4: GD step for GMM MLE
Input: minibatch {xb}, current Θ
Compute ℓb = log

∑
k πkN (xb | µk,Σk) for all b (log-sum-exp)

J ← − 1
|B|

∑
b ℓb

// negative log-likelihood
Backprop to get∇ΘJ; update Θ← Θ− η∇ΘJ (Adam)

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 33 / 82



TRAINING GAUSSIAN MIXTURES
EM ALGORITHM — INTUITION

From LSE to EM. Using the LSE view, the softmax acts like a soft argmax: in the E-step we softly pick
the near-maximum component; in the M-step we optimize parameters using those soft weights
(points near the max matter more).

γnk = softmaxk

(
log πk + logN (xn | µk,Σk)

)
.

Latent variables: introduce znk ∈ {0, 1} (one-hot) with P(znk = 1) = πk.
▶ E-step: responsibilities γnk = P(znk = 1 | xn,Θ

(t)) (soft assignments).
▶ M-step: maximize the expected complete-data log-likelihood

Q(Θ,Θ(t)) =
∑
n,k

γnk

[
log πk + logN (xn | µk,Σk)

]
.

▶ Guarantees: each EM iteration non-decreasing in data log-likelihood; converges to a stationary
point.

When to prefer EM vs GD: closed-form M-steps (fast, stable) vs flexible constraints/priors with GD.
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TRAINING GAUSSIAN MIXTURES
EXPECTATION-MAXIMIZATION (EM) ALGORITHM (PSEUDO-CODE)

Algorithm 5: EM for Gaussian Mixture Models

Input: data {xn}N
n=1, number of components K

Output: parameters {πk, µk,Σk}K
k=1

Initialize πk, µk,Σk (e.g., k-means)
repeat

// E-step: responsibilities
for n = 1 to N do

for k = 1 to K do
rnk ← πkN (xn | µk,Σk)

end
γnk ← rnk/

∑K
j=1 rnj

end
// M-step: parameter updates

Nk ←
∑N

n=1 γnk for k = 1, . . . ,K
πk ← Nk/N
µk ← 1

Nk

∑N
n=1 γnkxn

Σk ← 1
Nk

∑N
n=1 γnk(xn − µk)(xn − µk)

⊤ + ϵ I
until convergence
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GAUSSIAN MIXTURES
EXAMPLE

Fitting a GMM to 1D data points. In blue the density, in orange the histogram of data points.
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GAUSSIAN MIXTURES
EXAMPLE

Fitting a GMM to 1D data points. K = 1.
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GAUSSIAN MIXTURES
EXAMPLE

Fitting a GMM to 1D data points. K = 5.
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GAUSSIAN MIXTURES
EXAMPLE

Fitting a GMM to 1D data points. K = 150.
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GAUSSIAN MIXTURES
IN TERMS OF GENERATIVE MODELS

▶ Resemblance: If the modes are on the data, samples will look realistic.
▶ Coverage: More components→ better coverage of data distribution.
▶ Likelihood: GMMs provide explicit likelihoods for samples.
▶ Novelty: If not overfitting, samples can be novel.
▶ Stochasticity: Inherent randomness from component and Gaussian sampling.
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IN TERMS OF GENERATIVE MODELS

▶ Resemblance: If the modes are on the data, samples will look realistic.
▶ Coverage: More components→ better coverage of data distribution.
▶ Likelihood: GMMs provide explicit likelihoods for samples.
▶ Novelty: If not overfitting, samples can be novel.
▶ Stochasticity: Inherent randomness from component and Gaussian sampling.

The GMM is a simple generative model! However, it has limitations in high dimensions and complex
data (e.g., images).
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GENERATIVE MODELS
TARGET DISTRIBUTION P AND MODEL P̂θ

Goal. Approximate the (unknown) data distribution P on X with a model family {P̂θ : θ ∈ Θ}.

Definition. A generative model is a probability distribution P̂θ over X , parameterized by θ, together
with a sampling procedure x ∼ P̂θ.

Types of generative models.
▶ Explicit models: provide a tractable density p̂θ(x) (e.g., GMMs, autoregressive, flows).
▶ Implicit models: define only a sampler x = Tθ(ε) with ε ∼ p(ε) (e.g., GANs, simulators).
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IMPLICIT VS EXPLICIT MODELS
DEFINITIONS

Explicit (likelihood-based).
▶ Provide tractable density p̂θ(x) (or exact likelihood via change of variables).
▶ Examples: autoregressive (exact), flows (exact via Jacobian), GMMs (explicit), diffusion (via

surrogate bounds).

What do explicit likelihood-based models allow us to do?
▶ Out-of-distribution (OOD) detection: Compute likelihoods for new samples; flag samples with low

likelihood as OOD or anomalous.
▶ Uncertainty quantification: Assign probabilities to possible outcomes, enabling principled ways to

measure uncertainty.
▶ Anomaly detection: Identify rare or unexpected events by their low likelihood under the model.
▶ Model comparison: Compare different generative models quantitatively using likelihoods or

information criteria.
▶ Principled training: Enable maximum likelihood estimation and evaluation on held-out data.
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IMPLICIT VS EXPLICIT MODELS
CHANGE OF VARIABLES FORMULA

Change of variables formula for densities:

Suppose F : X → Z is an invertible and differentiable function between open subsets of Rd. Let q(z) be a
density on Z . Then the induced density on X is:

p(x) = q(F(x)) · |det JacF(x)|

where JacF(x) is the Jacobian matrix of F at x.
Conditions:
▶ F must be invertible (bijection) and differentiable, with differentiable inverse.
▶ The determinant of the Jacobian must be nonzero everywhere in the domain.
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IMPLICIT VS EXPLICIT MODELS
CHANGE OF VARIABLES FORMULA

Illustration of the change-of-variables formula:
mapping a simple distribution (e.g., gaussian) through
a deterministic function F to obtain a more complex
distribution.

Illustration of the change-of-variables formula:
mapping a simple distribution (e.g., gaussian) through
a stochastic function to obtain a more complex
distribution.
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IMPLICIT VS EXPLICIT MODELS
PUSH-FORWARD AND LIMITATIONS OF CHANGE OF VARIABLES

Invertibility and Differentiability: Not always possible

Most functions F from X to Z are not invertible and differentiable everywhere, especially when
mapping between spaces of different dimensions or when F is not one-to-one.
▶ The change-of-variables formula applies only when F is a bijection between open subsets of Rd

and both F and F−1 are differentiable.
▶ In practice, many interesting mappings (e.g., neural networks with bottlenecks, dimensionality

reduction) do not satisfy these conditions.

Push-forward distribution (formal definition)

Given a measurable function F : Z → X and a probability distribution Q on Z , the push-forward
distribution P = F#Q on X is defined by:

P(B) = Q(F−1(B)) for any measurable set B ⊆ X .

That is, P is the distribution of x = F(z) when z ∼ Q.
Summary: The push-forward framework generalizes change-of-variables to cases where F may not be
invertible or differentiable, but in those cases, we cannot write a simple density formula for p(x).
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DIVERGENCES
DEFINITION AND ESTIMATION TARGET

Divergence D(P∥Q). A non-negative functional with D(P∥Q) ≥ 0 and D(P∥Q) = 0 iff P = Q. Not
necessarily symmetric; no triangle inequality (not a distance).

Learning objective.
θ∗ = argmin

θ∈Θ
D
(
P ∥ P̂θ

)
.

Examples next: KL, Total Variation, Wasserstein.

Goal: Find θ by minimizing a divergence D
(
P ∥ P̂θ

)
or a surrogate (e.g., ELBO).

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 43 / 82



DIVERGENCES
KULLBACK–LEIBLER (FORWARD KL)

For P≪ Q with densities p, q,

DKL(P∥Q) =

∫
p(x) log

p(x)
q(x)

dx = EX∼P
[
log p(X)− log q(X)

]
.

▶ Asymmetric; mode-covering when used as DKL(P∥Q) in many settings.
▶ MLE link: EP[log qθ(X)] = −DKL(P∥Qθ)−H(P).
▶ Requires q > 0 wherever p > 0 (absolute continuity).
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DIVERGENCES
TOTAL VARIATION (TV)

TV(P,Q) = sup
A⊆X
|P(A)−Q(A)| = 1

2

∫
|p(x)− q(x)| dx.

▶ Metric on probability measures; bounded in [0, 1].
▶ Interpretable as maximum test error gap over events.
▶ Hard to estimate directly in high dimension.
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DIVERGENCES
WASSERSTEIN (OPTIMAL TRANSPORT)

For cost c(x, y) = ∥x− y∥ and couplings Π(P,Q),

W1(P,Q) = inf
π∈Π(P,Q)

E(X,Y)∼π[∥X − Y∥].

▶ Sensitive to the geometry of X ; finite even with disjoint supports.
▶ Dual (Kantorovich–Rubinstein): W1 = sup∥f∥Lip≤1

(
EP[f ]− EQ[f ]

)
.

▶ Basis for WGAN objectives.
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DIVERGENCES
KL VS REVERSE KL

Forward KL DKL(P∥Q) tends to be mode-covering; Reverse KL DKL(Q∥P) tends to be mode-seeking.
▶ Forward KL penalizes missing mass where p > 0 and q ≈ 0 (heavy penalty).
▶ Reverse KL penalizes placing mass where q > 0 but p ≈ 0; may ignore small modes.
▶ Choice impacts behavior of trained models.

−10 −5 0 5 10

x

p(
x

) Target P

argmin DrKL(P‖P̂ )

argmin DKL(P‖P̂ )

argmin DTV(P‖P̂ )
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HOW TO COMPUTE A DIVERGENCE?
KL AND MAXIMUM LIKELIHOOD

From KL to log-likelihood (derivation).

DKL
(
P∥Qθ

)
=

∫
p(x) log

p(x)
qθ(x)

dx

= EX∼P
[
log p(X)− log qθ(X)

]
= EP[log p(X)]︸ ︷︷ ︸

−H(P)

− EP[log qθ(X)]

= −EP[log qθ(X)] − H(P).

Therefore,
EP[log qθ(X)] = −DKL

(
P∥Qθ

)
− H(P),

and since H(P) does not depend on θ,

θ∗ = argmax
θ

EP[log qθ(X)] ≡ argmin
θ

DKL
(
P∥Qθ

)
.
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HOW TO COMPUTE A DIVERGENCE?
LATENT VARIABLES AND LOW-DIMENSIONAL STRUCTURE

Idea. Introduce a latent space Z = Rk with k≪ d (data in Rd) to capture low-dimensional structure.
▶ Generative story: sample z ∼ q(z) (prior), then x ∼ pθ(x | z) (decoder/model).
▶ Inference: approximate the posterior with qϕ(z | x) (encoder) since pθ(z | x) is intractable.
▶ Benefits: compression, structure, disentanglement, controllable generation.
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HOW TO COMPUTE A DIVERGENCE?
DERIVING THE ELBO

Goal: maximize log pθ(x) where pθ(x) =
∫

pθ(x, z) dz.
For any distribution qϕ(z | x),

log pθ(x) = log

∫
qϕ(z | x)

pθ(x, z)
qϕ(z | x)

dz

≥
∫

qϕ(z | x) log
pθ(x, z)
qϕ(z | x)

dz

= Eqϕ(z|x)

[
log pθ(x, z)− log qϕ(z | x)

]
= Eqϕ(z|x)[log pθ(x | z) + log p(z)− log qϕ(z | x)]
= Eqϕ(z|x)[log pθ(x | z)]−DKL

(
qϕ(z | x)∥p(z)

)
Define the ELBO:

ELBO(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x | z)]−DKL
(
qϕ(z | x)∥p(z)

)
.
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HOW TO COMPUTE A DIVERGENCE?
APPROXIMATE MLE AND ELBO

ELBO in KL form.

ELBO(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x | z)] − DKL
(
qϕ(z | x) ∥ p(z)

)
.

And the exact evidence decomposes as

log pθ(x) ≥ ELBO(θ, ϕ; x) − DKL
(
qϕ(z | x) ∥ pθ(z | x)

)
,

so maximizing ELBO minimizes the posterior KL.

What to optimize:
▶ w.r.t. θ (decoder/model): increase the reconstruction term Eqϕ(z|x)[log pθ(x | z)]; use Monte Carlo

gradients with reparameterized z.
▶ w.r.t. ϕ (encoder/inference): tighten the bound by driving qϕ(z | x) toward pθ(z | x) (reducing the

posterior KL above), while also respecting the regularizer DKL(qϕ(z | x)∥p(z)).
▶ Training recipe: joint SGD on (θ, ϕ) with mini-batches and the reparameterization trick

z = µϕ(x) + σϕ(x)⊙ ε, ε ∼ N (0, I).
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FAMILIES OF GENERATIVE MODELS
VISUAL TAXONOMY
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MODEL LANDSCAPE
AT A GLANCE

Model Density Sampling Training Latents Architecture Discussed

ARM Exact, fast Slow MLE None Sequential Here
Flows Exact, slow/fast Slow MLE Rd Invertible Here
EBM Approx, slow Slow MLE-A Optional Discriminative Here
VAE LB, fast Fast MLE-LB Rm Encoder–Decoder Here and TP1
GAN Jensen Approx Fast Min–max Rm Generator–Discriminator Session 2 and TP2
Diffusion LB Slow MLE-LB Rd Encoder–Decoder Session 3 and TP3
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AUTOREGRESSIVE MODELS
LIKELIHOOD DECOMPOSITION

Chain rule factorization. For x = (x1, . . . , xd) and any fixed ordering,

pθ(x) =
d∏

i=1

pθ
(
xi | x<i

)
⇐⇒ log pθ(x) =

d∑
i=1

log pθ
(
xi | x<i

)
.

▶ The ordering (sequence order, raster scan for images, etc.) defines the conditional structure.
▶ Each factor is a simple conditional model (e.g., categorical over tokens/pixels, Gaussian for reals).
▶ Tractable likelihood: evaluation and gradients are exact.

x1 x2 · · · xn
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AUTOREGRESSIVE MODELS
TRAINING OBJECTIVE

Maximum likelihood = sum of conditional cross-entropies.

max
θ

Ex∼P
[
log pθ(x)

]
= max

θ
Ex∼P

[ d∑
i=1

log pθ(xi | x<i)
]
.

▶ Empirical objective: − 1
N
∑

n
∑

i log pθ
(
xn,i | xn,<i

)
.

▶ Teacher forcing: condition on true prefixes x<i during training.
▶ Implementation: causal masking (sequences), masked convolutions (images), parallel loss over

all positions.
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AUTOREGRESSIVE MODELS
GENERATION (ANCESTRAL SAMPLING)

Ancestral sampling: draw variables one-by-one following the factorization order.

Algorithm 6: Autoregressive ancestral sampling
Input: learned conditionals pθ(xi | x<i), dimension d
Output: sample x = (x1, . . . , xd)
for i← 1 to d do

Sample xi ∼ pθ(· | x<i)
end

Notes:
▶ Exact and simple; sequential cost O(d) (limited parallelism at inference).
▶ For discrete outputs (text, pixels): categorical sampling; for continuous: Gaussian or mixture.
▶ Temperature/top-k/nucleus (p) sampling often used for text (heuristics, not MLE).
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AUTOREGRESSIVE MODELS
LLMS AS AUTOREGRESSIVE NEXT-TOKEN PREDICTORS

Token sequence factorization. For tokens w1:T,

pθ(w1:T) =

T∏
t=1

pθ
(
wt | w<t

)
, log pθ(w1:T) =

T∑
t=1

log pθ(wt | w<t).

▶ Transformer decoder-only with causal mask models pθ(wt | w<t).
▶ Training: minimize cross-entropy to true next token (teacher forcing, parallel over positions).
▶ Tokenization: subword units (BPE/WordPiece) turn text into discrete tokens; softmax over vocab.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 57 / 82



AUTOREGRESSIVE MODELS
PIXELCNN / PIXELRNN

Image factorization. Raster-scan ordering over pixels (and optionally channels):

pθ(x) =
HW·C∏

i=1

pθ
(
xi | x<i

)
.

▶ Masked convolutions enforce causality (no access to future pixels).
▶ Receptive field grows with layers; PixelRNN uses recurrent structure.
▶ Discrete pixels: categorical over 256 bins or mixture of logistics (PixelCNN++).
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NORMALIZING FLOWS
OVERVIEW

A Normalizing Flow is usually seen as:
▶ a generative model,
▶ a bijective mapping,
▶ an invertible neural network,
▶ a density estimator.
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NORMALIZING FLOWS
MAPPING BETWEEN DISTRIBUTIONS — POINT TO POINT

Figure. A mapping between two probability distributions
Point to point
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NORMALIZING FLOWS
MAPPING BETWEEN DISTRIBUTIONS — SUBSET TO SUBSET

Figure. A mapping between two probability distributions
Subset to subset
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NORMALIZING FLOWS
MATHEMATICAL FRAMEWORK

Normalizing Flow

A Normalizing Flow is a bijective function between a data space X and a latent space Z , both subsets
of Rd.

F : X 7−→ Z
x 7−→ z = F(x)

Data and Latent Distributions
In theory, a NF maps a target distribution P (the data distribution) to a simple latent distribution Q.
Usually, Q is set to be a multivariate normal N (0, Id). p and q denote the densities of P and Q
respectively.
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NORMALIZING FLOWS
HOW DOES IT WORK?

In practice, the mapping is not perfect. P induces a distribution Q through F, and the latent distribution
Q induces P̂ through F−1, which is the learned distribution. The forward pass F is called the
normalizing direction while the inverse pass F−1 is called the generative direction.

Figure. 1D Normalizing Flow process.

ALEXANDRE VÉRINE GENERATIVE MODELS: IASD APPRENTISSAGE 63 / 82



NORMALIZING FLOWS
CHANGE OF VARIABLES

Change of Variables Formula

For a bijective and continuous function F and a latent distribution Q, the distribution induced by Q
and F is defined by:

∀x ∈ X , p̂(x) =
∣∣ det JacF(x)

∣∣ q(F(x)). (1)
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NORMALIZING FLOWS
CHANGE OF VARIABLES — VISUAL INTUITION

∀x ∈ X , p̂(x) =
∣∣ det JacF(x)

∣∣ q(F(x)).
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NORMALIZING FLOWS
DENSITY ESTIMATION

To perform density estimation:
1. Draw x ∼ P,
2. Compute F(x) and

∣∣det JacF(x)
∣∣,

3. Compute p̂(x) = q(F(x))
∣∣det JacF(x)

∣∣.

Figure. 1D Normalizing Flow process of density estimation.
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NORMALIZING FLOWS
DATA GENERATION

To perform data generation:
1. Draw z ∼ Q,
2. Compute x = F−1(z).

Figure. 1D Normalizing Flow process of generation.
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NORMALIZING FLOWS
LEARNING STEPS

Figure. Learning process for a 1D Normalizing Flow.
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ENERGY-BASED MODELS
PARTITION FUNCTION CHALLENGE

Definition. An Energy-Based Model (EBM) defines

pθ(x) =
exp(−Eθ(x))

Z(θ)
, Z(θ) =

∫
exp(−Eθ(x)) dx.

▶ Eθ(x) is an energy function (low energy = high probability).
▶ Z(θ) is the partition function ensuring normalization.
▶ Problem: computing Z(θ) is generally intractable (high-dimensional integral).

Takeaway: normalization constant is the main pain in EBMs.
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ENERGY-BASED MODELS
TRAINING — LOG-LIKELIHOOD AND GRADIENT

Log-likelihood for one sample x:

log pθ(x) = −Eθ(x)− logZ(θ), with Z(θ) =
∫

e−Eθ(u) du.

Gradient derivation:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZ(θ)

Compute ∇θ logZ(θ) explicitly:

Z(θ) =
∫

e−Eθ(u) du, ∇θZ(θ) =
∫

e−Eθ(u)
(
−∇θEθ(u)

)
du,

∇θ logZ(θ) =
1

Z(θ)
∇θZ(θ)

= −
∫

e−Eθ(u)

Z(θ)
∇θEθ(u) du

= −Eu∼pθ
[
∇θEθ(u)

]
.

Substitute back:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZ(θ) = −∇θEθ(x) + Eu∼pθ
[
∇θEθ(u)

]
.
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ENERGY-BASED MODELS
TRAINING — PRACTICAL GRADIENT STEP

Empirical objective (dataset {xn}):

∇θ
1
N

N∑
n=1

log pθ(xn) = −
1
N

N∑
n=1

∇θEθ(xn) + Eu∼pθ
[
∇θEθ(u)

]
.

Gradient step (schematic):

θ ← θ − η
(
− 1

N

∑
n

∇θEθ(xn) + Eu∼pθ [∇θEθ(u)]
)
.

▶ Pull down energy on data (first term), push up on model samples (second term).
▶ Trade-offs: bias vs. mixing time; stability tricks (noise scale, step size, gradient clipping, spectral

norm).
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ENERGY-BASED MODELS
SAMPLING

Goal: generate x ∼ pθ(x) ∝ e−Eθ(x).
▶ Direct sampling is impossible (requires Z(θ)).
▶ Use MCMC methods (e.g., Langevin dynamics, Hamiltonian Monte Carlo).
▶ Iteratively update x← x− η∇xEθ(x) +

√
2η ξ, ξ ∼ N (0, I).

▶ Paths follow the energy landscape toward low-energy regions (data modes).
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AUTOENCODER
BASIC ARCHITECTURE AND OBJECTIVE

Architecture:
▶ Encoder: maps input x to a low-dimensional latent representation z = fϕ(x).
▶ Decoder: reconstructs input from latent z, i.e., x̂ = gθ(z).
▶ The model is trained end-to-end to minimize the difference between x and x̂.

Objective:
min
θ,ϕ

Ex∼Pdata [ℓ(x, gθ(fϕ(x)))]

where ℓ is typically mean squared error: ℓ(x, x̂) = ∥x− x̂∥2. Limitations for generative modeling:

▶ No explicit generative process for sampling new data from the latent space.
▶ Latent space may not follow a known distribution—sampling z at random often yields unrealistic

outputs.
▶ Not a true probabilistic model; lacks explicit likelihood or regularization of latent space.
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AUTOENCODER
ILLUSTRATION AND EXAMPLE

Architecture:
▶ Input: x (e.g., image, signal)
▶ Encoder: compresses x to latent z
▶ Decoder: reconstructs x̂ from z

Applications:
▶ Dimensionality reduction, denoising,

anomaly detection, feature learning
▶ Not directly suited for generating novel

samples
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VARIATIONAL AUTOENCODER
INTUITION BEHIND VAE

Key ideas:
▶ Probabilistic encoder: Instead of mapping x→ z deterministically, encode x as a distribution over

latent variables: qϕ(z|x) (e.g., Gaussian with mean and variance predicted by encoder).
▶ Probabilistic decoder: Model pθ(x|z), i.e., generate x from latent z.
▶ Latent variable modeling: Place a prior p(z) (usually standard normal) on the latent space to

encourage structure and enable sampling.
▶ Regularization: Use KL divergence DKL(qϕ(z|x)∥p(z)) to encourage qϕ(z|x) to be close to the

prior, making the latent space well-behaved and suitable for generative sampling.
Summary: VAE is a probabilistic autoencoder that learns both to reconstruct data and to regularize
the latent space for generative use.
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VARIATIONAL AUTOENCODER
EVIDENCE LOWER BOUND (ELBO)

Objective: Evidence Lower Bound (ELBO)

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z))

▶ First term: Expected log-likelihood (reconstruction accuracy)
▶ Second term: KL divergence between encoder distribution and prior (regularization)

Relation to MLE: Maximizing ELBO approximates maximizing the marginal likelihood pθ(x) (i.e.,
maximum likelihood estimation for latent variable models).

Training strategy:
▶ Optimize the ELBO jointly with respect to encoder (ϕ) and decoder (θ) parameters.
▶ Use stochastic gradient descent with the reparameterization trick to backpropagate through

stochastic nodes.
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VARIATIONAL AUTOENCODER
REPARAMETERIZATION TRICK

Intuition:
▶ Allows gradients to flow through random sampling by expressing sampling as a deterministic

function of parameters and noise.
▶ Enables efficient and low-variance gradient estimation for stochastic variables.

Mathematical formulation:
▶ For qϕ(z|x) = N (z;µϕ(x), σϕ(x)2),
▶ Sample z as:

z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I)
▶ Now, z is a deterministic function of x, ϕ, and random noise ϵ.

Benefits:
▶ Enables backpropagation through stochastic sampling.
▶ Crucial for training VAEs with gradient-based methods.
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VARIATIONAL AUTOENCODER
LOSS

VAE Loss Function:

LVAE(x) = Eqϕ(z|x)[− log pθ(x|z)]︸ ︷︷ ︸
Reconstruction loss

+ DKL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
KL divergence (regularization)

▶ Reconstruction loss: Measures how well the decoder can reconstruct the input from the latent
code.

▶ KL divergence: Encourages the approximate posterior qϕ(z|x) to match the prior p(z) (e.g.,
standard normal), regularizing the latent space.

▶ Trade-off: Balances data fidelity (reconstruction) and latent space regularity (generative quality).
Too much weight on KL: blurry reconstructions; too little: latent space collapse.

Typical formula:

LVAE(x) =
1
2

∑
j

(
σ2

j (x) + µj(x)2 − 1− log σ2
j (x)

)
+ Reconstruction loss
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VARIATIONAL AUTOENCODER
LOSS
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VARIANTS OF VAE
EXTENSIONS AND IMPROVEMENTS

Key VAE Variants:
▶ Conditional VAE (CVAE): Conditions both encoder and decoder on auxiliary information (e.g.,

labels, attributes) to enable conditional generation [5].
▶ β-VAE: Introduces a hyperparameter β to scale the KL term, encouraging disentangled latent

representations [2].
▶ Other notable extensions:

• VampPrior: Learnable mixture prior for more flexible latent space.
• Vector Quantized VAE (VQ-VAE) [4]: Discrete latent variables via vector quantization.
• Hierarchical VAE: Multiple layers of latent variables.
• FactorVAE, InfoVAE, WAE (Wasserstein Autoencoder), etc.

References:
▶ Original VAE paper: [3]
▶ Conditional VAE: [5]
▶ β-VAE : [2]
▶ VQ-VAE: [4]
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VQ-VAE (VAN DEN OORD ET AL., 2017)
VECTOR QUANTIZED VAE

Key ideas:
▶ Introduces discrete latent representations via vector quantization—the encoder outputs are

mapped to the nearest entry in a learned codebook.
▶ The decoder reconstructs x from the quantized latent code.
▶ Enables modeling of discrete structure in data (e.g., language, audio, images).
▶ Discrete latents are particularly beneficial for combining VAEs with powerful generative models

(such as PixelCNN or Transformers) in the latent space.
▶ Facilitates improved sample quality and more interpretable representations.

Benefits:
▶ Enables use of GAN-like or autoregressive models in discrete latent space.
▶ Improved performance on high-fidelity image and audio generation tasks.
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